Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 192: 115039, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201349

RESUMO

Based on historical data from 1976 to 2019, the effects of anthropogenic activities on long-term changes in nutrients and their ecological effects in the South Yellow Sea were investigated. The dissolved inorganic nitrogen (DIN) concentrations increased continuously from 1990 until the mid-2000s, followed by a shift from an upward trend to a downward trend. The phosphate (PO4-P) and silicate (SiO3-Si) concentrations also showed obvious interannual variations throughout the study period. The concentrations of DIN, PO4-P and SiO3-Si have decreased significantly in recent decade and more. These changes mainly resulted from the reduction in terrestrial input, while the main reason for the decrease in DIN and PO4-P concentrations is the reduction in anthropogenic input. The long-term nutrient changes in the South Yellow Sea have potential ecological impacts on green tide features.


Assuntos
Monitoramento Ambiental , Nitrogênio , Nitrogênio/análise , Monitoramento Ambiental/métodos , Fosfatos/análise , Nutrientes , Silicatos/análise , China , Fósforo/análise
2.
Environ Sci Pollut Res Int ; 29(14): 20603-20616, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34741268

RESUMO

Uranium tailing ponds are a potential major source of radioactive pollution. Solidification treatment can control the diffusion and migration of radioactive elements in uranium tailings to safeguard the surrounding ecological environment. A literature review and field investigation were conducted in this study prior to fabricating 11 solidified uranium tailing samples with different proportions of PVA fiber, basalt fiber, metakaolin, and fly ash, and the weight percentage of uranium tailings in the solidified body is 61.11%. The pore structure, volume resistivity, compressive strength, radon exhalation rate variations, and U(VI) leaching performance of the samples were analyzed. The pore size of the solidified samples is mainly between 1 and 50 nm, the pore volume is between 2.461 and 5.852 × 10-2 cm3/g, the volume resistivity is between 1020.00 and 1937.33 Ω·m, and the compressive strength is between 20.61 and 36.91 MPa. The radon exhalation rate is between 0.0397 and 0.0853 Bq·m-2·s-1. The cumulative leaching fraction of U(VI) is between 2.095 and 2.869 × 10-2 cm, and the uranium immobilization rate is between 83.46 and 85.97%. Based on a comprehensive analysis of the physical and mechanical properties, radon exhalation rates, and U(VI) leaching performance of the solidified samples, the basalt fiber is found to outperform PVA fiber overall. The solidification effect is optimal when 0.6% basalt fiber is added.


Assuntos
Indústrias Extrativas e de Processamento , Resíduos Radioativos , Poluentes Radioativos do Solo , Urânio , Gerenciamento de Resíduos , Cinza de Carvão/análise , Difusão , Locais de Resíduos Perigosos , Proteção Radiológica/métodos , Resíduos Radioativos/análise , Radônio/análise , Silicatos/análise , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/química , Urânio/análise , Gerenciamento de Resíduos/métodos
3.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836596

RESUMO

Legume trees form an abundant and functionally important component of tropical forests worldwide with N2-fixing symbioses linked to enhanced growth and recruitment in early secondary succession. However, it remains unclear how N2-fixers meet the high demands for inorganic nutrients imposed by rapid biomass accumulation on nutrient-poor tropical soils. Here, we show that N2-fixing trees in secondary Neotropical forests triggered twofold higher in situ weathering of fresh primary silicates compared to non-N2-fixing trees and induced locally enhanced nutrient cycling by the soil microbiome community. Shotgun metagenomic data from weathered minerals support the role of enhanced nitrogen and carbon cycling in increasing acidity and weathering. Metagenomic and marker gene analyses further revealed increased microbial potential beneath N2-fixers for anaerobic iron reduction, a process regulating the pool of phosphorus bound to iron-bearing soil minerals. We find that the Fe(III)-reducing gene pool in soil is dominated by acidophilic Acidobacteria, including a highly abundant genus of previously undescribed bacteria, Candidatus Acidoferrum, genus novus. The resulting dependence of the Fe-cycling gene pool to pH determines the high iron-reducing potential encoded in the metagenome of the more acidic soils of N2-fixers and their nonfixing neighbors. We infer that by promoting the activities of a specialized local microbiome through changes in soil pH and C:N ratios, N2-fixing trees can influence the wider biogeochemical functioning of tropical forest ecosystems in a manner that enhances their ability to assimilate and store atmospheric carbon.


Assuntos
Fabaceae/microbiologia , Florestas , Microbiota/fisiologia , Minerais/metabolismo , Nutrientes/metabolismo , Clima Tropical , Acidobacteria/classificação , Acidobacteria/genética , Acidobacteria/metabolismo , Biomassa , Carbono/análise , Fabaceae/crescimento & desenvolvimento , Fabaceae/metabolismo , Compostos Férricos/metabolismo , Concentração de Íons de Hidrogênio , Microbiota/genética , Minerais/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Fixação de Nitrogênio , Nutrientes/análise , Panamá , Fósforo/metabolismo , Silicatos/análise , Silicatos/metabolismo , Solo/química , Microbiologia do Solo , Simbiose , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Árvores/microbiologia
4.
Astrobiology ; 19(7): 867-884, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30994366

RESUMO

Carbon-enriched rocky exoplanets have been proposed to occur around dwarf stars as well as binary stars, white dwarfs, and pulsars. However, the mineralogical make up of such planets is poorly constrained. We performed high-pressure high-temperature laboratory experiments (P = 1-2 GPa, T = 1523-1823 K) on chemical mixtures representative of C-enriched rocky exoplanets based on calculations of protoplanetary disk compositions. These P-T conditions correspond to the deep interiors of Pluto- to Mars-sized planets and the upper mantles of larger planets. Our results show that these exoplanets, when fully differentiated, comprise a metallic core, a silicate mantle, and a graphite layer on top of the silicate mantle. Graphite is the dominant carbon-bearing phase at the conditions of our experiments with no traces of silicon carbide or carbonates. The silicate mineralogy comprises olivine, orthopyroxene, clinopyroxene, and spinel, which is similar to the mineralogy of the mantles of carbon-poor planets such as the Earth and largely unaffected by the amount of carbon. Metals are either two immiscible iron-rich alloys (S-rich and S-poor) or a single iron-rich alloy in the Fe-C-S system with immiscibility depending on the S/Fe ratio and core pressure. We show that, for our C-enriched compositions, the minimum carbon abundance needed for C-saturation is 0.05-0.7 wt% (molar C/O ∼0.002-0.03). Fully differentiated rocky exoplanets with C/O ratios more than that needed for C-saturation would contain graphite as an additional layer on top of the silicate mantle. For a thick enough graphite layer, diamonds would form at the bottom of this layer due to high pressures. We model the interior structure of Kepler-37b and show that a mere 10 wt% graphite layer would decrease its derived mass by 7%, which suggests that future space missions that determine both radius and mass of rocky exoplanets with insignificant gaseous envelopes could provide quantitative limits on their carbon content. Future observations of rocky exoplanets with graphite-rich surfaces would show low albedos due to the low reflectance of graphite. The absence of life-bearing elements other than carbon on the surface likely makes them uninhabitable.


Assuntos
Meio Ambiente Extraterreno/química , Grafite/análise , Modelos Químicos , Planetas , Óxido de Alumínio/análise , Óxido de Alumínio/química , Exobiologia/métodos , Gases/química , Compostos de Ferro/análise , Compostos de Ferro/química , Compostos de Magnésio/análise , Compostos de Magnésio/química , Óxido de Magnésio/análise , Óxido de Magnésio/química , Minerais/análise , Minerais/química , Silicatos/análise , Silicatos/química , Astros Celestes , Água/química
5.
Mar Pollut Bull ; 140: 549-562, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30803676

RESUMO

The temporal and spatial distributions of dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and dissolved silicate (DSi), and their long-term changes were investigated in Bohai Bay (BHB) in spring, summer, and autumn (2013-2014). The high DIN values were consistently distributed in the western inshore waters, mainly determined by terrestrial factors, e.g., riverine input, while DIP and DSi were mostly distributed in the southern coastal waters, the central BHB, or near the sea port Caofeidian in northern BHB, largely related to non-terrestrial factors, e.g., sediment release. Based on the nutrient distribution, BHB could be partitioned into western and eastern parts, with -15 m depth as the separation. The long-term variations of nutrients since 2000 showed an increase in DIN and decreases in DIP and DSi. Relatively slow changes in DIN and DIP and a rapid decrease in DSi were exhibited in summer, which was associated with precipitation and sediment release.


Assuntos
Baías/química , Nitrogênio/análise , Fósforo/análise , Água do Mar/química , Silicatos/análise , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Estações do Ano , Análise Espaço-Temporal
6.
Talanta ; 195: 490-496, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625574

RESUMO

Falsified medical products are increasingly prevalent on markets, threatening the health of patients. This study describes the benefits of Energy Dispersive X-Ray Fluorescence (ED-XRF) spectroscopy and chemometrics thus highlighting the importance of conducting inorganic analyses on falsified products. The XRF spectrum is a fingerprint containing the contribution of all chemical substances included in a suspect sample's formulation. Multivariate analysis of XRF spectra, using a properly validated classification model, allows for the authentication of suspect samples. The method is rapid, relying on multi-elemental measurements and involving minimal sample preparation. This methodology provided valuable information about samples inorganic composition and enabled the detection of falsifications of several sample types, including medicine, food supplement and cosmetic samples. Five suspect samples of Plavix® were investigated, and their XRF spectra were studied using chemometrics (Principal Component Analysis and Soft Independent Modelling of Class Analogies). A classification model was validated with positive and negative samples, and four suspect samples were identified as being falsified, whilst the fifth was concluded as an authentic medicine. ED-XRF spectroscopy was also applied on another medicine, a food supplement and three cosmetic samples, and high level of zinc was detected in the second sample and mercury was identified in the last. Estimation of the zinc content was possible using the fundamental parameters method. ED-XRF spectroscopy allows the analyst to conclude on the falsification of the samples and then to assess the harm to patient health.


Assuntos
Cosméticos/análise , Medicamentos Falsificados/análise , Suplementos Nutricionais/análise , Clopidogrel/análise , Qualidade de Produtos para o Consumidor , Contaminação de Medicamentos , Silicatos/análise , Espectrometria por Raios X
7.
PLoS One ; 13(11): e0207103, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30408086

RESUMO

This paper documents the first U-Pb zircon ages for Ashfall Fossil Beds (Nebraska, USA), a terrestrial Konservat-Lagerstätte mass-death assemblage that is arguably the most diverse of its type and age. The Ashfall tephra was correlated with ignimbrites from the Bruneau-Jarbidge volcanic field (12.7-10.5 Ma) in southwest Idaho based on geochemical analysis. The methods and geochemical data supporting the original age assessment of the ash bed, however, were never published, and there has been a persistent misconception that dateable heavy minerals (e.g., zircon) are absent. Notwithstanding, we recovered abundant zircons from Ashfall Fossil Beds, and from an ash bed ~6 km to the southeast at Grove Lake, Nebraska, and analyzed them through LA-ICP-MS. Our new zircon U-Pb age of 11.86 ± 0.13 Ma substantiates correlation of the Ashfall Fossil Beds deposit to tuffs originating from the Bruneau-Jarbidge caldera (~12.7-10.5 Ma). Our U-Pb zircon age of 6.42 ± 0.06 Ma for the Grove Lake ash bed coincides with supervolcanic activity in the Heise volcanic field (6.6-4.3 Ma) in eastern Idaho. These new dates improve age constraints of strata comprising the Ogallala Group and the important paleontological site. Moreover, we find that detrital and airfall zircons are unevenly distributed in the stratified ash beds we describe herein and presumably in similar deposits worldwide. Therefore, a higher-resolution sampling scheme is necessary in such cases.


Assuntos
Erupções Vulcânicas/história , História Antiga , Idaho , Chumbo/análise , Nebraska , Paleontologia , Datação Radiométrica , Silicatos/análise , Solo/química , Urânio/análise , Erupções Vulcânicas/análise , Zircônio/análise
8.
Mar Pollut Bull ; 135: 1026-1034, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30300996

RESUMO

This study investigated the long-term variations and compositions of nutrients and the associated controlling factors in the western North Yellow Sea on the basis of historical data. The NO3-N and DIN concentrations and N/P showed continuous increases over the past two decades, which were dominantly affected by riverine inputs, such as inputs from the Yellow River, Yalujiang River and Jia River and atmospheric deposition. However, due to human activities, such as dam construction in rivers and climate change, the SiO3-Si concentrations and Si/P ratios decreased before the early 1990s and then gradually increased. The vertical distributions of nutrients displayed higher concentrations at the bottom than those at the surface in summer, which was attributed to the combined influence of the thermocline, the Yellow Sea Cold Water Mass, the Yellow Sea Warm Current and biological activities.


Assuntos
Nitrogênio/análise , Fósforo/análise , Água do Mar/análise , Silicatos/análise , China , Monitoramento Ambiental/métodos , Humanos , Nitratos/análise , Rios , Estações do Ano , Água do Mar/química
9.
Mar Pollut Bull ; 127: 559-567, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29475698

RESUMO

The coastal waters of the southeastern Mediterranean-Sea (SEMS) are routinely enriched with naturally-occurring and anthropogenic land-based nutrient loads. These external inputs may affect autotrophic and heterotrophic microbial biomass and activity. Here, we conducted 13 microcosm bioassays with different additions of inorganic NO3-(N), PO4-(P) and Si(OH)4-(Si) in different seasons along the Mediterranean coast of Israel. Our results indicate that cyanobacteria are mainly N-limited, whereas N or Si (or both) limit pico-eukaryotes. Furthermore, the degree to which N affects phytoplankton depends on the ambient seawater's inorganic N and N:P characteristics. Heterotrophic bacteria displayed no response in all treatments, except when all nutrients were added simultaneously, suggesting a possible co-limitation by nutrients. These results contrast the N+P co-limitation of phytoplankton and the P-limitation of bacteria in the open waters of the SEMS. These observations enable the application for a better science-based environmental monitoring and policy implementation along the SEMS coast of Israel.


Assuntos
Monitoramento Ambiental/métodos , Microbiota/efeitos dos fármacos , Nitrogênio/análise , Fósforo/análise , Água do Mar/microbiologia , Silicatos/análise , Processos Autotróficos , Bioensaio , Biomassa , Cianobactérias/crescimento & desenvolvimento , Processos Heterotróficos , Israel , Mar Mediterrâneo , Fitoplâncton/crescimento & desenvolvimento , Estações do Ano , Água do Mar/química
10.
Environ Sci Pollut Res Int ; 25(6): 5386-5392, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29209975

RESUMO

Laboratory desorption behaviour, function and elemental composition of commercially marketed silicate minerals used to sequester phosphorus pollution as well as Zeolite, Smectite, and Kaolinite were determined to see whether their use by environmental scientists and water managers in eutrophic waterways has the potential to contribute to longer-term environmental impacts. As expected, lower phosphorus concentrations were observed, following treatment. However, data relating to desorption, environmental fate and bioavailability of phospho-silicate complexes (especially those containing rare earth elements) appear to be underrepresented in product testing and trial publications. Analysis of desorption of phosphate (P) was > 5 µg[P]/L for all three non-commercial samples and 0 > µg[P]/L > 5 for all commercial silicates for a range of concentrations from 0 to 300 µg[P]/L. Based on a review of bioaccumulation data specific to the endangered Cherax tenuimanus (Hairy Marron) and other endemic species, this is significant considering anything > 20 µg[La]/L is potentially lethal to the hairy marron, other crustaceans and even other phyla. Where prokaryotic and eukaryotic effects are underreported, this represents a significant challenge. Especially where product protocols recommend continual reapplication, this is significant because both the forward and reverse reactions are equally important. The users of silicate minerals in water columns should accept the dynamic nature of the process and pay equal attention to both adsorption and desorption because desorption behaviour is an inherent trait. Even if broader desorption experimentation is difficult, expensive and time-consuming, it is a critical consideration nonetheless.


Assuntos
Ecossistema , Fosfatos/metabolismo , Silicatos/metabolismo , Poluentes Químicos da Água/metabolismo , Água/química , Adsorção , Animais , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo , Austrália , Fosfatos/análise , Fosfatos/química , Fosfatos/toxicidade , Fósforo/análise , Fósforo/química , Silicatos/análise , Silicatos/química , Silicatos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
11.
Microb Ecol ; 71(1): 18-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26563321

RESUMO

Volcanic eruptions discharge massive amounts of ash and pumice that decrease light penetration in lakes and lead to concomitant increases in phosphorus (P) concentrations and shifts in soluble C/P ratios. The consequences of these sudden changes for bacteria community composition, metabolism, and enzymatic activity remain unclear, especially for the dynamic period immediately after pumice deposition. Thus, the main aim of our study was to determine how ambient bacterial communities respond to pumice inputs in lakes that differ in dissolved organic carbon (DOC) and P concentrations and to what extent these responses are moderated by substrate C/P stoichiometry. We performed an outdoor experiment with natural lake water from two lakes that differed in dissolved organic carbon (DOC) concentration. We measured nutrient concentrations, alkaline phosphatase activity (APA), and DOC consumption rates and assessed different components of bacterial community structure using next-generation sequencing of the 16S rRNA gene. Pumice inputs caused a decrease in the C/P ratio of dissolved resources, a decrease in APA, and an increase in DOC consumption, indicating reduced P limitation. These changes in bacteria metabolism were coupled with modifications in the assemblage composition and an increase in diversity, with increases in bacterial taxa associated with biofilm and sediments, in predatory bacteria, and in bacteria with gliding motility. Our results confirm that volcanic eruptions have the potential to alter nutrient partitioning and light penetration in receiving waterways which can have dramatic impacts on microbial community dynamics.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Carbono/análise , Lagos/microbiologia , Fósforo/análise , Silicatos/análise , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Lagos/química , Fósforo/metabolismo , Silicatos/metabolismo , Erupções Vulcânicas/análise
12.
Zhongguo Zhong Yao Za Zhi ; 41(19): 3528-3536, 2016 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-28925144

RESUMO

In order to provide theoretical basis for the rapid identification of mineral traditional Chinese medicines(TCM) with near infrared (NIR)diffuse reflectance spectroscopy, Characteristic NIR spectra of 51 kinds of mineral TCMs were generalized and compared on the basis of the previous research, and the characteristic spectral bands were determined and analyzed by referring to mineralogical and geological literatures. It turned out that the NIR features of mineral TCMs were mainly at 8 000-4 000 cm ⁻¹ wavebands, which can be assigned as the absorption of water, -OH and[CO3 ²â»] and so on. Absorption peaks of water has regularity as follows, the structure water and -OH had a combined peak which was strong and keen-edged around 7 000 cm ⁻¹, the crystal water had two strong peak around 7 000 cm ⁻¹ and 5 100 cm ⁻¹, and water only has a broad peak around 5 100 cm ⁻¹. Due to the differences in the crystal form and the contents of water in mineral TCMs, NIR features of water in mineral TCMs which could be used for identification were different. Mineral TCMs containing sulfate are rich in crystal water, mineral TCMs containing silicate generally had structure water, and mineral TCMs containing carbonate merely had a little of water, so it was reasonable for the use of NIR spectroscopy to classify mineral TCMs with anionic type. In addition, because of the differences in cationic type, impurities, crystal form and crystallinity, mineral TCMs have exclusive NIR features at 4 600-4 000 cm ⁻¹, which can be assigned as Al-OH, Mg-OH, Fe-OH, Si-OH,[CO3 ²â»] and so on. Calcined mineral TCMs are often associated with water and main composition changes, also changes of the NIR features, which could be used for the monitoring of the processing, and to provide references for the quality control of mineral TCMs. The adaptability and limitation of NIR analysis for mineral TCMs were also discussed:the majority of mineral TCMs had noteworthy NIR features which could be used for the NIR analysis. And the NIR features of a few mineral TCMs were inapparent, such as Fluoritum, Realgar and Cinnabar, for which the Raman spectroscopy can be adopted alternatively.


Assuntos
Medicina Tradicional Chinesa/normas , Minerais/análise , Espectroscopia de Luz Próxima ao Infravermelho , Carbonatos/análise , Silicatos/análise , Análise Espectral Raman
13.
Int J Environ Res Public Health ; 12(8): 9603-22, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26287226

RESUMO

The rapid growth of the economy in China has caused dramatic growth in the industrial and agricultural development in the Yellow River (YR) watershed. The hydrology of the YR has changed dramatically due to the climate changes and water management practices, which have resulted in a great variation in the fluxes of riverine nutrients carried by the YR. To study these changes dissolved nutrients in the YR were measured monthly at Lijin station in the downstream region of the YR from 2002 to 2004. This study provides detailed information on the nutrient status for the relevant studies in the lower YR and the Bohai Sea. The YR was enriched in nitrate (average 314 µmol·L(-1)) with a lower concentration of dissolved silicate (average 131 µmol·L(-1)) and relatively low dissolved phosphate (average 0.35 µmol·L(-1)). Nutrient concentrations exhibited substantial seasonal and yearly variations. The annual fluxes of dissolved inorganic nitrogen, phosphate, and silicate in 2004 were 5.3, 2.5, and 4.2 times those in 2002, respectively, primarily due to the increase in river discharge. The relative contributions of nutrient inputs to nitrogen in the YR were: wastewater > fertilizer > atmospheric deposition > soil; while to phosphorus were: wastewater > fertilizer > soil > atmospheric deposition. The ratios of N, P and Si suggest that the YR at Lijin is strongly P-limited with respect to potential phytoplankton growth.


Assuntos
Nitratos/análise , Nitrogênio/análise , Fosfatos/análise , Fósforo/análise , Rios/química , Silicatos/análise , China , Monitoramento Ambiental/métodos , Estações do Ano
14.
Environ Sci Technol ; 49(1): 203-11, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25469633

RESUMO

Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide improved insights into sediment P dynamics, particularly the rapid remineralization of organic P and the stability of Fe minerals and the ferric Fe-bound P pool in anoxic sediments in the Chesapeake Bay.


Assuntos
Sedimentos Geológicos/análise , Fósforo/análise , Baías , Fracionamento Químico/métodos , Compostos Férricos/análise , Compostos Férricos/química , Compostos Ferrosos/análise , Compostos Ferrosos/química , Sedimentos Geológicos/química , Ferro/análise , Ferro/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Mid-Atlantic Region , Minerais/química , Fosfatos/análise , Fosfatos/química , Fósforo/química , Isótopos de Fósforo , Silicatos/análise , Silicatos/química , Sulfetos/análise , Sulfetos/química , Espectroscopia por Absorção de Raios X/métodos
15.
PLoS One ; 9(11): e112855, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25406090

RESUMO

Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (∼ 18-9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation.


Assuntos
Silicatos de Alumínio/química , Mudança Climática/história , Sedimentos Geológicos/química , Lagos , Fenômenos Fisiológicos Vegetais , Pólen/citologia , Argila , Geografia , História Antiga , Caulim/análise , Malaui , Tamanho da Partícula , Chuva , Silicatos/análise , Especificidade da Espécie , Clima Tropical , Difração de Raios X
16.
Mar Pollut Bull ; 85(1): 261-7, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24981105

RESUMO

Aerial Bay is one of the harbor towns of Andaman and Nicobar Islands, the union territory of India. Nevertheless, it is least studied marine environment, particularly for physico-chemical assessment. Therefore, to evaluate the annual spatiotemporal variations of physico-chemical parameters, seawater samples collected from 20 sampling stations covering three seasons were analyzed. Multivariate statistics is applied to the investigated data in an attempt to understand the causes of variation in physico-chemical parameters. Cluster analysis distinguished mangrove and open sea stations from other areas by considering distinctive physico-chemical characteristics. Factor analysis revealed 79.5% of total variance in physico-chemical parameters. Strong loading included transparency, TSS, DO, BOD, salinity, nitrate, nitrite, inorganic phosphate, total phosphorus and silicate. In addition, box-whisker plots and Geographical Information System based land use data further facilitated and supported multivariate results.


Assuntos
Monitoramento Ambiental/métodos , Nitratos/análise , Água do Mar/análise , Análise de Variância , Baías , Análise por Conglomerados , Análise Fatorial , Índia , Análise Multivariada , Nitritos/análise , Oceanos e Mares , Fosfatos/análise , Fósforo/análise , Análise de Componente Principal , Salinidade , Estações do Ano , Silicatos/análise
17.
Proc Natl Acad Sci U S A ; 111(23): 8380-5, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912193

RESUMO

Microtextures in metavolcanic pillow lavas from the Barberton greenstone belt of South Africa have been argued to represent Earth's oldest trace fossil, preserving evidence for microbial life in the Paleoarchean subseafloor. In this study we present new in situ U-Pb age, metamorphic, and morphological data on these titanite microtextures from fresh drill cores intercepting the type locality. A filamentous microtexture representing a candidate biosignature yields a U-Pb titanite age of 2.819 ± 0.2 Ga. In the same drill core hornfelsic-textured titanite discovered adjacent to a local mafic sill records an indistinguishable U-Pb age of 2.913 ± 0.31 Ga, overlapping with the estimated age of intrusion. Quantitative microscale compositional mapping, combined with chlorite thermodynamic modeling, reveals that the titanite filaments are best developed in relatively low-temperature microdomains of the chlorite matrix. We find that the microtextures exhibit a morphological continuum that bears no similarity to candidate biotextures found in the modern oceanic crust. These new findings indicate that the titanite formed during late Archean ca. 2.9 Ga thermal contact metamorphism and not in an early ca. 3.45 Ga subseafloor environment. We therefore question the syngenicity and biogenicity of these purported trace fossils. It is argued herein that the titanite microtextures are more likely abiotic porphyroblasts of thermal contact metamorphic origin that record late-stage retrograde cooling in the pillow lava country rock. A full characterization of low-temperature metamorphic events and alternative biosignatures in greenstone belt pillow lavas is thus required before candidate traces of life can be confirmed in Archean subseafloor environments.


Assuntos
Planeta Terra , Fósseis , Sedimentos Geológicos/análise , Paleontologia/métodos , Geografia , Isótopos , Chumbo , Espectrometria de Massas/métodos , Datação Radiométrica/métodos , Silicatos/análise , África do Sul , Temperatura , Fatores de Tempo , Titânio/análise , Urânio , Erupções Vulcânicas
18.
Crit Rev Toxicol ; 42(5): 358-442, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22512666

RESUMO

Maximum contaminant levels are used to control potential health hazards posed by chemicals in drinking water, but no primary national or international limits for aluminum (Al) have been adopted. Given the differences in toxicological profiles, the present evaluation derives total allowable concentrations for certain water-soluble inorganic Al compounds (including chloride, hydroxide, oxide, phosphate and sulfate) and for the hydrated Al silicates (including attapulgite, bentonite/montmorillonite, illite, kaolinite) in drinking water. The chemistry, toxicology and clinical experience with Al materials are extensive and depend upon the particular physical and chemical form. In general, the water solubility of the monomeric Al materials depends on pH and their water solubility and gastrointestinal bioavailability are much greater than that of the hydrated Al silicates. Other than Al-containing antacids and buffered aspirin, food is the primary source of Al exposure for most healthy people. Systemic uptake of Al after ingestion of the monomeric salts is somewhat greater from drinking water (0.28%) than from food (0.1%). Once absorbed, Al accumulates in bone, brain, liver and kidney, with bone as the major site for Al deposition in humans. Oral Al hydroxide is used routinely to bind phosphate salts in the gut to control hyperphosphatemia in people with compromised renal function. Signs of chronic Al toxicity in the musculoskeletal system include a vitamin D-resistant osteomalacia (deranged membranous bone formation characterized by accumulation of the osteoid matrix and reduced mineralization, reduced numbers of osteoblasts and osteoclasts, decreased lamellar and osteoid bands with elevated Al concentrations) presenting as bone pain and proximal myopathy. Aluminum-induced bone disease can progress to stress fractures of the ribs, femur, vertebrae, humerus and metatarsals. Serum Al ≥100 µg/L has a 75-88% positive predictive value for Al bone disease. Chronic Al toxicity is also manifest in the hematopoietic system as an erythropoietin-resistant microcytic hypochromic anemia. Signs of Al toxicity in the central nervous system (speech difficulty to total mutism to facial grimacing to multifacial seizures and dyspraxia) are related to Al accumulation in the brain and these symptoms can progress to frank encephalopathy. There are four groups of people at elevated risk of systemic Al intoxication after repeated ingestion of monomeric Al salts: the preterm infant, the infant with congenital uremia and children and adults with kidney disease. There is a dose-dependent increase in serum and urinary Al in people with compromised renal function, and restoration of renal function permits normal handling of systemically absorbed Al and resolution of Al bone disease. Clinical experience with 960 mg/day of Al(OH)(3) (~5 mg Al/kg-day) given by mouth over 3 months to men and women with compromised renal function found subclinical reductions in hemoglobin, hematocrit and serum ferritin. Following adult males and females with reduced kidney function found that ingestion of Al(OH)(3) at 2.85 g/day (~40 mg/kg-day Al) over 7 years increased bone Al, but failed to elicit significant bone toxicity. There was one report of DNA damage in cultured lymphocytes after high AlCl(3) exposure, but there is no evidence that ingestion of common inorganic Al compounds presents an increased carcinogenic risk or increases the risk for adverse reproductive or developmental outcomes. A number of studies of Al exposure in relation to memory in rodents have been published, but the results are inconsistent. At present, there is no evidence to substantiate the hypothesis that the pathogenesis of Alzheimer's Disease is caused by Al found in food and drinking water at the levels consumed by people living in North America and Western Europe. Attapulgite (palygorskite) has been used for decades at oral doses (recommended not to exceed two consecutive days) of 2,100 mg/day in children of 3-6 years, 4,200 mg/day in children of 6-12 years, and 9,000 mg/day in adults. Chronic ingestion of insoluble hydrated Al silicates (in kg) can result in disturbances in iron and potassium status, primarily as a result of clay binding to intestinal contents and enhanced fecal iron and zinc elimination. Sufficiently high doses of ingested Al silicates (≥50 g/day) over prolonged periods of time can elicit a deficiency anemia that can be corrected with oral Fe supplements. There is essentially no systemic Al uptake after ingestion of the hydrated Al silicates. Rats fed up to 20,000 ppm Ca montmorillonite (equivalent to 1,860 ppm total Al as the hydrated Al silicate) for 28 weeks failed to develop any adverse signs. The results of dietary Phase I and II clinical trials conducted in healthy adult volunteers over 14 days and 90 days with montmorillonite found no adverse effects after feeding up to 40 mg/kg-day as Al. Since the Al associated with ingestion of hydrated Al silicates is not absorbed into the systemic circulation, the hydrated Al silicates seldom cause medical problems unless the daily doses consumed are substantially greater than those used clinically or as dietary supplements. A no-observable-adverse-effect-level (NOAEL) of 13 mg/kg-day as total Al can be identified based on histologic osteomalacia seen in adult hemodialysis patients given Al hydroxide for up to 7 years as a phosphate binder. Following U.S. EPA methods for calculation of an oral reference dose (RfD), an intraspecies uncertainty factor of 10x was applied to that value results in a chronic oral reference dose (RfD) of 1.3 mg Al/kg-day; assuming a 70-kg adult consumes 2 L of drinking water per day and adjusting for a default 20% relative source contribution that value corresponds to a drinking water maximum concentration of 9 mg/L measured as total Al. A chronic NOAEL for montmorillonite as representative of the hydrated Al silicates was identified from the highest dietary concentration (20,000 ppm) fed in a 28-week bioassay with male and female Sprague-Dawley rats. Since young rats consume standard laboratory chow at ~23 g/day, this concentration corresponds to 56 mg Al/kg-day. Application of 3x interspecies uncertainty factor and a 3x factor to account for study duration results in a chronic oral RfD of 6 mg Al/kg-day. Of note, this RfD is 5-10 fold less than oral doses of Al silicates consumed by people who practice clay geophagy and it corresponds to a maximum drinking water concentration of 40 mg Al/L. To utilize the values derived here, the risk manager must recognize the particular product (e.g., alum) or source (e.g., groundwater, river water, clay or cement pipe) of the Al found in tap water, apply the appropriate analytical methods (atomic absorption, energy dispersive X-ray diffraction, infrared spectral analysis and/or scanning transmission electron microscopy) and compare the results to the most relevant standard. The drinking water concentrations derived here are greater than the U.S. EPA secondary maximum contaminant level (MCL) for total Al of 0.05-0.2 mg/L [40 CFR 143.3]. As such, domestic use of water with these concentrations is likely self-limiting given that its cloudy appearance will be greater than the maximum permitted (0.5-5.0 nephalometric turbidity units; 40 CFR Parts 141 and 142). Therefore, the organoleptic properties of Al materials in water determine public acceptance of potable water as contrast to any potential health hazard at the concentrations ordinarily present in municipal drinking water.


Assuntos
Compostos de Alumínio/análise , Silicatos de Alumínio/análise , Exposição Ambiental , Monitoramento Ambiental/métodos , Compostos de Magnésio/análise , Silicatos/análise , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Adulto , Compostos de Alumínio/farmacocinética , Compostos de Alumínio/toxicidade , Silicatos de Alumínio/farmacocinética , Silicatos de Alumínio/toxicidade , Animais , Disponibilidade Biológica , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Humanos , Compostos de Magnésio/farmacocinética , Compostos de Magnésio/toxicidade , Masculino , Concentração Máxima Permitida , Ratos , Silicatos/farmacocinética , Silicatos/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade , Abastecimento de Água/normas
19.
Int Endod J ; 45(8): 737-43, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22394277

RESUMO

AIMS: Determination of the elemental constitution and investigation of the total and leachable arsenic, chromium and lead in Portland cement, pure tricalcium silicate, Biodentine, Bioaggregate and mineral trioxide aggregate (MTA) Angelus. METHODOLOGY: The chemical composition of Portland cement, MTA Angelus, tricalcium silicate cement, Biodentine and Bioaggregate was determined using X-ray fluorescence (XRF). Measurements of arsenic, lead and chromium were taken with inductively coupled plasma-mass spectrometry (ICP-MS), following acid digestion on the hydrated material and on leachates of cements soaked in Hank's balanced salt solution (HBSS). RESULTS: All the cements investigated had a similar oxide composition with the main oxide being calcium and silicon oxide. Both the Portland cement and MTA Angelus had an additional aluminium oxide. The dental cements included a radiopacifying material. All the materials tested had higher acid-extractable arsenic content than the level set by ISO 9917-1 (2007) and an acceptable level of lead. Regardless these high levels of trace elements present in the materials, the leaching in HBSS was minimal for all the dental material tested in contrast to the high levels displayed by Portland cement. CONCLUSIONS: Dental materials based on tricalcium silicate cement and MTA Angelus release minimal quantities of trace elements when in contact with simulated body fluids. The results of acid extraction could be affected by nonspecific matrix effects by the cement.


Assuntos
Cimentos Dentários/análise , Oligoelementos/análise , Ácidos/química , Compostos de Alumínio/análise , Óxido de Alumínio/análise , Arsênio/análise , Compostos de Cálcio/análise , Hidróxido de Cálcio/análise , Cromo/análise , Difusão , Combinação de Medicamentos , Humanos , Umidade , Hidroxiapatitas/análise , Soluções Isotônicas , Chumbo/análise , Teste de Materiais , Óxidos/análise , Agentes de Capeamento da Polpa Dentária e Pulpectomia/análise , Materiais Restauradores do Canal Radicular/análise , Silicatos/análise , Dióxido de Silício/análise , Solubilidade , Espectrometria por Raios X , Espectrofotometria Atômica , Temperatura , Fatores de Tempo , Água/química
20.
FEMS Microbiol Ecol ; 79(3): 728-40, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22098093

RESUMO

Soil Ca depletion because of acidic deposition-related soil chemistry changes has led to the decline of forest productivity and carbon sequestration in the northeastern USA. In 1999, acidic watershed (WS) 1 at the Hubbard Brook Experimental Forest (HBEF), NH, USA was amended with Ca silicate to restore soil Ca pools. In 2006, soil samples were collected from the Ca-amended (WS1) and reference watershed (WS3) for comparison of bacterial community composition between the two watersheds. The sites were about 125 m apart and were known to have similar stream chemistry and tree populations before Ca amendment. Ca-amended soil had higher Ca and P, and lower Al and acidity as compared with the reference soils. Analysis of bacterial populations by PhyloChip revealed that the bacterial community structure in the Ca-amended and the reference soils was significantly different and that the differences were more pronounced in the mineral soils. Overall, the relative abundance of 300 taxa was significantly affected. Numbers of detectable taxa in families such as Acidobacteriaceae, Comamonadaceae, and Pseudomonadaceae were lower in the Ca-amended soils, while Flavobacteriaceae and Geobacteraceae were higher. The other functionally important groups, e.g. ammonia-oxidizing Nitrosomonadaceae, had lower numbers of taxa in the Ca-amended organic soil but higher in the mineral soil.


Assuntos
Bactérias/crescimento & desenvolvimento , Cálcio/análise , Recuperação e Remediação Ambiental/métodos , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Sequência de Bases , Biodiversidade , Eletroforese em Gel de Gradiente Desnaturante , Ecossistema , Dados de Sequência Molecular , New Hampshire , Rios/química , Silicatos/análise , Solo/química , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA