Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Int J Biol Macromol ; 188: 892-903, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34352321

RESUMO

Oligopeptides transporter (OPT) can maintain intracellular metal homeostat, however, their evolutionary characteristics, as well as their expression patterns in heavy metal exposure, remain unclear. Compared with previous OPT family identification, we identified 94 OPT genes (including 21 in potato) in potato and 4 other plants by HMMER program based on OPT domain (PF03169) for the first time. Secondly, conserved and special OPTs were found through comprehensive analysis. Thirdly, spatio-temporal tissue specific expression patterns and co-expression frameworks of potato OPT genes under different heavy metal stress were constructed. These data can provide excellent gene resources for food security and soil remediation.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Metais Pesados/toxicidade , Família Multigênica , Solanum tuberosum/genética , Estresse Fisiológico/genética , Cromossomos de Plantas/genética , Sequência Conservada/genética , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Motivos de Nucleotídeos/genética , Filogenia , Regiões Promotoras Genéticas/genética , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Sintenia/genética
2.
Planta ; 252(2): 31, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32740680

RESUMO

MAIN CONCLUSION: Four polygalacturonase gene family members were highlighted that contribute to elucidate the roles of polygalacturonase during the fertility conversion process in male-sterile wheat. Polygalacturonase (PG) belongs to a large family of hydrolases with important functions in cell separation during plant growth and development via the degradation of pectin. Specific expressed PGs in anthers may be significant for male sterility research and hybrid wheat breeding, but they have not been characterized in wheat (Triticum aestivum L.). In this study, we systematically studied the PG gene family using the latest published wheat reference genomic information. In total, 113 wheat PG genes were identified, which could be classified into six categories A-F according to their structure characteristics and phylogenetic comparisons with Arabidopsis and rice. Polyploidy and segmental duplications in wheat were proved to be mainly responsible for the expansion of the wheat PG gene family. RNA-seq showed that TaPGs have specific temporal and spatial expression characteristics, in which 12 TaPGs with spike-specific expression patterns were detected by qRT-PCR in different fertility anthers of KTM3315A, a thermo-sensitive cytoplasmic male-sterile wheat. Four of them specific upregulated (TaPG09, TaPG95, and TaPG93) or downregulated (TaPG87) at trinucleate stage of fertile anthers, and further aligning with the homologous in Arabidopsis revealed that they may undertake functions such as anther dehiscence, separation of pollen, pollen development, and pollen tube elongation, thereby inducing male fertility conversion in KTM3315A. These findings facilitate function investigations of the wheat PG gene family and provide new insights into the fertility conversion mechanism in male-sterile wheat.


Assuntos
Família Multigênica , Pólen/enzimologia , Pólen/genética , Poligalacturonase/genética , Triticum/enzimologia , Triticum/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Evolução Molecular , Fertilidade , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poligalacturonase/química , Poligalacturonase/metabolismo , Poliploidia , Sequências Reguladoras de Ácido Nucleico/genética , Sintenia/genética , Triticum/genética
3.
Genomics ; 112(3): 2467-2477, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32014523

RESUMO

Pectin methyl-esterases (PMEs) play crucial roles in plant growth. In this study, we identified 81 PbrPMEs in pear. Whole-genome duplication and purifying selection drove the evolution of PbrPME gene family. The expression of 47 PbrPMEs was detected in pear pollen tube, which were assigned to 13 clusters by an expression tendency analysis. One of the 13 clusters presented opposite expression trends towards the changes of methyl-esterified pectins at the apical cell wall. PbrPMEs were localized in the cytoplasm and plasma membrane. Repression of PbrPME11, PbrPME44, and PbrPME59 resulted in the inhibition of pear pollen tube growth and abnormal deposition of methyl-esterified pectins at pollen tube tip. Pharmacological analysis confirmed that reduced PbrPME activities repressed the pollen tube growth. Overall, we have explored the evolutionary characteristics of PbrPME gene family and found the key PbrPME genes that control the growth of pollen tube, which deepened the understanding of pear fertility regulation.


Assuntos
Esterases/genética , Pectinas/metabolismo , Tubo Polínico/enzimologia , Tubo Polínico/crescimento & desenvolvimento , Pyrus/enzimologia , Pyrus/crescimento & desenvolvimento , Mapeamento Cromossômico , Esterases/classificação , Esterases/metabolismo , Genes de Plantas , Genoma de Planta , Família Multigênica , Motivos de Nucleotídeos , Filogenia , Tubo Polínico/metabolismo , Pyrus/genética , Pyrus/metabolismo , Sintenia
4.
BMC Genomics ; 20(1): 871, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730445

RESUMO

BACKGROUND: Heat shock transcription factor (Hsfs) is widely found in eukaryotes and prokaryotes. Hsfs can not only help organisms resist high temperature, but also participate in the regulation of plant growth and development (such as involved in the regulation of seed maturity and affects the root length of plants). The Hsf gene was first isolated from yeast and then gradually found in plants and sequenced, such as Arabidopsis thaliana, rice, maize. Tartary buckwheat is a rutin-rich crop, and its nutritional value and medicinal value are receiving more and more attention. However, there are few studies on the Hsf genes in Tartary buckwheat. With the whole genome sequence of Tartary buckwheat, we can effectively study the Hsf gene family in Tartary buckwheat. RESULTS: According to the study, 29 Hsf genes of Tartary buckwheat (FtHsf) were identified and renamed according to location of FtHsf genes on chromosome after removing a redundant gene. Therefore, only 29 FtHsf genes truly had the functional characteristics of the FtHsf family. The 29 FtHsf genes were located on 8 chromosomes of Tartary buckwheat, and we found gene duplication events in the FtHsf gene family, which may promote the expansion of the FtHsf gene family. Then, the motif compositions and the evolutionary relationship of FtHsf proteins and the gene structures, cis-acting elements in the promoter, synteny analysis of FtHsf genes were discussed in detail. What's more, we found that the transcription levels of FtHsf in different tissues and fruit development stages were significantly different by quantitative real-time PCR (qRT-PCR), implied that FtHsf may differ in function. CONCLUSIONS: In this study, only 29 Hsf genes were identified in Tartary buckwheat. Meanwhile, we also classified the FtHsf genes, and studied their structure, evolutionary relationship and the expression pattern. This series of studies has certain reference value for the study of the specific functional characteristics of Tartary buckwheat Hsf genes and to improve the yield and quality of Tartary buckwheat in the future.


Assuntos
Fagopyrum/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Fatores de Transcrição de Choque Térmico/genética , Filogenia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Evolução Biológica , Mapeamento Cromossômico , Fagopyrum/classificação , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição de Choque Térmico/classificação , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sintenia , Transcrição Gênica
5.
Science ; 365(6459): 1291-1295, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31604238

RESUMO

Flooding due to extreme weather threatens crops and ecosystems. To understand variation in gene regulatory networks activated by submergence, we conducted a high-resolution analysis of chromatin accessibility and gene expression at three scales of transcript control in four angiosperms, ranging from a dryland-adapted wild species to a wetland crop. The data define a cohort of conserved submergence-activated genes with signatures of overlapping cis regulation by four transcription factor families. Syntenic genes are more highly expressed than nonsyntenic genes, yet both can have the cis motifs and chromatin accessibility associated with submergence up-regulation. Whereas the flexible circuitry spans the eudicot-monocot divide, the frequency of specific cis motifs, extent of chromatin accessibility, and degree of submergence activation are more prevalent in the wetland crop and may have adaptive importance.


Assuntos
Evolução Biológica , Inundações , Redes Reguladoras de Genes , Oryza/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sítios de Ligação , Cromatina/genética , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/fisiologia , Família Multigênica , Oryza/fisiologia , Raízes de Plantas/fisiologia , Solanum/genética , Solanum/fisiologia , Estresse Fisiológico , Sintenia
6.
BMC Plant Biol ; 19(1): 342, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387526

RESUMO

BACKGROUND: GRAS are plant-specific transcription factors that play important roles in plant growth and development. Although the GRAS gene family has been studied in many plants, there has been little research on the GRAS genes of Tartary buckwheat (Fagopyrum tataricum), which is an important crop rich in rutin. The recently published whole genome sequence of Tartary buckwheat allows us to study the characteristics and expression patterns of the GRAS gene family in Tartary buckwheat at the genome-wide level. RESULTS: In this study, 47 GRAS genes of Tartary buckwheat were identified and divided into 10 subfamilies: LISCL, HAM, DELLA, SCR, PAT1, SCL4/7, LAS, SHR, SCL3, and DLT. FtGRAS genes were unevenly distributed on 8 chromosomes, and members of the same subfamily contained similar gene structures and motif compositions. Some FtGRAS genes may have been produced by gene duplications; tandem duplication contributed more to the expansion of the GRAS gene family in Tartary buckwheat. Real-time PCR showed that the transcription levels of FtGRAS were significantly different in different tissues and fruit development stages, implying that FtGRAS might have different functions. Furthermore, an increase in fruit weight was induced by exogenous paclobutrazol, and the transcription level of the DELLA subfamily member FtGRAS22 was significantly upregulated during the whole fruit development stage. Therefore, FtGRAS22 may be a potential target for molecular breeding or genetic editing. CONCLUSIONS: Collectively, this systematic analysis lays a foundation for further study of the functional characteristics of GRAS genes and for the improvement of Tartary buckwheat crops.


Assuntos
Fagopyrum/genética , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Genoma de Planta , Família Multigênica , Filogenia , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sintenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
7.
Biomolecules ; 9(8)2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366107

RESUMO

The MYB proteins represent a large family of transcription factors and play important roles in development, senescence, and stress responses in plants. In the current study, 233 MYB transcription factor-encoding genes were identified and analyzed in the potato genome, including 119 R1-MYB, 112 R2R3-MYB, and two R1R2R3-MYB members. R2R3-MYB is the most abundant MYB subclass and potato R2R3-MYB members together with their Arabidopsis homologs were divided into 35 well-supported subgroups as the result of phylogenetic analyses. Analyses on gene structure and protein motif revealed that members from the same subgroup shared similar exon/intron and motif organization, further supporting the results of phylogenetic analyses. Evolution of the potato MYB family was studied via syntenic analysis. Forty-one pairs of StMYB genes were predicted to have arisen from tandem or segmental duplication events, which played important roles in the expansion of the StMYB family. Expression profiling revealed that the StMYB genes were expressed in various tissues and several StMYB genes were identified to be induced by different stress conditions. Notably, StMYB030 was found to act as the homolog of AtMYB44 and was significantly up-regulated by salt and drought stress treatments. Furthermore, overexpression of StMYB030 in Arabidopsis enhanced salt stress tolerance of transgenic plants. The results from this study provided information for further functional analysis and for crop improvements through genetic manipulation of these StMYB genes.


Assuntos
Proteínas de Plantas/genética , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Estresse Fisiológico , Fatores de Transcrição/genética , Duplicação Cromossômica , Cromossomos de Plantas/genética , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Conformação Proteica , Transporte Proteico , Alinhamento de Sequência , Sintenia , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
8.
BMC Plant Biol ; 19(1): 294, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31272381

RESUMO

BACKGROUND: Rapeseed is the third largest oil seed crop in the world. The seeds of this plant store lipids in oil bodies, and oleosin is the most important structural protein in oil bodies. However, the function of oleosin in oil crops has received little attention. RESULTS: In the present study, 48 oleosin sequences from the Brassica napus genome were identified and divided into four lineages (T, U, SH, SL). Synteny analysis revealed that most of the oleosin genes were conserved, and all of these genes experienced purifying selection during evolution. Three and four important oleosin genes from Arabidopsis and B. napus, respectively, were cloned and analyzed for function in Arabidopsis. Overexpression of these oleosin genes in Arabidopsis increased the seed oil content slightly, except for BnaOLE3. Further analysis revealed that the average oil body size of the transgenic seeds was slightly larger than that of the wild type (WT), except for BnaOLE1. The fatty acid profiles showed that the linoleic acid content (13.3% at most) increased and the peanut acid content (11% at most) decreased in the transgenic lines. In addition, the seed size and thousand-seed weight (TSW) also increased in the transgenic lines, which could lead to increased total lipid production. CONCLUSION: We identified oleosin genes in the B. napus genome, and overexpression of oleosin in Arabidopsis seeds increased the seed weight and linoleic acid content (13.3% at most).


Assuntos
Brassica napus/genética , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Brassica napus/metabolismo , Genes de Plantas , Filogenia , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sintenia
9.
Gen Comp Endocrinol ; 281: 49-57, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31121162

RESUMO

Potassium channel subfamily K member 3 (KCNK3) has been reported to play important roles in membrane potential conduction, pulmonary hypertension and thermogenesis regulation in mammals. However, its roles remain largely unknown and scarce reports were seen in fish. In the present study, we for the first time identified two kcnk3 genes (kcnk3a and kcnk3b) from the carnivorous Northern snakehead (Channa argus) by molecular cloning and a genomic survey. Subsequently, their transcription changes in response to different feeding status were investigated. Full-length coding sequences of the kcnk3a and kcnk3b genes are 1203 and 1176 bp, encoding 400 and 391 amino acids, respectively. Multiple alignments, 3D-structure prediction and phylogenetic analysis further suggested that these kcnk3 genes may be highly conserved in vertebrates. Tissue distribution analysis by real-time PCR demonstrated that both the snakehead kcnk3s were widely transcribed in majority of the examined tissues but with different distribution patterns. In a short-term (24-h) fasting experiment, we observed that brain kcnk3a and kcnk3b genes showed totally opposite transcription patterns. In a long-term (2-week) fasting and refeeding experiment, we also observed differential change patterns for the brain kcnk3 genes. In summary, our findings suggest that the two kcnk3 genes are close while present different transcription responses to fasting and refeeding. They therefore can be potentially selected as novel target genes for improvement of production and quality of this economically important fish.


Assuntos
Jejum/fisiologia , Comportamento Alimentar , Peixes/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Genoma , Filogenia , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sintenia/genética , Distribuição Tecidual , Peixe-Zebra/genética
10.
Plant J ; 99(6): 1242-1253, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31104348

RESUMO

We present draft genome assemblies of Beta patula, a critically endangered wild beet endemic to the Madeira archipelago, and of the closely related Beta vulgaris ssp. maritima (sea beet). Evidence-based reference gene sets for B. patula and sea beet were generated, consisting of 25 127 and 27 662 genes, respectively. The genomes and gene sets of the two wild beets were compared with their cultivated sister taxon B. vulgaris ssp. vulgaris (sugar beet). Large syntenic regions were identified, and a display tool for automatic genome-wide synteny image generation was developed. Phylogenetic analysis based on 9861 genes showing 1:1:1 orthology supported the close relationship of B. patula to sea beet and sugar beet. A comparative analysis of the Rz2 locus, responsible for rhizomania resistance, suggested that the sequenced B. patula accession was rhizomania susceptible. Reference karyotypes for the two wild beets were established, and genomic rearrangements were detected. We consider our data as highly valuable and comprehensive resources for wild beet studies, B. patula conservation management, and sugar beet breeding research.


Assuntos
Beta vulgaris/genética , Genoma de Planta , Doenças das Plantas/genética , Beta vulgaris/virologia , Cromossomos/genética , Produtos Agrícolas/genética , Variação Genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Cariótipo , Filogenia , Doenças das Plantas/virologia , Sintenia/genética
11.
Theor Appl Genet ; 132(7): 2137-2154, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31016347

RESUMO

KEY MESSAGE: Genome-wide analysis of maize GPAT gene family, cytological characterization of ZmMs33/ZmGPAT6 gene encoding an ER-localized protein with four conserved motifs, and its molecular breeding application in maize. Glycerol-3-phosphate acyltransferase (GPAT) mediates the initial step of glycerolipid biosynthesis and plays pivotal roles in plant growth and development. Compared with GPAT genes in Arabidopsis, our understanding to maize GPAT gene family is very limited. Recently, ZmMs33 gene has been identified to encode a sn-2 GPAT protein and control maize male fertility in our laboratory (Xie et al. in Theor Appl Genet 131:1363-1378, 2018). However, the functional mechanism of ZmMs33 remains elusive. Here, we reported the genome-wide analysis of maize GPAT gene family and found that 20 maize GPAT genes (ZmGPAT1-20) could be classified into three distinct clades similar to those of ten GPAT genes in Arabidopsis. Expression analyses of these ZmGPAT genes in six tissues and in anther during six developmental stages suggested that some of ZmGPATs may play crucial roles in maize growth and anther development. Among them, ZmGPAT6 corresponds to the ZmMs33 gene. Systemic cytological observations indicated that loss function of ZmMs33/ZmGPAT6 led to defective anther cuticle, arrested degeneration of anther wall layers, abnormal formation of Ubisch bodies and exine and ultimately complete male sterility in maize. The endoplasmic reticulum-localized ZmMs33/ZmGPAT6 possessed four conserved amino acid motifs essential for acyltransferase activity, while ZmMs33/ZmGPAT6 locus and its surrounding genomic region have greatly diversified during evolution of gramineous species. Finally, a multi-control sterility system was developed to produce ms33 male-sterile lines by using a combination strategy of transgene and marker-assisted selection. This work will provide useful information for further deciphering functional mechanism of ZmGPAT genes and facilitate molecular breeding application of ZmMs33/ZmGPAT6 gene in maize.


Assuntos
Família Multigênica , Melhoramento Vegetal , Infertilidade das Plantas/genética , Zea mays/genética , Sequência de Aminoácidos , Flores/genética , Flores/fisiologia , Genes de Plantas , Estudos de Associação Genética , Microscopia Eletrônica de Varredura , Filogenia , Plantas Geneticamente Modificadas , Pólen/ultraestrutura , Sintenia , Zea mays/fisiologia
12.
Plant Mol Biol ; 99(3): 251-264, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30604323

RESUMO

KEY MESSAGE: The genetic linkage map for green ash (Fraxinus pennsylvanica) contains 1201 DNA markers in 23 linkage groups spanning 2008.87cM. The green ash map shows stronger synteny with coffee than tomato. Green ash (Fraxinus pennsylvanica) is an outcrossing, diploid (2n = 46) hardwood tree species, native to North America. Native ash species in North America are being threatened by the rapid spread of the emerald ash borer (EAB, Agrilus planipennis), an invasive pest from Asia. Green ash, the most widely distributed ash species, is severely affected by EAB infestation, yet few genomic resources for genetic studies and improvement of green ash are available. In this study, a total of 5712 high quality single nucleotide polymorphisms (SNPs) were discovered using a minimum allele frequency of 1% across the entire genome through genotyping-by-sequencing. We also screened hundreds of genomic- and EST-based microsatellite markers (SSRs) from previous de novo assemblies (Staton et al., PLoS ONE 10:e0145031, 2015; Lane et al., BMC Genom 17:702, 2016). A first genetic linkage map of green ash was constructed from 90 individuals in a full-sib family, combining 2719 SNP and 84 SSR segregating markers among the parental maps. The consensus SNP and SSR map contains a total of 1201 markers in 23 linkage groups spanning 2008.87 cM, at an average inter-marker distance of 1.67 cM with a minimum logarithm of odds of 6 and maximum recombination fraction of 0.40. Comparisons of the organization the green ash map with the genomes of asterid species coffee and tomato, and genomes of the rosid species poplar and peach, showed areas of conserved gene order, with overall synteny strongest with coffee.


Assuntos
Mapeamento Cromossômico , Fraxinus/genética , Ligação Genética , Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Sintenia/genética , Animais , Café/genética , Besouros , Frequência do Gene , Técnicas de Genotipagem , Solanum lycopersicum/genética , Repetições de Microssatélites/genética
13.
Mol Biol Rep ; 46(1): 777-791, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30535894

RESUMO

E2 (ubiquitin conjugating enzymes) is an important part of the ubiquitin-proteasome pathway. These enzymes have a significant role to play during plant growth and development, which can response to various stresses. To date, the E2 family has been reported in some high plants, but the genome-wide characterization of this gene family in potato remains unknown. In the present study, 57 putative StUBCs were identified, which were clustered into eight subgroups based on phylogeny. The introns varied in numbers 0 to 9. The highest numbers of introns were 5, which accounted for 31.57%. The analysis of gene duplication showed that 22 StUBC genes were involved in 13 segmental duplication events, while no tandem duplication was found in StUBC genes. According to gene ontology analysis (GO), StUBC family major function is protein binding and ion binding. The RNA sequencing data revealed that 15 StUBC genes were highly expressed in different organs and tubers. 27 StUBC genes were up-regulated under 50 µM ABA treatments. Moreover, the RNA-seq data and qRT-PCR analysis indicated that 17 StUBC genes responded to heat stress. 8 StUBC genes responded to salt stress according to qRT-PCR analysis, and StUBC2, StUBC12, StUBC30 and StUBC13 were predominant expression. The result of this research could provide valuable information to insight into potato E2 family and establish a foundation for further to elucidate function of E2 genes.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Solanum tuberosum/genética , Arabidopsis/genética , Cromossomos de Plantas/genética , Sequência Conservada , Éxons/genética , Duplicação Gênica , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Plantas , Íntrons/genética , Motivos de Nucleotídeos/genética , Especificidade de Órgãos/genética , Filogenia , Regiões Promotoras Genéticas/genética , Solanum tuberosum/fisiologia , Estresse Fisiológico/genética , Sintenia/genética
14.
Theor Appl Genet ; 132(2): 313-322, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30374528

RESUMO

KEY MESSAGE: Almost identical mitochondrial genome sequences of two recently diverged male-fertile normal and male-sterile CMS-T-like cytoplasms were obtained in onions. A chimeric gene, orf725 , was found to be a CMS-inducing gene. In onions (Allium cepa L.), cytoplasmic male-sterility (CMS) has been widely used in hybrid seed production. Two types of CMS (CMS-S and CMS-T) have been reported in onions. A complete mitochondrial genome sequence of the CMS-S cytoplasm has been reported in our previous study. Draft mitochondrial genome sequences of male-fertile normal and CMS-T-like cytoplasms are reported in this study. Raw reads obtained from normal and CMS-T-like cytoplasms were assembled into eight and nine almost identical contigs, respectively. After connection and reorganization of contigs by PCR amplification and genome walking, four scaffold sequences with total length of 339 and 180 bp were produced for the normal cytoplasm. A mitochondrial genome sequence of the CMS-T-like cytoplasm was obtained by mapping trimmed reads of CMS-T onto scaffold sequences of the normal cytoplasm. Compared with the CMS-S mitochondrial genome, the normal mitochondrial genome was highly rearranged with 31 syntenic blocks. A total of 499 single nucleotide polymorphisms (SNPs) or insertions/deletions were identified in these syntenic regions. On the other hand, normal and CMS-T-like mitochondrial genome sequences were almost identical except for orf725, a chimeric gene consisting of cox1 with other sequences. Only three SNPs were identified between normal and CMS-T-like syntenic sequences. These results indicate that orf725 is likely to be the casual gene for CMS induction in onions and that CMS-T-like cytoplasm has recently diverged from the normal cytoplasm by introduction of orf725.


Assuntos
Genoma Mitocondrial , Cebolas/genética , Infertilidade das Plantas/genética , Citoplasma/genética , DNA Mitocondrial/genética , Sintenia
15.
PLoS One ; 13(12): e0208032, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30507961

RESUMO

This study reports the construction of high density linkage maps of Japanese plum (Prunus salicina Lindl.) using single nucleotide polymorphism markers (SNPs), obtained with a GBS strategy. The mapping population (An x Au) was obtained by crossing cv. "Angeleno" (An) as maternal line and cv. "Aurora" (Au) as the pollen donor. A total of 49,826 SNPs were identified using the peach genome V2.1 as a reference. Then a stringent filtering was carried out, which revealed 1,441 high quality SNPs in 137 An x Au offspring, which were mapped in eight linkage groups. Finally, the consensus map was built using 732 SNPs which spanned 617 cM with an average of 0.96 cM between adjacent markers. The majority of the SNPs were distributed in the intragenic region in all the linkage groups. Considering all linkage groups together, 85.6% of the SNPs were located in intragenic regions and only 14.4% were located in intergenic regions. The genetic linkage analysis was able to co-localize two to three SNPs over 37 putative orthologous genes in eight linkage groups in the Japanese plum map. These results indicate a high level of synteny and collinearity between Japanese plum and peach genomes.


Assuntos
Mapeamento Cromossômico , Genoma de Planta/genética , Prunus domestica/genética , Prunus persica/genética , Sintenia , DNA Intergênico/genética , DNA de Plantas/genética , Ligação Genética , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
16.
Int J Mol Sci ; 19(11)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423920

RESUMO

Auxin signaling plays an important role in plant growth and development. It responds to various developmental and environmental events, such as embryogenesis, organogenesis, shoot elongation, tropical growth, lateral root formation, flower and fruit development, tissue and organ architecture, and vascular differentiation. However, there has been little research on the Auxin Response Factor (ARF) genes of tartary buckwheat (Fagopyrum tataricum), an important edible and medicinal crop. The recent publication of the whole-genome sequence of tartary buckwheat enables us to study the tissue and expression profile of the FtARF gene on a genome-wide basis. In this study, 20 ARF (FtARF) genes were identified and renamed according to the chromosomal distribution of the FtARF genes. The results showed that the FtARF genes belonged to the related sister pair, and the chromosomal map showed that the duplication of FtARFs was related to the duplication of the chromosome blocks. The duplication of some FtARF genes shows conserved intron/exon structure, which is different from other genes, suggesting that the function of these genes may be diverse. Real-time quantitative PCR analysis exhibited distinct expression patterns of FtARF genes in various tissues and in response to exogenous auxin during fruit development. In this study, 20 FtARF genes were identified, and the structure, evolution, and expression patterns of the proteins were studied. This systematic analysis laid a foundation for the further study of the functional characteristics of the ARF genes and for the improvement of tartary buckwheat crops.


Assuntos
Fagopyrum/genética , Genes de Plantas , Genoma de Planta , Ácidos Indolacéticos/metabolismo , Família Multigênica , Proteínas de Plantas/genética , Cromossomos de Plantas/genética , Evolução Molecular , Fagopyrum/efeitos dos fármacos , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Motivos de Nucleotídeos/genética , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/metabolismo , Especificidade da Espécie , Sintenia/genética
17.
Sci Rep ; 8(1): 13530, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202022

RESUMO

A reference-quality assembly of Fusarium oxysporum f. sp. cepae (Foc), the causative agent of onion basal rot has been generated along with genomes of additional pathogenic and non-pathogenic isolates of onion. Phylogenetic analysis confirmed a single origin of the Foc pathogenic lineage. Genome alignments with other F. oxysporum ff. spp. and non pathogens revealed high levels of syntenic conservation of core chromosomes but little synteny between lineage specific (LS) chromosomes. Four LS contigs in Foc totaling 3.9 Mb were designated as pathogen-specific (PS). A two-fold increase in segmental duplication events was observed between LS regions of the genome compared to within core regions or from LS regions to the core. RNA-seq expression studies identified candidate effectors expressed in planta, consisting of both known effector homologs and novel candidates. FTF1 and a subset of other transcription factors implicated in regulation of effector expression were found to be expressed in planta.


Assuntos
Fusarium/patogenicidade , Genoma Fúngico/genética , Cebolas/microbiologia , Doenças das Plantas/microbiologia , Virulência/genética , Cromossomos Fúngicos/genética , Produção Agrícola , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Anotação de Sequência Molecular , Filogenia , Raízes de Plantas/microbiologia , Análise de Sequência de DNA , Sintenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Mol Genet Genomics ; 293(2): 343-357, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29119365

RESUMO

Pectin-related genes play significant roles in pollen development and pollen tube growth, and their allelic variations are one of the major reasons for the abnormal development of male gametophyte. Currently, little is known about the role of the PMEI family in male sterility of plants. In this study, 97 putative PMEI genes were identified in Brassica rapa genome. By a phylogenetic analysis, the PMEI family was divided into 10 clades with highly conserved structural characteristics. The publically available RNA-seq data on different tissues of B. rapa accession Chiifu-401-42 revealed that 23 PMEI isoforms were flower-specific genes. We created a recessive genic male sterile mutant (ftms) in Chinese cabbage. This mutant was a doubled haploid line with stable inheritance, derived from Chinese cabbage 'FT' generated through a combination of radiation mutagenesis and isolated microspore culture. The transcriptome profiles of the floral buds of ftms and its wild-type line 'FT' were determined using RNA-seq. A total of 17 PMEI genes were found to be differentially expressed; all of them were down-regulated in ftms compared to their levels in 'FT'. Consistent with the transcriptome data, all these genes were observed to be highly expressed in the floral buds of 'FT' using qRT-PCR analysis. Of these, eight genes were specifically expressed in the floral buds of 'FT'; three of these (Bra019903, Bra014099, and Bra032239) were stamen-specific genes. The results contribute to further elucidation of the regulatory mechanisms underlying male sterility in Chinese cabbage.


Assuntos
Brassica rapa/genética , Família Multigênica , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Pólen/genética , Sequência de Aminoácidos , Arabidopsis/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/classificação , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Sintenia
19.
Genetics ; 208(2): 513-523, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242292

RESUMO

Developing the karyotype of a eukaryotic species relies on identification of individual chromosomes, which has been a major challenge for most nonmodel plant and animal species. We developed a novel chromosome identification system by selecting and labeling oligonucleotides (oligos) located in specific regions on every chromosome. We selected a set of 54,672 oligos (45 nt) based on single copy DNA sequences in the potato genome. These oligos generated 26 distinct FISH signals that can be used as a "bar code" or "banding pattern" to uniquely label each of the 12 chromosomes from both diploid and polyploid (4× and 6×) potato species. Remarkably, the same bar code can be used to identify the 12 homeologous chromosomes among distantly related Solanum species, including tomato and eggplant. Accurate karyotypes based on individually identified chromosomes were established in six Solanum species that have diverged for >15 MY. These six species have maintained a similar karyotype; however, modifications to the FISH signal bar code led to the discovery of two reciprocal chromosomal translocations in Solanum etuberosum and S. caripense We also validated these translocations by oligo-based chromosome painting. We demonstrate that the oligo-based FISH techniques are powerful new tools for chromosome identification and karyotyping research, especially for nonmodel plant species.


Assuntos
Hibridização in Situ Fluorescente/métodos , Animais , Coloração Cromossômica/métodos , Cromossomos , Cromossomos de Plantas , Diploide , Cariótipo , Cariotipagem , Solanum lycopersicum/genética , Poliploidia , Solanum tuberosum/genética , Sintenia , Translocação Genética
20.
BMC Genomics ; 18(1): 776, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025408

RESUMO

BACKGROUND: Deciphering the genetic architecture of a species is a good way to understand its evolutionary history, but also to tailor its profile for breeding elite cultivars with desirable traits. Aligning QTLs from diverse population in one map and utilizing it for comparison, but also as a basis for multiple analyses assure a stronger evidence to understand the genetic system related to a given phenotype. RESULTS: In this study, 439 genes involved in fatty acid (FA) and triacylglycerol (TAG) biosyntheses were identified in Brassica napus. B. napus genome showed mixed gene loss and insertion compared to B. rapa and B. oleracea, and C genome had more inserted genes. Identified QTLs for oil (OC-QTLs) and fatty acids (FA-QTLs) from nine reported populations were projected on the physical map of the reference genome "Darmor-bzh" to generate a map. Thus, 335 FA-QTLs and OC-QTLs could be highlighted and 82 QTLs were overlapping. Chromosome C3 contained 22 overlapping QTLs with all trait studied except for C18:3. In total, 218 candidate genes which were potentially involved in FA and TAG were identified in 162 QTLs confidence intervals and some of them might affect many traits. Also, 76 among these candidate genes were found inside 57 overlapping QTLs, and candidate genes for oil content were in majority (61/76 genes). Then, sixteen genes were found in overlapping QTLs involving three populations, and the remaining 60 genes were found in overlapping QTLs of two populations. Interaction network and pathway analysis of these candidate genes indicated ten genes that might have strong influence over the other genes that control fatty acids and oil formation. CONCLUSION: The present results provided new information for genetic basis of FA and TAG formation in B. napus. A map including QTLs from numerous populations was built, which could serve as reference to study the genome profile of B. napus, and new potential genes emerged which might affect seed oil. New useful tracks were showed for the selection of population or/and selection of interesting genes for breeding improvement purpose.


Assuntos
Brassica napus/genética , Brassica napus/metabolismo , Ácidos Graxos/metabolismo , Loci Gênicos/genética , Óleos de Plantas/metabolismo , Locos de Características Quantitativas/genética , Sintenia , Mapeamento Cromossômico , Dosagem de Genes/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA