Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 509
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 328: 118007, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38492791

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY: The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS: REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS: This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.


Assuntos
Rosa , Ratos , Animais , Serotonina/metabolismo , Irã (Geográfico) , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/metabolismo , Transdução de Sinais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapses/metabolismo , Estresse Psicológico/tratamento farmacológico , Hipocampo , Modelos Animais de Doenças
2.
WIREs Mech Dis ; 16(1): e1632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37833830

RESUMO

Neural circuits in the brain, primarily in the hypothalamus, are paramount to the homeostatic control of feeding and energy utilization. They integrate hunger, satiety, and body adiposity cues from the periphery and mediate the appropriate behavioral and physiological responses to satisfy the energy demands of the animal. Notably, perturbations in central homeostatic circuits have been linked to the etiology of excessive feeding and obesity. Considering the ever-changing energy requirements of the animal and required adaptations, it is not surprising that brain-feeding circuits remain plastic in adulthood and are subject to changes in synaptic strength as a consequence of nutritional status. Indeed, synapse density, probability of presynaptic transmitter release, and postsynaptic responses in hypothalamic energy balance centers are tailored to behavioral and physiological responses required to sustain survival. Mounting evidence supports key roles of astrocytes facilitating some of this plasticity. Here we discuss these synaptic plasticity mechanisms and the emerging roles of astrocytes influencing energy and glucose balance control in health and disease. This article is categorized under: Cancer > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.


Assuntos
Astrócitos , Hipotálamo , Animais , Astrócitos/metabolismo , Hipotálamo/metabolismo , Plasticidade Neuronal/fisiologia , Sistema Nervoso Central/metabolismo , Sinapses/metabolismo , Obesidade/metabolismo
3.
Nutrients ; 15(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513702

RESUMO

Human milk is the biological fluid with the highest exosome amount and is rich in microRNAs (miRNAs). These are key regulators of gene expression networks in both normal physiologic and disease contexts, miRNAs can influence many biological processes and have also shown promise as biomarkers for disease. One of the key aspects in the regeneration of the nervous system is that there are practically no molecules that can be used as potential drugs. In the first weeks of lactation, we know that human breast milk must contain the mechanisms to transmit molecular and biological information for brain development. For this reason, our objective is to identify new modulators of the nervous system that can be used to investigate neurodevelopmental functions based on miRNAs. To do this, we collected human breast milk samples according to the time of delivery and milk states: mature milk and colostrum at term; moderate and very preterm mature milk and colostrum; and late preterm mature milk. We extracted exosomes and miRNAs and realized the miRNA functional assays and target prediction. Our results demonstrate that miRNAs are abundant in human milk and likely play significant roles in neurodevelopment and normal function. We found 132 different miRNAs were identified across all samples. Sixty-nine miRNAs had significant differential expression after paired group comparison. These miRNAs are implicated in gene regulation of dopaminergic/glutamatergic synapses and neurotransmitter secretion and are related to the biological process that regulates neuron projection morphogenesis and synaptic vesicle transport. We observed differences according to the delivery time and with less clarity according to the milk type. Our data demonstrate that miRNAs are abundant in human milk and likely play significant roles in neurodevelopment and normal function.


Assuntos
MicroRNAs , Gravidez , Recém-Nascido , Feminino , Humanos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Leite Humano/metabolismo , Leite/metabolismo , Colostro/metabolismo , Lactação/genética , Sinapses/metabolismo
4.
Curr Alzheimer Res ; 20(1): 48-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37183470

RESUMO

BACKGROUND: Traditional Chinese medicine (TCM) indicates that Alzheimer's disease (AD) is considered the consequence produced by Kidney Yang Deficiency Syndrome (KDS-Yang), which has similar clinical characteristics to glucocorticoid withdrawal syndrome. Ginsenoside Re (G-Re) has been found to ameliorate the symptoms and pathological impairments of AD. However, it's not clear whether G-Re could protect memory and synapse lesions against kidney deficiency dementia. METHODS: Subcutaneous injection of hydrocortisone for 14 days was used to produce KDS-Yang. On the 15th day, Aß25-35 peptide was injected into the intracerebroventricular (icv) of KDS-Yang rats. Spine density was analyzed by Golgi staining and the ultrastructural morphology of the synapse was detected using Transmission Electron Microscopy (TEM). Western blot was used to examine the expression of pS396, pS404, Tau-5, tGSK-3ß, pS9GSK-3ß, Syt, Syn I, GluA1, GluN2B, PSD93, PSD95, ß2-AR and pS346-b2-AR. RESULTS: Hyperphosphorylation of tau in Aß25-35-injected rats with KDS-Yang was stronger than in Aß25-35-injected rats at the sites of Ser396 and Ser404. G-Re improved spatial memory damage detected by Morris water-maze (MWM), enhanced spines density, the thickness of postsynaptic density (PSD) and increased the expression of Syt, Syn I, GluA1, GluN2B, PSD93 and PSD95. Moreover, GRe decreased the hyperphosphorylation of ß2-AR at serine 346 in Aß25-35-injected rats with KDS-Yang. CONCLUSION: KDS-Yang might exacerbate AD pathological lesions. Importantly, G-Re is a potential ingredient for protecting against memory and synapse deficits in kidney deficiency dementia.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Ratos , Animais , Peptídeos beta-Amiloides/toxicidade , Deficiência da Energia Yang , Doença de Alzheimer/metabolismo , Proteína 4 Homóloga a Disks-Large , Rim/metabolismo , Rim/patologia , Sinapses/metabolismo , Modelos Animais de Doenças , Fragmentos de Peptídeos/toxicidade
5.
Brain Res ; 1808: 148320, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36914042

RESUMO

Acupuncture is a good treatment for depression in Parkinson's disease (DPD), so the possible mechanism of acupuncture in the treatment of DPD was explored in this study. Firstly, observing the behavioral changes of the DPD rat model, the regulation of monoamine neurotransmitters dopamine (DA) and 5-hydroxytryptamine (5-HT) in the midbrain, the change of α-synuclein (α-syn) in the striatum, the efficacy of acupuncture in the treatment of DPD was discussed. Secondly, autophagy inhibitors and activators were selected to judge the effect of acupuncture on autophagy in the DPD rat model. Finally, an mTOR inhibitor was used to observe the effect of acupuncture on the mTOR pathway in the DPD rat model. The results showed that acupuncture could improve the motor and depressive symptoms of DPD model rats, increase the content of DA and 5-HT, and decrease the content of ɑ-syn in the striatum. Acupuncture inhibited the expression of autophagy in the striatum of DPD model rats. At the same time, acupuncture upregulates p-mTOR expression, inhibits autophagy, and promotes synaptic protein expression. Therefore, we concluded that acupuncture might improve the behavior of DPD model rats by activating the mTOR pathway, inhibiting autophagy from removing α-syn and repairing synapses.


Assuntos
Terapia por Acupuntura , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Depressão/terapia , Serotonina/farmacologia , alfa-Sinucleína/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sinapses/metabolismo , Dopamina/farmacologia , Autofagia
6.
Mol Brain ; 16(1): 20, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747195

RESUMO

NLGN4X was identified as a single causative gene of rare familial nonsyndromic autism for the first time. It encodes the postsynaptic membrane protein Neuroligin4 (NLGN4), the functions and roles of which, however, are not fully understood due to the lack of a closely homologous gene in rodents. It has been confirmed only recently that human NLGN4 is abundantly expressed in the cerebral cortex and is localized mainly to excitatory synapses. However, the detailed histological distribution of NLGN4, which may have important implications regarding the relationships between NLGN4 and autistic phenotypes, has not been clarified. In this study, we raised specific monoclonal and polyclonal antibodies against NLGN4 and examined the distribution of NLGN4 in developing and developed human brains by immunohistochemistry. We found that, in the brain, NLGN4 is expressed almost exclusively in neurons, in which it has a widespread cytoplasmic pattern of distribution. Among various types of neurons with NLGN4 expression, we identified consistently high expression of NLGN4 in hypothalamic oxytocin (OXT)/vasopressin (AVP)-producing cells. Quantitative analyses revealed that the majority of OXT/AVP-producing neurons expressed NLGN4. NLGN4 signals in other large neurons, such as pyramidal cells in the cerebral cortex and hippocampus as well as neurons in the locus coeruleus and the raphe nucleus, were also remarkable, clearly contrasting with no or scarce signals in Purkinje cells. These data suggest that NLGN4 functions in systems involved in intellectual abilities, social abilities, and sleep and wakefulness, impairments of which are commonly seen in autism.


Assuntos
Transtorno Autístico , Humanos , Arginina Vasopressina , Transtorno Autístico/genética , Hipotálamo/metabolismo , Neurônios/metabolismo , Ocitocina/metabolismo , Fenótipo , Sinapses/metabolismo
7.
J Neuroendocrinol ; 34(9): e13164, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35666232

RESUMO

Hypothalamic arginine vasopressin (AVP)-containing magnocellular neurosecretory neurons (AVPMNN) emit collaterals to synaptically innervate limbic regions influencing learning, motivational behaviour, and fear responses. Here, we characterize the dynamics of expression changes of two key determinants for synaptic strength, the postsynaptic density (PSD) proteins AMPAR subunit GluA1 and PSD scaffolding protein 95 (PSD95), in response to in vivo manipulations of AVPMNN neuronal activation state, or exposure to exogenous AVP ex vivo. Both long-term water deprivation in vivo, which powerfully upregulates AVPMNN metabolic activity, and exogenous AVP application ex vivo, in brain slices, significantly increased GluA1 and PSD95 expression as measured by western blotting, in brain regions reportedly receiving direct ascending innervations from AVPMNN (i.e., ventral hippocampus, amygdala and lateral habenula). By contrast, the visual cortex, a region not observed to receive AVPMNN projections, showed no such changes. Ex vivo application of V1a and V1b antagonists to ventral hippocampal slices ablated the AVP stimulated increase in postsynaptic protein expression measured by western blotting. Using a modified expansion microscopy technique, we were able to quantitatively assess the significant augmentation of PSD95 and GLUA1 densities in subcellular compartments in locus coeruleus tyrosine hydroxylase immunopositive fibres, adjacent to AVP axon terminals. Our data strongly suggest that the AVPMNN ascending system plays a role in the regulation of the excitability of targeted neuronal circuits through upregulation of key postsynaptic density proteins corresponding to excitatory synapses.


Assuntos
Sinapses , Tirosina 3-Mono-Oxigenase , Arginina Vasopressina/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Sinapses/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
8.
PLoS Biol ; 20(3): e3001530, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239646

RESUMO

Calcium dynamics into astrocytes influence the activity of nearby neuronal structures. However, because previous reports show that astrocytic calcium signals largely mirror neighboring neuronal activity, current information coding models neglect astrocytes. Using simultaneous two-photon calcium imaging of astrocytes and neurons in the hippocampus of mice navigating a virtual environment, we demonstrate that astrocytic calcium signals encode (i.e., statistically reflect) spatial information that could not be explained by visual cue information. Calcium events carrying spatial information occurred in topographically organized astrocytic subregions. Importantly, astrocytes encoded spatial information that was complementary and synergistic to that carried by neurons, improving spatial position decoding when astrocytic signals were considered alongside neuronal ones. These results suggest that the complementary place dependence of localized astrocytic calcium signals may regulate clusters of nearby synapses, enabling dynamic, context-dependent variations in population coding within brain circuits.


Assuntos
Astrócitos/metabolismo , Região CA1 Hipocampal/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Neurônios/metabolismo , Algoritmos , Animais , Astrócitos/citologia , Região CA1 Hipocampal/citologia , Locomoção/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Neurônios/citologia , Navegação Espacial/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Percepção Visual/fisiologia
9.
Mol Autism ; 13(1): 13, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303947

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a dyad of behavioural symptoms-social and communication deficits and repetitive behaviours. Multiple aetiological genetic and environmental factors have been identified as causing or increasing the likelihood of ASD, including serum zinc deficiency. Our previous studies revealed that dietary zinc supplementation can normalise impaired social behaviours, excessive grooming, and heightened anxiety in a Shank3 mouse model of ASD, as well as the amelioration of synapse dysfunction. Here, we have examined the efficacy and breadth of dietary zinc supplementation as an effective therapeutic strategy utilising a non-Shank-related mouse model of ASD-mice with Tbr1 haploinsufficiency. METHODS: We performed behavioural assays, amygdalar slice whole-cell patch-clamp electrophysiology, and immunohistochemistry to characterise the synaptic mechanisms underlying the ASD-associated behavioural deficits observed in Tbr1+/- mice and the therapeutic potential of dietary zinc supplementation. Two-way analysis of variance (ANOVA) with Sídák's post hoc test and one-way ANOVA with Tukey's post hoc multiple comparisons were performed for statistical analysis. RESULTS: Our data show that dietary zinc supplementation prevents impairments in auditory fear memory and social interaction, but not social novelty, in the Tbr1+/- mice. Tbr1 haploinsufficiency did not induce excessive grooming nor elevate anxiety in mice. At the synaptic level, dietary zinc supplementation reversed α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) hypofunction and normalised presynaptic function at thalamic-lateral amygdala (LA) synapses that are crucial for auditory fear memory. In addition, the zinc supplemented diet significantly restored the synaptic puncta density of the GluN1 subunit essential for functional NMDARs as well as SHANK3 expression in both the basal and lateral amygdala (BLA) of Tbr1+/- mice. LIMITATIONS: The therapeutic effect of dietary zinc supplementation observed in rodent models may not reproduce the same effects in human patients. The effect of dietary zinc supplementation on synaptic function in other brain structures affected by Tbr1 haploinsufficiency including olfactory bulb and anterior commissure will also need to be examined. CONCLUSIONS: Our data further the understanding of the molecular mechanisms underlying the effect of dietary zinc supplementation and verify the efficacy and breadth of its application as a potential treatment strategy for ASD.


Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/genética , Suplementos Nutricionais , Modelos Animais de Doenças , Medo/fisiologia , Humanos , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato , Sinapses/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/farmacologia , Zinco/metabolismo , Zinco/farmacologia
10.
Brain Struct Funct ; 227(3): 821-828, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34716471

RESUMO

Morphological and pharmacological studies indicate that hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons communicate with each other in rats and regulate a variety of hypothalamic and extrahypothalamic functions. Indeed, electron microscopic studies revealed NPY-immunoreactive (NPI-IR) synapses on ß-endorphin-IR neurons in the hypothalamus. However, no such connections have been reported in humans. Here, we studied the putative NPY-ß-endorphin associations with high-resolution light microscopic double-label immunocytochemistry in the human hypothalamus. The majority of ß-endorphin-IR perikarya appear to be innervated by abutting NPY-IR fibers in the infundibulum/median eminence, receiving more than 6 contacts (38% of the counted neurons) or three to six contacts (42% of the counted neurons). The rest of the ß-endorphin-IR neurons are lightly innervated by NPY fibers (14%, one-three contacts) or do not receive any detectable NPY-IR axon varicosities (6% of the counted neurons). Since ß-endorphin is cleaved from the proopiomelanocortin (POMC) precursor, the NPY-ß-endorphin connections also provide the foundation for NPY-α-MSH and NPY-ACTH connections and their subsequent physiology. The close anatomical connections between NPY-IR nerve terminals and ß-endorphin-IR neurons reported herein may represent functional synapses and provide the foundation for NPY-stimulated ß-endorphin release. By interacting with ß-endorphin, NPY may have a more widespread regulatory capacity than acting alone on different neurotransmitter systems.


Assuntos
Hipotálamo , Neuropeptídeo Y , beta-Endorfina , Animais , Humanos , Hipotálamo/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Ratos , Sinapses/metabolismo , beta-Endorfina/metabolismo
11.
J Comp Neurol ; 530(4): 705-728, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34468021

RESUMO

Synaptotagmins belong to a large family of proteins. Although various synaptotagmins have been implicated as Ca2+ sensors for vesicle replenishment and release at conventional synapses, their roles at retinal ribbon synapses remain incompletely understood. Zebrafish is a widely used experimental model for retinal research. We therefore investigated the homology between human, rat, mouse, and zebrafish synaptotagmins 1-10 using a bioinformatics approach. We also characterized the expression and distribution of various synaptotagmin (syt) genes in the zebrafish retina using RT-PCR, qPCR, and in situhybridization, focusing on the family members whose products likely underlie Ca2+ -dependent exocytosis in the central nervous system (synaptotagmins 1, 2, 5, and 7). Most zebrafish synaptotagmins are well conserved and can be grouped in the same classes as mammalian synaptotagmins, based on crucial amino acid residues needed for coordinating Ca2+ binding and determining phospholipid binding affinity. The only exception is synaptotagmin 1b, which lacks 34 amino acid residues in the C2B domain and is therefore unlikely to bind Ca2+ there. Additionally, the products of zebrafish syt5a and syt5b genes share identity with mammalian class 1 and 5 synaptotagmins. Zebrafish syt1, syt2, syt5, and syt7 paralogues are found in the zebrafish brain, eye, and retina, excepting syt1b, which is only present in the brain. The complementary expression pattern of the remaining paralogues in the retina suggests that syt1a and syt5a may underlie synchronous release and syt7a and syt7b may mediate asynchronous release or other Ca2+ -dependent processes in different retinal neurons.


Assuntos
Cálcio , Retina , Peixe-Zebra , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Exocitose/fisiologia , Retina/metabolismo , Sinapses/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Peixe-Zebra/metabolismo
12.
Alzheimers Dement ; 18(1): 191-196, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051062

RESUMO

Despite tremendous worldwide efforts, clinical trials assessing Alzheimer's disease (AD)-related therapeutics have been relentlessly unsuccessful. Hence, there is an urgent need to challenge old hypotheses with novel paradigms. An emerging concept is that the amyloid-beta (Aß) peptide, which was until recently deemed a major player in the cause of AD, may instead modulate synaptic plasticity and protect against excitotoxicity. The link between Aß-mediated synaptic plasticity and Aß trafficking is central for understanding AD pathogenesis and remains a perplexing relationship. The crossover between Aß pathological and physiological roles is subtle and remains controversial. Based on existing literature, as a signaling molecule, Aß is proposed to modulate its own turnover and synaptic plasticity through what is currently believed to be the cause of AD: the transient formation of pore-like oligomers. A change of perspective regarding how Aß pores exert a protective function will unavoidably revolutionize the entire field of anti-amyloid drug development.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Encéfalo/patologia , Humanos , Neurotoxinas , Sinapses/metabolismo
13.
Glia ; 70(3): 451-465, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34762332

RESUMO

The classical complement cascade mediates synapse elimination in the visual thalamus during early brain development. However, whether the primary visual cortex also undergoes complement-mediated synapse elimination during early visual system development remains unknown. Here, we examined microglia-mediated synapse elimination in the visual thalamus and the primary visual cortex of early postnatal C1q and SRPX2 knockout mice. In the lateral geniculate nucleus, deletion of C1q caused a persistent decrease in synapse elimination and microglial synapse engulfment, while deletion of SRPX2 caused a transient increase in the same readouts. In the C1q-SRPX2 double knockout mice, the C1q knockout phenotypes were dominant over the SRPX2 knockout phenotypes, a result which is consistent with SRPX2 being an inhibitor of C1q. We found that genetic deletion of either C1q or SRPX2 did not affect synapse elimination or microglial engulfment of synapses in layer 4 of the primary visual cortex in early brain development. Together, these results show that the classical complement pathway regulates microglia-mediated synapse elimination in the visual thalamus but not the visual cortex during early development of the central nervous system.


Assuntos
Proteínas de Membrana/metabolismo , Microglia , Proteínas de Neoplasias/metabolismo , Córtex Visual , Animais , Complemento C1q/genética , Complemento C1q/metabolismo , Camundongos , Microglia/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo , Córtex Visual/metabolismo
14.
Cells ; 10(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943913

RESUMO

Dendritic spines are small, thin, hair-like protrusions found on the dendritic processes of neurons. They serve as independent compartments providing large amplitudes of Ca2+ signals to achieve synaptic plasticity, provide sites for newer synapses, facilitate learning and memory. One of the common and severe complication of neurodegenerative disease is cognitive impairment, which is said to be closely associated with spine pathologies viz., decreased in spine density, spine length, spine volume, spine size etc. Many treatments targeting neurological diseases have shown to improve the spine structure and distribution. However, concise data on the various modulators of dendritic spines are imperative and a need of the hour. Hence, in this review we made an attempt to consolidate the effects of various pharmacological (cholinergic, glutamatergic, GABAergic, serotonergic, adrenergic, and dopaminergic agents) and non-pharmacological modulators (dietary interventions, enriched environment, yoga and meditation) on dendritic spines structure and functions. These data suggest that both the pharmacological and non-pharmacological modulators produced significant improvement in dendritic spine structure and functions and in turn reversing the pathologies underlying neurodegeneration. Intriguingly, the non-pharmacological approaches have shown to improve intellectual performances both in preclinical and clinical platforms, but still more technology-based evidence needs to be studied. Thus, we conclude that a combination of pharmacological and non-pharmacological intervention may restore cognitive performance synergistically via improving dendritic spine number and functions in various neurological disorders.


Assuntos
Espinhas Dendríticas/efeitos dos fármacos , Dieta , Doenças Neurodegenerativas/dietoterapia , Doenças Neurodegenerativas/tratamento farmacológico , Colinérgicos/uso terapêutico , Disfunção Cognitiva/dietoterapia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/psicologia , Espinhas Dendríticas/patologia , Espinhas Dendríticas/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/uso terapêutico , GABAérgicos/uso terapêutico , Humanos , Meditação/psicologia , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/psicologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Yoga/psicologia
15.
Neurosci Lett ; 764: 136294, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655710

RESUMO

Cholinergic dysfunction has been commonly known to be associated with plethora of neurodegenerative disorders and also serves as a biomarker. Recently, cholinergic system demonstrated that acetylcholine has major role in regulation of its function therefore the main therapeutic regimens towards disease management have been focused on increasing acetylcholine levels. The current study explores the potential of Asparagus racemosus extract (ARE) and its bioactive molecule Shatavarin IV (SIV) in improving cholinergic transmission via utilizing Caenorhabditis elegans considering as a model system. Observations and results obtained through this study have clearly showed significant modulation in cholinergic function by increasing acetylcholine (ACh) levels and the nicotinic acetylcholine receptors (nAChRs) activity. Further exploration on mechanistic facet pointed towards ARE and SIV modulatory potential through increased synaptic ACh level by blocking acetyl cholinesterase at enzyme level and by regulating increment in transcript level of cha-1, and cho-1 that are directly responsible for the synthesis of ACh. Further, the up-regulation of unc-38 and unc-50 transcripts could be the reason for enhanced nAChR activity and investigation on stress modulator activity showed excellent efficiency of ARE and SIV in diminishing ROS thereby lowering the oxidative damage.


Assuntos
Asparagus/química , Inibidores da Colinesterase/farmacologia , Extratos Vegetais/farmacologia , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Inibidores da Colinesterase/isolamento & purificação , Modelos Animais , Extratos Vegetais/isolamento & purificação , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
16.
Nature ; 598(7881): 483-488, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599305

RESUMO

The prefrontal cortex (PFC) and its connections with the mediodorsal thalamus are crucial for cognitive flexibility and working memory1 and are thought to be altered in disorders such as autism2,3 and schizophrenia4,5. Although developmental mechanisms that govern the regional patterning of the cerebral cortex have been characterized in rodents6-9, the mechanisms that underlie the development of PFC-mediodorsal thalamus connectivity and the lateral expansion of the PFC with a distinct granular layer 4 in primates10,11 remain unknown. Here we report an anterior (frontal) to posterior (temporal), PFC-enriched gradient of retinoic acid, a signalling molecule that regulates neural development and function12-15, and we identify genes that are regulated by retinoic acid in the neocortex of humans and macaques at the early and middle stages of fetal development. We observed several potential sources of retinoic acid, including the expression and cortical expansion of retinoic-acid-synthesizing enzymes specifically in primates as compared to mice. Furthermore, retinoic acid signalling is largely confined to the prospective PFC by CYP26B1, a retinoic-acid-catabolizing enzyme, which is upregulated in the prospective motor cortex. Genetic deletions in mice revealed that retinoic acid signalling through the retinoic acid receptors RXRG and RARB, as well as CYP26B1-dependent catabolism, are involved in proper molecular patterning of prefrontal and motor areas, development of PFC-mediodorsal thalamus connectivity, intra-PFC dendritic spinogenesis and expression of the layer 4 marker RORB. Together, these findings show that retinoic acid signalling has a critical role in the development of the PFC and, potentially, in its evolutionary expansion.


Assuntos
Organogênese , Córtex Pré-Frontal/embriologia , Córtex Pré-Frontal/metabolismo , Tretinoína/metabolismo , Animais , Axônios/metabolismo , Córtex Cerebral , Regulação para Baixo , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos , Pan troglodytes , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/citologia , Receptores do Ácido Retinoico/deficiência , Receptor X Retinoide gama/deficiência , Transdução de Sinais , Sinapses/metabolismo , Tálamo/anatomia & histologia , Tálamo/citologia , Tálamo/metabolismo
17.
Cell Rep ; 37(3): 109837, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686328

RESUMO

The selection of goal-directed behaviors is supported by neural circuits located within the frontal cortex. Frontal cortical afferents arise from multiple brain areas, yet the cell-type-specific targeting of these inputs is unclear. Here, we use monosynaptic retrograde rabies mapping to examine the distribution of afferent neurons targeting distinct classes of local inhibitory interneurons and excitatory projection neurons in mouse infralimbic frontal cortex. Interneurons expressing parvalbumin, somatostatin, or vasoactive intestinal peptide receive a large proportion of inputs from the hippocampus, while interneurons expressing neuron-derived neurotrophic factor receive a large proportion of inputs from thalamic regions. A similar dichotomy is present among the four different excitatory projection neurons. These results show a prominent bias among long-range hippocampal and thalamic afferent systems in their targeting to specific sets of frontal cortical neurons. Moreover, they suggest the presence of two distinct local microcircuits that control how different inputs govern frontal cortical information processing.


Assuntos
Lobo Frontal/fisiologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais , Comportamento Animal , Lobo Frontal/citologia , Lobo Frontal/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Inibição Neural , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Parvalbuminas/genética , Parvalbuminas/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Sinapses/metabolismo , Tálamo/citologia , Tálamo/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo
18.
Neuropharmacology ; 200: 108799, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592242

RESUMO

The plethora of functions of glutamate in the brain are mediated by the complementary actions of ionotropic and metabotropic glutamate receptors (mGluRs). The ionotropic glutamate receptors carry most of the fast excitatory transmission, while mGluRs modulate transmission on longer timescales by triggering multiple intracellular signaling pathways. As such, mGluRs mediate critical aspects of synaptic transmission and plasticity. Interestingly, at synapses, mGluRs operate at both sides of the cleft, and thus bidirectionally exert the effects of glutamate. At postsynaptic sites, group I mGluRs act to modulate excitability and plasticity. At presynaptic sites, group II and III mGluRs act as auto-receptors, modulating release properties in an activity-dependent manner. Thus, synaptic mGluRs are essential signal integrators that functionally couple presynaptic and postsynaptic mechanisms of transmission and plasticity. Understanding how these receptors reach the membrane and are positioned relative to the presynaptic glutamate release site are therefore important aspects of synapse biology. In this review, we will discuss the currently known mechanisms underlying the trafficking and positioning of mGluRs at and around synapses, and how these mechanisms contribute to synaptic functioning. We will highlight outstanding questions and present an outlook on how recent technological developments will move this exciting research field forward.


Assuntos
Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Ácido Glutâmico/metabolismo , Humanos , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Transdução de Sinais/fisiologia
19.
Cell Rep ; 36(7): 109563, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407401

RESUMO

Overconsumption of highly palatable, energy-dense food is considered a key driver of the obesity pandemic. The orbitofrontal cortex (OFC) is critical for reward valuation of gustatory signals, yet how the OFC adapts to obesogenic diets is poorly understood. Here, we show that extended access to a cafeteria diet impairs astrocyte glutamate clearance, which leads to a heterosynaptic depression of GABA transmission onto pyramidal neurons of the OFC. This decrease in GABA tone is due to an increase in extrasynaptic glutamate, which acts via metabotropic glutamate receptors to liberate endocannabinoids. This impairs the induction of endocannabinoid-mediated long-term plasticity. The nutritional supplement, N-acetylcysteine rescues this cascade of synaptic impairments by restoring astrocytic glutamate transport. Together, our findings indicate that obesity targets astrocytes to disrupt the delicate balance between excitatory and inhibitory transmission in the OFC.


Assuntos
Astrócitos/patologia , Plasticidade Neuronal , Obesidade/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Acetilcisteína/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Transporte Biológico/efeitos dos fármacos , Dieta , Endocanabinoides/metabolismo , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Homeostase/efeitos dos fármacos , Hipertrofia , Masculino , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos Long-Evans , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
20.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445628

RESUMO

We investigated the alterations of hippocampal and reticulo-thalamic (RT) GABAergic parvalbumin (PV) interneurons and their synaptic re-organizations underlying the prodromal local sleep disorders in the distinct rat models of Parkinson's disease (PD). We demonstrated for the first time that REM sleep is a predisposing state for the high-voltage sleep spindles (HVS) induction in all experimental models of PD, particularly during hippocampal REM sleep in the hemiparkinsonian models. There were the opposite underlying alterations of the hippocampal and RT GABAergic PV+ interneurons along with the distinct MAP2 and PSD-95 expressions. Whereas the PD cholinopathy enhanced the number of PV+ interneurons and suppressed the MAP2/PSD-95 expression, the hemiparkinsonism with PD cholinopathy reduced the number of PV+ interneurons and enhanced the MAP2/PSD-95 expression in the hippocampus. Whereas the PD cholinopathy did not alter PV+ interneurons but partially enhanced MAP2 and suppressed PSD-95 expression remotely in the RT, the hemiparkinsonism with PD cholinopathy reduced the PV+ interneurons, enhanced MAP2, and did not change PSD-95 expression remotely in the RT. Our study demonstrates for the first time an important regulatory role of the hippocampal and RT GABAergic PV+ interneurons and the synaptic protein dynamic alterations in the distinct rat models of PD neuropathology.


Assuntos
Modelos Animais de Doenças , Hipocampo/patologia , Interneurônios/patologia , Doença de Parkinson/complicações , Parvalbuminas/metabolismo , Transtornos do Sono-Vigília/patologia , Sinapses/patologia , Animais , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropatologia , Ratos , Ratos Wistar , Formação Reticular/metabolismo , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA