Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Zool A Ecol Integr Physiol ; 341(4): 470-482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433718

RESUMO

The protective action of melatonin (MLT) against the harmful effects of cadmium (Cd) on testicular activity in rats has been documented previously; however, the involved molecular mechanisms have yet to be elucidated. Herein, we investigate the involvement of the mammalian target of rapamycin (mTOR) on the ability of MLT to counteract the damage induced by Cd on the rat testicular activity. Our study confirmed that Cd has harmful effects on the testes of rats and the protective action exerted by MLT. We reported, for the first time, that the addition of rapamycin (Rapa), a specific mTOR inhibitor, to animals co-treated with Cd and MLT completely abolished the beneficial effects exerted by MLT, indicating that the mTOR pathway partially modulates its helpful effects on Cd testicular toxicity. Interestingly, Rapa-alone treatment, provoking mTOR inhibition, produced altered morphological parameters, increased autophagy of germ and somatic cells, and reduced serum testosterone concentration. In addition, mTOR inhibition also reduced protein levels of markers of steroidogenesis (3ß-Hydroxysteroid dehydrogenase) and blood-testis barrier integrity (occludin and connexin 43). Finally, Rapa altered sperm parameters as well as the ability of mature spermatozoa to perform a proper acrosome reaction. Although further investigation is needed to better clarify the molecular pathway involved in MLT action, we confirm that MLT alleviating Cd effects can be used as a supplement to enhance testicular function and improve male gamete quality.


Assuntos
Melatonina , Ratos , Masculino , Animais , Melatonina/farmacologia , Cádmio/toxicidade , Sirolimo/farmacologia , Sêmen/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Mamíferos/metabolismo
2.
Biosci Biotechnol Biochem ; 88(5): 529-537, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38509025

RESUMO

Four ethanol fractionated crude extracts (EFCEs [A-D]) purified from the leaves of Cinnamomum macrostemon Hayata were screened for antioxidative effects and mitochondrial function in HaCaT cells. The higher cell viability indicated that EFCE C was mildly toxic. Under the treatment of 50 ng/mL EFCE C, the hydrogen peroxide (H2O2)-induced cytosolic and mitochondrial reactive oxygen species levels were reduced as well as the H2O2-impaired cell viability, mitochondrial membrane potential (MMP), ATP production, and mitochondrial mass. The conversion of globular mitochondria to tubular mitochondria is coincident with EFCE C-restored mitochondrial function. The mitophagy activator rapamycin showed similar effects to EFCE C in recovering the H2O2-impaired cell viability, MMP, ATP production, mitochondrial mass, and also mitophagic proteins such as PINK1, Parkin, LC3 II, and biogenesis protein PGC-1α. We thereby propose the application of EFCE C in the prevention of oxidative stress in skin cells.


Assuntos
Sobrevivência Celular , Cinnamomum , Peróxido de Hidrogênio , Queratinócitos , Potencial da Membrana Mitocondrial , Mitocôndrias , Mitofagia , Estresse Oxidativo , Extratos Vegetais , Espécies Reativas de Oxigênio , Humanos , Mitofagia/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/citologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cinnamomum/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Folhas de Planta/química , Antioxidantes/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Sirolimo/farmacologia , Células HaCaT , Proteínas Quinases/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
3.
J Transl Med ; 22(1): 166, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365767

RESUMO

BACKGROUND: Coronary artery bypass graft (CABG) is generally used to treat complex coronary artery disease. Treatment success is affected by neointimal hyperplasia (NIH) of graft and anastomotic sites. Although sirolimus and rosuvastatin individually inhibit NIH progression, the efficacy of combination treatment remains unknown. METHODS: We identified cross-targets associated with CABG, sirolimus, and rosuvastatin by using databases including DisGeNET and GeneCards. GO and KEGG pathway enrichment analyses were conducted using R studio, and target proteins were mapped in PPI networks using Metascape and Cytoscape. For in vivo validation, we established a balloon-injured rabbit model by inducing NIH and applied a localized perivascular drug delivery device containing sirolimus and rosuvastatin. The outcomes were evaluated at 1, 2, and 4 weeks post-surgery. RESULTS: We identified 115 shared targets between sirolimus and CABG among databases, 23 between rosuvastatin and CABG, and 96 among all three. TNF, AKT1, and MMP9 were identified as shared targets. Network pharmacology predicted the stages of NIH progression and the corresponding signaling pathways linked to sirolimus (acute stage, IL6/STAT3 signaling) and rosuvastatin (chronic stage, Akt/MMP9 signaling). In vivo experiments demonstrated that the combination of sirolimus and rosuvastatin significantly suppressed NIH progression. This combination treatment also markedly decreased the expression of inflammation and Akt signaling pathway-related proteins, which was consistent with the predictions from network pharmacology analysis. CONCLUSIONS: Sirolimus and rosuvastatin inhibited pro-inflammatory cytokine production during the acute stage and regulated Akt/mTOR/NF-κB/STAT3 signaling in the chronic stage of NIH progression. These potential synergistic mechanisms may optimize treatment strategies to improve long-term patency after CABG.


Assuntos
Medicamentos de Ervas Chinesas , Sirolimo , Animais , Coelhos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Rosuvastatina Cálcica/farmacologia , Rosuvastatina Cálcica/uso terapêutico , Hiperplasia/tratamento farmacológico , Metaloproteinase 9 da Matriz , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt , Neointima , Ponte de Artéria Coronária/efeitos adversos
4.
J Ethnopharmacol ; 324: 117808, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38280663

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Flap necrosis is the most common complication after flap transplantation, but its prevention remains challenging. Tetrahydropalmatine (THP) is the main bioactive component of the traditional Chinese medicine Corydalis yanhusuo, with effects that include the activation of blood circulation, the promotion of qi, and pain relief. Although THP is widely used to treat various pain conditions, its impact on flap survival is unknown. AIM OF THE STUDY: To explore the effect and mechanism of THP on skin flap survival. MATERIALS AND METHODS: In this study, we established a modified McFarlane flap model, and the flap survival rate was calculated after 7 days of THP treatment. Angiogenesis and blood perfusion were evaluated using lead oxide/gelatin angiography and laser Doppler, respectively. Flap tissue obtained from zone II was evaluated histopathologically, by hematoxylin and eosin staining, and in assays for malondialdehyde content and superoxide dismutase activity. Immunofluorescence was performed to detect interleukin (IL)-6, tumor necrosis factor (TNF)-α, hypoxia-inducible factor (HIF)-1α, Bcl-2, Bax, caspase-3, caspase-9, SQSTM1/P62, Beclin-1, and LC3 expression, and Western blot to assess PI3K/AKT signaling pathway activation and Vascular endothelial growth factor (VEGF) expression. The role played by the autophagy pathway in flap necrosis was examined using rapamycin, a specific inhibitor of mTOR. RESULTS: Experimentally, THP improved the survival rate of skin flaps, promoted angiogenesis, and improved blood perfusion. THP administration reduced the inflammatory response, oxidative stress, and apoptosis in addition to inhibiting autophagy via the PI3K/AKT/mTOR pathway. Rapamycin partially reversed these effects. CONCLUSION: THP promotes skin flap survival via the PI3K/AKT signaling pathway.


Assuntos
Alcaloides de Berberina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Necrose , Sirolimo/farmacologia , Dor
5.
Int Dent J ; 74(2): 284-293, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37852809

RESUMO

BACKGROUND: Yunnan Baiyao (YNBY), a traditional Chinese medicine, is renowned for its anti-inflammatory properties. Recent studies have suggested that YNBY plays a significant role in inhibiting osteoclast differentiation and autophagy, which are essential processes in inflammation and bone resorption associated with periodontitis. However, the precise relationship between autophagy and the mechanism by which YNBY inhibits osteoclastogenesis remains unexplored.The primary objective of this study was to investigate the inhibitory effects of YNBY on the process of osteoclastogenesis and its potential in preventing inflammatory bone loss. METHODS: The animals were subjected to sacrifice at intervals of 2, 4, and 6 weeks postintervention whilst under deep anaesthesia, and specimens were subsequently collected. The specimens were subjected to hematoxylin and eosin (HE) staining, in addition to tartrate-resistant acid phosphatase (TRAP) staining and subsequently imaged employing a digital scanner. The confirmation of osteoclast (OC) differentiation and autophagic flux was achieved through various techniques, including western blotting, transmission electron microscopy (TEM), TRAP staining, pit formation assay, and immunofluorescence. RESULTS: The microcomputed tomography images provided evidence of the effective inhibition of alveolar bone absorption at 2, 4, and 6 weeks following YNBY treatment. Additionally, the histomorphometric evaluations of tissue segments stained with HE and TRAP, which involved measuring the distance between the alveolar bone crest (ABC) and cementoenamel junction (CEJ) and quantifying TRAP-positive OCs, yielded comparable results to those obtained through computed tomography analysis. YNBY treatment resulted in a decrease in the CEJ-ABC distance and inhibition of OC differentiation. Furthermore, in vitro studies showed that the autophagy modulators rapamycin (RAP) and 3-methyladenine (3-MA) significantly affected OC differentiation and function. YNBY attenuated the impact of RAP on the differentiation of OCs, autophagy-related factor activation, and bone resorption. CONCLUSIONS: We hypothesise that YNBY suppresses the differentiation of OC and bone resorption by blocking autophagy. This study reveals that targeting autophagy might be a new alternative treatment methodology for periodontitis treatment.


Assuntos
Reabsorção Óssea , Medicamentos de Ervas Chinesas , Periodontite , Animais , Humanos , Osteoclastos , Microtomografia por Raio-X , China , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Autofagia , Periodontite/tratamento farmacológico , Periodontite/prevenção & controle , Sirolimo/farmacologia
6.
Biol Res ; 56(1): 41, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37438828

RESUMO

BACKGROUND: Hyperbaric oxygen treatment (HBOT) has been reported to modulate the proliferation of neural and mesenchymal stem cell populations, but the molecular mechanisms underlying these effects are not completely understood. In this study, we aimed to assess HBOT somatic stem cell modulation by evaluating the role of the mTOR complex 1 (mTORC1), a key regulator of cell metabolism whose activity is modified depending on oxygen levels, as a potential mediator of HBOT in murine intestinal stem cells (ISCs). RESULTS: We discovered that acute HBOT synchronously increases the proliferation of ISCs without affecting the animal's oxidative metabolism through activation of the mTORC1/S6K1 axis. mTORC1 inhibition by rapamycin administration for 20 days also increases ISCs proliferation, generating a paradoxical response in mice intestines, and has been proposed to mimic a partial starvation state. Interestingly, the combination of HBOT and rapamycin does not have a synergic effect, possibly due to their differential impact on the mTORC1/S6K1 axis. CONCLUSIONS: HBOT can induce an increase in ISCs proliferation along with other cell populations within the crypt through mTORC1/S6K1 modulation without altering the oxidative metabolism of the animal's small intestine. These results shed light on the molecular mechanisms underlying HBOT therapeutic action, laying the groundwork for future studies.


Assuntos
Oxigenoterapia Hiperbárica , Transdução de Sinais , Células-Tronco , Animais , Camundongos , Proliferação de Células , Intestinos/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Oxigênio , Sirolimo/farmacologia , Células-Tronco/efeitos dos fármacos
7.
Nat Metab ; 5(6): 955-967, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37365290

RESUMO

Mitochondrial diseases represent a spectrum of disorders caused by impaired mitochondrial function, ranging in severity from mortality during infancy to progressive adult-onset disease. Mitochondrial dysfunction is also recognized as a molecular hallmark of the biological ageing process. Rapamycin, a drug that increases lifespan and health during normative ageing, also increases survival and reduces neurological symptoms in a mouse model of the severe mitochondrial disease Leigh syndrome. The Ndufs4 knockout (Ndufs4-/-) mouse lacks the complex I subunit NDUFS4 and shows rapid onset and progression of neurodegeneration mimicking patients with Leigh syndrome. Here we show that another drug that extends lifespan and delays normative ageing in mice, acarbose, also suppresses symptoms of disease and improves survival of Ndufs4-/- mice. Unlike rapamycin, acarbose rescues disease phenotypes independently of inhibition of the mechanistic target of rapamycin. Furthermore, rapamycin and acarbose have additive effects in delaying neurological symptoms and increasing maximum lifespan in Ndufs4-/- mice. We find that acarbose remodels the intestinal microbiome and alters the production of short-chain fatty acids. Supplementation with tributyrin, a source of butyric acid, recapitulates some effects of acarbose on lifespan and disease progression, while depletion of the endogenous microbiome in Ndufs4-/- mice appears to fully recapitulate the effects of acarbose on healthspan and lifespan in these animals. To our knowledge, this study provides the first evidence that alteration of the gut microbiome plays a significant role in severe mitochondrial disease and provides further support for the model that biological ageing and severe mitochondrial disorders share underlying common mechanisms.


Assuntos
Doença de Leigh , Doenças Mitocondriais , Camundongos , Animais , Doença de Leigh/tratamento farmacológico , Doença de Leigh/genética , Acarbose/farmacologia , Acarbose/uso terapêutico , Doenças Mitocondriais/tratamento farmacológico , Mitocôndrias/genética , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons
8.
Altern Ther Health Med ; 29(5): 400-409, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37171951

RESUMO

Context: At present, hormone therapy and surgery are the main treatments for thyroid cancer, and they have a quick effect but a high recurrence rate. Also, the side effects are significant. it's extremely urgent to explore treatments that can take into account both therapeutic benefits and side effects. Objective: The study intended to explore whether Xiaoluo has an inhibitory effect on the proliferation of thyroid-cancer cells in vitro and to examine the core target and key signaling pathway of Xiaoluo in the treatment of thyroid cancer, using the thyroid-cancer cell line SW579. Design: The research team performed an in-vitro study. Setting: The study took place at the College of Pharmacy at Harbin University of Commerce in Harbin, China. Outcome Measures: The research team used a Western blot analysis to detect the expression of apoptosis proteins-B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase-3-and the activity related to the signaling pathways phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin 1 (mTORC1). The team measured optical densities and inhibition rates for the 1, 2, 5, 10, and 15 mg/mL Xiaokuo groups and for a negative control group. The research team measured apoptosis, expression of Bcl-2, Bax, and Caspase-3, and expression of P13K, AKT, and mTor for the 10 µmol/L LY294002, 10 mg/mL Xiaoluo, 100 ng/mL IGF-1, and 100 ng/mL IGF-1+10 mg/mL Xiaoluo groups and for the blank control group. Results: The inhibition of SW579 cell proliferation increased with each increase in the Xiaoluo concentration from 1-15 mg/mL, and the inhibition rate reached 49.63% when the concentration was 15 mg/ml. The Xiaoluo group's late and total apoptosis rates were significantly higher (both P < .01) than those of the blank control group. The Xiaoluo group's expression of the Bcl-2 protein was significantly lower (P < .05), and its expressions of Bax and Caspase-3 were significantly higher (both P < .01) than those of the blank control group. The Xiaoluo group's expressions of P-PI3K, P-Akt, and P-MTOR were significantly lower than those of the blank group (all P < .01). These findings were comparable to those that occurred with use of the PI3K/AKT/mTORC1 signaling pathway inhibitor LY294002. Conclusions: Xiaoluo exerts its antithyroid-cancer effects through the induction of apoptosis in thyroid cancer cells through the inhibition of the PI3K/AKT/mTORC1 signaling pathway. Xiaoluo may serve as a potential therapeutic agent for the treatment of thyroid cancer.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias da Glândula Tireoide , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Caspase 3/metabolismo , Caspase 3/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Apoptose , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Sirolimo/farmacologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Proliferação de Células , Linhagem Celular Tumoral
9.
Phytother Res ; 37(4): 1377-1390, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36751963

RESUMO

Studies demonstrated that Ginkgo biloba extract (GBE) played a cardioprotective role in diabetic conditions. Impaired autophagy is one of the mechanisms underlying diabetic cardiomyopathy (DCM). The effect of GBE on autophagy has been observed in several diseases; however, whether GBE can ameliorate DCM by regulating autophagy remains unclear. Here, we investigated the effect of GBE on DCM and the potential mechanisms regarding autophagy using a streptozotocin (STZ)-induced diabetic rat model and a high-glucose (HG)-stimulated H9C2 cell model. We demonstrated that GBE attenuated metabolic disturbances, improved cardiac function, and reduced myocardial pathological changes in diabetic rats. Impaired autophagy as well as dysregulation of the adenosine monophosphate-activated protein kinase/ mammalian target of the rapamycin (AMPK/mTOR) signaling pathway were observed in diabetic hearts, as evidenced by the reduced conversion of LC3B-I to LC3B-II along with excessive p62 accumulation, decreased AMPK phosphorylation, and increased mTOR phosphorylation, which could be reversed by GBE treatment. In vitro, GBE reduced the apoptosis induced by HG in H9C2 cells by activating AMPK and inhibiting mTOR to restore autophagy. However, this effect was inhibited by the AMPK inhibitor Compound C. In conclusion, the ameliorative effect of GBE on DCM might be dependent on the restoration of autophagy through modulation of the AMPK/mTOR pathway.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Sirolimo/farmacologia , Mamíferos/metabolismo
10.
Geroscience ; 45(2): 1263-1270, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399256

RESUMO

Dietary restriction (DR) and rapamycin both increase lifespan across a number of taxa. Despite this positive effect on lifespan and other aspects of health, reductions in some physiological functions have been reported for DR, and rapamycin has been used as an immunosuppressant. Perhaps surprisingly, both interventions have been suggested to improve immune function and delay immunosenescence. The immune system is complex and consists of many components. Therefore, arguably, the most holistic measurement of immune function is survival from an acute pathogenic infection. We reanalysed published post-infection short-term survival data of mice (n = 1223 from 23 studies comprising 46 effect sizes involving DR (n = 17) and rapamycin treatment (n = 29) and analysed these results using meta-analysis. Rapamycin treatment significantly increased post infection survival rate (lnHR = - 0.72; CI = - 1.17, -0.28; p = 0.0015). In contrast, DR reduced post-infection survival (lnHR = 0.80; CI = 0.08, 1.52; p = 0.03). Importantly, the overall effect size of rapamycin treatment was significantly lower (p < 0.001) than the estimate from DR studies, suggesting opposite effects on immune function. Our results show that immunomodulation caused by rapamycin treatment is beneficial to the survival from acute infection. For DR, our results are based on a smaller number of studies, but do warrant caution as they indicate possible immune costs of DR. Our quantitative synthesis suggests that the geroprotective effects of rapamycin extend to the immune system and warrants further clinical trials of rapamycin to boost immunity in humans.


Assuntos
Imunossenescência , Sirolimo , Humanos , Camundongos , Animais , Sirolimo/farmacologia , Restrição Calórica , Longevidade/fisiologia , Imunossupressores/farmacologia
11.
Chin J Integr Med ; 29(9): 801-808, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36219383

RESUMO

OBJECTIVE: To investigate the effect of emodin on high glucose (HG)-induced podocyte apoptosis and whether the potential anti-apoptotic mechanism of emodin is related to induction of adenosine-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)-mediated autophagy in podocytes (MPC5 cells) in vitro. METHODS: MPC5 cells were treated with different concentrations of HG (2.5, 5, 10, 20, 40, 80 and 160 mmol/L), emodin (2, 4, 8 µ mol/L), or HG (40 mmol/L) and emodin (4 µ mol/L) with or without rapamycin (Rap, 100 nmol/L) and compound C (10 µ mol/L). The viability and apoptosis of MPC5 cells were detected using cell counting kit-8 (CCK-8) assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy marker light chain 3 (LC3) I/II, and AMPK/mTOR signaling pathway-related proteins were determined by Western blot. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy. RESULTS: HG at 20, 40, 80 and 160 mmol/L dose-dependently induced cell apoptosis in MPC5 cells, whereas emodin (4 µ mol/L) significantly ameliorated HG-induced cell apoptosis and caspase-3 cleavage (P<0.01). Emodin (4 µ mol/L) significantly increased LC3-II protein expression levels and induced RFP-LC3-containing punctate structures in MPC5 cells (P<0.01). Furthermore, the protective effects of emodin were mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 µ mol/L) reversed emodin-induced autophagy activation. CONCLUSION: Emodin ameliorated HG-induced apoptosis of MPC5 cells in vitro that involved induction of autophagy through the AMPK/mTOR signaling pathway, which might provide a potential therapeutic option for diabetic nephropathy.


Assuntos
Emodina , Podócitos , Emodina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Caspase 3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Apoptose , Sirolimo/metabolismo , Sirolimo/farmacologia , Glucose/metabolismo , Autofagia
12.
J Gerontol A Biol Sci Med Sci ; 78(3): 397-406, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342748

RESUMO

Pharmacological treatments can extend the life span of mice. For optimal translation in humans, treatments should improve health during aging, and demonstrate efficacy when started later in life. Acarbose (ACA) and rapamycin (RAP) extend life span in mice when treatment is started early or later in life. Both drugs can also improve some indices of healthy aging, although there has been little systematic study of whether health benefits accrue differently depending on the age at which treatment is started. Here we compare the effects of early (4 months) versus late (16 months) onset ACA or RAP treatment on physical function and cardiac structure in genetically heterogeneous aged mice. ACA or RAP treatment improve rotarod acceleration and endurance capacity compared to controls, with effects that are largely similar in mice starting treatment from early or late in life. Compared to controls, cardiac hypertrophy is reduced by ACA or RAP in both sexes regardless of age at treatment onset. ACA has a greater effect on the cardiac lipidome than RAP, and the effects of early-life treatment are recapitulated by late-life treatment. These results indicate that late-life treatment with these drugs provide at least some of the benefits of life long treatment, although some of the benefits occur only in males, which could lead to sex differences in health outcomes later in life.


Assuntos
Acarbose , Sirolimo , Camundongos , Feminino , Humanos , Masculino , Animais , Sirolimo/farmacologia , Acarbose/farmacologia , Envelhecimento , Longevidade , Desempenho Físico Funcional
13.
BMC Cancer ; 22(1): 1193, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402986

RESUMO

The incidence of primary liver tumors, hepatocellular carcinoma (HCC), intrahepatic cholangiocellular carcinoma (ICC), and combined HCC/ICC (cHCC/CC) is increasing. For ICC, targeted therapy exists only for a small subpopulation of patients, while for HCC, Sorafenib and Lenvatinib are in use. Diagnosis of cHCC/CC is a great challenge and its incidence is underestimated, bearing the risk of unintended non-treatment of ICC. Here, we investigated effects of targeted inhibitors on human ICC cell lines (HUH28, RBE, SSP25), in comparison to extrahepatic (E)CC lines (EGI1, CCC5, TFK1), and HCC/hepatoblastoma cell lines (HEP3B, HUH7, HEPG2). Cells were challenged with: AKT inhibitor MK-2206; multikinase inhibitors Sorafenib, Lenvatinib and Dasatinib; PI3-kinase inhibitors BKM-120, Wortmannin, LY294002, and CAL-101; and mTOR inhibitor Rapamycin. Dosage of the substances was based on the large number of published data of recent years. Proliferation was analyzed daily for four days. All cell lines were highly responsive to MK-2206. Thereby, MK-2206 reduced expression of phospho(p)-AKT in all ICC, ECC, and HCC lines, which mostly corresponded to reduction of p-mTOR, whereas p-ERK1/2 was upregulated in many cases. Lenvatinib showed inhibitory effects on the two HCC cell lines, but not on HEPG2, ICCs and ECCs. Sorafenib inhibited proliferation of all cells, except the ECC line CCC5. However, at reduced dosage, we observed increased cell numbers in some ICC experiments. Dasatinib was highly effective especially in ICC cell lines. Inhibitory effects were observed with all four PI3-kinase inhibitors. However, cell type-specific differences were also evident here. Rapamycin was most effective in the two HCC cell lines. Our studies show that the nine inhibitors differentially target ICC, ECC, and HCC/hepatoblastoma lines. Caution should be taken with Lenvatinib and Sorafenib administration in patients with cHCC/CC as the drugs may have no effects on, or might even stimulate, ICC.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Hepatoblastoma , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Dasatinibe/uso terapêutico , Colangiocarcinoma/patologia , Fosfatidilinositol 3-Quinases , Sirolimo/farmacologia , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia
14.
Phytomedicine ; 107: 154477, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36215790

RESUMO

BACKGROUND: Danshen injection (DSI) is an agent extracted from the Salvia miltiorrhiza Bunge, a natural drug commonly used to alleviate kidney diseases. However, the material basis and therapeutic effects of DSI on nephrotic syndrome (NS) remain unclear. PURPOSE: To investigate the material basis of DSI and the therapeutic effects and underlying mechanisms of NS. METHODS: NS models were established using adriamycin-induced BALB/c mice and lipopolysaccharide-induced mouse podocytes (MPC-5). Following DSI and prednisone administration, kidney coefficients, 24 h urine protein, blood urea nitrogen, and serum creatinine levels were tested. Histomorphology was observed by periodic acid-Schiff staining and hematoxylin and eosin staining of the kidney sections. The glomerular basement membrane and autophagosomes of the kidneys were observed using transmission electron microscopy. Nephrin and desmin levels in the glomeruli were tested using immunohistochemistry. The viability of MPC-5 cells was tested using cell counting kit-8 after chloroquine and rapamycin administration in combination with DSI. The in vivo and in vitro protein levels of phosphatidylinositol 3-kinase (PI3K), AKT, phosphorylated AKT (Ser473), mammalian target of rapamycin (mTOR), microtubule-associated protein light chain 3 (LC3), beclin1, cleaved caspase-3, and caspase-3 were detected using western blotting. RESULTS: Our results showed that DSI contained nine main components: caffeic acid, danshensu, lithospermic acid, rosmarinic acid, salvianolic acid A, salvianolic acid B, salvianolic acid C, salvianolic acid D, and 3, 4-Dihydroxybenzaldehyde. In in vivo studies, the NS mice showed renal function and pathological impairment. Podocytes were damaged, with decreased levels of autophagy and apoptosis, accompanied by inhibition of the PI3K/AKT/mTOR signaling. DSI administration resulted in improved renal function and pathology in NS mice, with the activation of autophagy and PI3K/AKT/mTOR signaling in the kidneys. Additionally, podocytes were less damaged and intracellular autophagosomes were markedly increased. In vitro studies have shown that DSI activated MPC-5 autophagy and reduced apoptosis via the PI3K/AKT/mTOR pathway. CONCLUSION: Collectively, this study demonstrated that DSI activated podocyte autophagy and reduced apoptosis via the PI3K/AKT/mTOR signaling, ultimately attenuating NS. Our study clarified the main components of DSI and elucidated its therapeutic effects and potential mechanisms for NS, providing new targets and agents for the clinical treatment of NS.


Assuntos
Síndrome Nefrótica , Podócitos , Salvia miltiorrhiza , Animais , Autofagia , Proteína Beclina-1/metabolismo , Caspase 3/metabolismo , Cloroquina/farmacologia , Creatinina , Desmina/metabolismo , Desmina/farmacologia , Doxorrubicina/farmacologia , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Lipopolissacarídeos/farmacologia , Mamíferos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Síndrome Nefrótica/induzido quimicamente , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/metabolismo , Ácido Periódico/metabolismo , Ácido Periódico/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Podócitos/metabolismo , Prednisona/metabolismo , Prednisona/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
15.
Zhongguo Zhen Jiu ; 42(9): 1011-6, 2022 Sep 12.
Artigo em Chinês | MEDLINE | ID: mdl-36075597

RESUMO

OBJECTIVE: To investigate the effect of moxibustion on autophagy and amyloid ß-peptide1-42 (Aß1-42) protein expression in amyloid precursor protein/presenilin 1 (APP/PS1) double-transgenic mice with Alzheimer's disease (AD). METHODS: After 2-month adaptive feeding, fifty-six 6-month-old APP/PS1 double transgenic AD mice were randomly divided into a model group, a moxibustion group, a rapamycin group and an inhibitor group, 14 mice in each group. Another 14 C57BL/6J mice with the same age were used as a normal group. The mice in the moxibustion group were treated with monkshood cake-separated moxibustion at "Baihui"(GV 20), "Fengfu" (GV 16) and "Dazhui" (GV 14) for 20 min; the mice in the rapamycin group were intraperitoneally injected with rapamycin (2 mg/kg); the mice in the inhibitor group were treated with moxibustion and injection of 1.5 mg/kg 3-methyladenine (3-MA). All the treatments were given once a day for consecutive 2 weeks. The morphology of hippocampal tissue was observed by HE staining; the ultrastructure of hippocampal tissue was observed by transmission electron microscopy; the expression of Aß1-42 protein in frontal cortex and hippocampal tissue was detected by immunohistochemistry; the expressions of mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), p70 ribosomal protein S6 kinase (p70S6K) and phosphorylated p70S6K (p-p70S6K) protein in hippocampus were detected by Western blot method. RESULTS: Compared with the normal group, the number of neuron cells was decreased, cells were necrotic and deformed, and autophagy vesicle and lysosome were decreased in the model group. Compared with the model group, the number of neuron cells was increased, cell necrosis was decreased, and autophagy vesicle and lysosome were increased in the moxibustion group and the rapamycin group. Compared with the normal group, the protein expressions of Aß1-42, mTOR, p-mTOR, p70S6K and p-p70S6K in the model group were increased (P<0.05); compared with the model group, the protein expressions of Aß1-42, mTOR, p-mTOR, p70S6K and p-p70S6K in the moxibustion group, rapamycin group and inhibitor group were decreased (P<0.05); compared with the inhibitor group, the protein expressions of Aß1-42, mTOR, p-mTOR, p70S6K and p-p70S6K in the moxibustion group and rapamycin group were decreased (P<0.05); compared with the rapamycin group, the protein expressions of mTOR, p-mTOR, p70S6K and p-p70S6K in the moxibustion group were decreased (P<0.05). CONCLUSION: Moxibustion could enhance autophagy in hippocampal tissue of APP/PS1 double transgenic AD mice and reduce abnormal Aß aggregation in brain tissue, the mechanism may be related to the inhibition of mTOR/p70S6K signaling pathway.


Assuntos
Doença de Alzheimer , Moxibustão , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/genética , Animais , Autofagia , Modelos Animais de Doenças , Hipocampo/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Transdução de Sinais , Sirolimo/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
16.
Phytomedicine ; 107: 154425, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36137328

RESUMO

BACKGROUND: Shenfu decoction (SFD) is a classic Chinese medicine prescription that has a strong cardiotonic effect. The combination of ginseng (the dried root of Panax ginseng C. A. Meyer) and Fuzi (processed product of sub-root of Aconitum carmichaeli Debx), the main constituents of SFD, has been reported to improve the pharmacological effect of each other. Moreover, research has shown that the main active components of SFD, ginseng total saponins (GTS) and Fuzi total alkaloids (FTA), have antidepressant activity. However, the effects of these ingredients on depressive-like behavior induced by ovariectomy, a model of menopausal depression, have not been studied. PURPOSE: Our research aims to elucidate the antidepressant-like effects of GTS and FTA compatibility (GF) in ovariectomized mice and the potential mechanisms. METHODS: To elucidate the antidepressant-like effects of GF in mice in ovariectomy condition, behavioral tests were performed after 7 days of intragastric administration of different doses of GF. Underlying molecular mechanisms of CREB-BDNF, BDNF-mTORC1 and autophagy signaling were detected by western blotting, serum metabolites were examined by UPLC-QE plus-MS and dendritic spine density was determined by Golgi-Cox staining. RESULTS: GF remarkably decreased the immobility time in the forced swim test. GF also increased levels of pCREB/CREB, BDNF, Akt, mTORC1 and p62 in the prefrontal cortex and hippocampus, as well as decreased LC3-II/LC3-I in the prefrontal cortex and hippocampus of ovariectomized mice. Furthermore, 15 serum differential metabolites (9 of which are lipids and lipid molecules) were identified by metabonomics. Next, the antidepressant-like effects of GF was blocked by rapamycin, an inhibitor of mTORC1. The antidepressant actions of GF on levels of pCREB, mTORC1, LC3-Ⅱ/LC3-Ⅰ and p62 in the prefrontal cortex and the levels of BDNF, Akt, mTORC1 and p62 in the hippocampus were inhibited by rapamycin, and the dendritic spines density was also regulated. CONCLUSION: GF has antidepressant effects in ovariectomized mice, and like other antidepressants, these effects involve activation of BDNF-mTORC1, autophagy regulation and consequent effects on hippocampal synaptic plasticity. Moreover, metabolomic results suggest that GF also has effects on peripheral lipid profiles that may provide potential biomarkers for these antidepressant-like effects. These results indicate that GF is worthy of further exploration as a promising pharmaceutical treatment for depression. This study provides a new direction for the development of new indications for traditional Chinese medicine compounds.


Assuntos
Alcaloides , Panax , Saponinas , Alcaloides/farmacologia , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Autofagia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cardiotônicos/farmacologia , Depressão/metabolismo , Diterpenos , Medicamentos de Ervas Chinesas , Feminino , Hipocampo , Lipídeos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Redes e Vias Metabólicas , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/metabolismo , Saponinas/farmacologia , Sirolimo/farmacologia
17.
Zhen Ci Yan Jiu ; 47(9): 769-77, 2022 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-36153451

RESUMO

OBJECTIVE: To observe the effect of heat-reinforcing needling on the expression of serum inflammatory factors and autophagy of knee synovial tissue in rheumatoid arthritis (RA) rabbits with cold syndrome, so as to explore its mechanism of anti-inflammatory in the treatment of RA. METHODS: Fifty rabbits were randomly divided into normal, model, heat-reinforcing needling, inhibitor and agonist groups (n=10 rabbits in each group). The model of RA with cold syndrome was established by Freund's adjuvant and ovalbumin mixed solution injection combined with freezing and wind-cold dampness method. Heat-reinforcing needling was applied at "Zusanli" (ST36) for 30 min, once a day for 14 days. Rabbits of the inhibitor and agonist groups were given intraperitoneally injected with autophagy inhibitor 3-methyladenine (3-MA) or autophagy agonist rapamycin, once every 2 days for 7 days. The knee circumference and skin temperature of the rabbits in each group were measured. Color doppler ultrasonography was applied to examine the synovial membrane, joint effusion and blood flow signals in the knee joints of the rabbits in each group. Serum tumor necrosis factor (TNF) -α, interleukin (IL)-1ß, IL-6 and C-creactive protein (CRP) were detected by ELISA. Transmission electron microscopy was applied to observe the ultrastructure and autophagosomes of synovial cells. The protein expressions of autophagy-related protein Atg5, serine/threonine protein kinase-dysregulated 51-like kinase 1 (ULK1), microtubule-associated protein light chain 3B (LC3B), and Beclin-1 were detected by Western blot. Fluorescence quantitative PCR was used to detect the mRNA expressions of NOD-like receptor 3 (NLRP3) and nuclear factor-κB (NF-κB). RESULTS: Compared with the normal group, the circumference of the knee joint was increased (P<0.01), the skin temperature was decreased (P<0.01), the knee joint synovium was thickened and the blood flow signal was abundant, the contents of serum TNF-α, IL-1ß, IL-6, and CRP were increased (P<0.01), the protein expressions of Atg5, ULK1, Beclin-1 and LC3BⅡ/LC3BⅠof synovial tissue were significantly decreased (P<0.01), the mRNA expressions of NLRP3 and NF-κB were increased (P<0.01) in the model group. In comparison with the model and inhibitor groups, the circumference of the knee joint was decreased (P<0.01), whlie the skin temperature was increased (P<0.01), the synovial membrane became thinner and the blood flow signal was wea-kened, the contents of TNF-α, IL-1ß, IL-6 and CRP were decreased (P<0.01), the protein expressions of Atg5, ULK1, Beclin-1 and LC3B Ⅱ/LC3B Ⅰ were increased (P<0.01), and the mRNA expressions of NLRP3 and NF-κB were decreased (P<0.01) in the heat-reinforcing needling and agonist groups. CONCLUSION: Heat-reinforcing needling can alleviate the inflammatory response of the knee joint synovium in RA rabbits with cold syndrome, which may be related to its function in enhancing the autophagy activity of synovial cells and inhibiting the synthesis and release of inflammatory factors TNF-α, IL-1ß, IL-6 and CRP.


Assuntos
Artrite Reumatoide , NF-kappa B , Animais , Coelhos , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/terapia , Autofagia/genética , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , Adjuvante de Freund/metabolismo , Adjuvante de Freund/farmacologia , Temperatura Alta , Inflamação , Interleucina-6/metabolismo , Articulação do Joelho , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ovalbumina/metabolismo , Ovalbumina/farmacologia , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Serina/metabolismo , Serina/farmacologia , Sirolimo/metabolismo , Sirolimo/farmacologia , Membrana Sinovial/metabolismo , Treonina/metabolismo , Treonina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
18.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077358

RESUMO

Globally, better health care access and social conditions ensured a significant increase in the life expectancy of the population. There is, however, a clear increase in the incidence of age-related diseases which, besides affecting the social and economic sustainability of countries and regions around the globe, leads to a decrease in the individual's quality of life. There is an urgent need for interventions that can reverse, or at least prevent and delay, the age-associated pathological deterioration. Within this line, this narrative review aims to assess updated evidence that explores the potential therapeutic targets that can mimic or complement the recognized anti-aging effects of physical exercise. We considered pertinent to review the anti-aging effects of the following drugs and supplements: Rapamycin and Rapamycin analogues (Rapalogs); Metformin; 2-deoxy-D-glucose; Somatostatin analogues; Pegvisomant; Trametinib; Spermidine; Fisetin; Quercetin; Navitoclax; TA-65; Resveratrol; Melatonin; Curcumin; Rhodiola rosea and Caffeine. The current scientific evidence on the anti-aging effect of these drugs and supplements is still scarce and no recommendation of their generalized use can be made at this stage. Further studies are warranted to determine which therapies display a geroprotective effect and are capable of emulating the benefits of physical exercise.


Assuntos
Longevidade , Qualidade de Vida , Exercício Físico , Sirolimo/farmacologia
19.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4723-4732, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164880

RESUMO

Myloid beta(Aß) is produced by cleavage of amyloid precursor protein(APP), which is a main reason for Alzheimer's disease(AD) occurrence and development. This study preliminarily investigated the mechanism of Atractylodes macrocephala(AM) against AD based on LKB1-AMPK-TFEB pathway. The effect of AM on memory ability of AD transgenic Caenorhabditis elegans CL2241 was detected, and then the APP plasmid was transiently transferred to mouse neuroblastoma(N2 a) cells in vitro. The mice were divided into the blank control group, APP group(model group), positive control group(100 µmol·L~(-1) rapamycin), and AM low-, medium-and high-dose groups(100, 200 and 300 µg·mL~(-1)). The content of Aß_(1-42) in cell medium, the protein level of APP, the fluorescence intensity of APP, the transcriptional activity of transcription factor EB(TFEB), the activity of lysosomes in autophagy, and autophagy flux were determined by enzyme-linked immunosorbent assay(ELISA), Western blot, fluorescence microscope, luciferase reporter gene assay, RLuc-LC3 wt/RLuc-LC3 G120 A, and mRFP-GFP-LC3, respectively. The protein expression of TFEB, LC3Ⅱ, LC3Ⅰ, LAMP2, Beclin1, LKB1, p-AMPK and p-ACC was detected by Western blot. Immunofluorescence and reverse transcription-polymerase chain reaction(RT-PCR) were used to detect the fluorescence intensity of TFEB and the mRNA expression of TFEB and downstream target genes, respectively. The results showed that AM reduced the chemotactic index of transgenic C. elegans CL2241, and decreased the content of Aß in the supernatant of cell culture medium at different concentrations. In addition, AM lowered the protein level of APP and the fluorescence intensity of APP in a dose-dependent manner. Transcriptional activity of TFEB and fluorescence intensity of mRFP-GFP-LC3 plasmid were enhanced after AM treatment, and the value of RLuc-LC3 wt/RLuc-LC3 G120 A was reduced. AM promoted the protein levels of TFEB, LAMP2 and Beclin1 at different concentrations, and increased the protein expression ratio of LC3Ⅱ/LC3Ⅰ in a dose-dependent manner. Immunofluorescence results revealed that AM improved the fluorescence intensity and nuclear expression of TFEB, and RT-PCR results indicated that AM of various concentrations elevated the mRNA expression of TFEB in APP transfected N2 a cells and promoted the transcription level of LAMP2 in a dose-dependent manner, and high-concentration AM also increased the mRNA levels of LC3 and P62. The protein levels of LKB1, p-AMPK and p-ACC were elevated by AM of different concentrations. In summary, AM regulating lysophagy and degrading APP are related to the activation of LKB1-AMPK-TFEB pathway.


Assuntos
Doença de Alzheimer , Atractylodes , Autofagia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Atractylodes/química , Autofagia/efeitos dos fármacos , Proteína Beclina-1/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Macroautofagia , Camundongos , RNA Mensageiro , Sirolimo/farmacologia
20.
Phytomedicine ; 106: 154406, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029643

RESUMO

BACKGROUND: Pancreatic cancer has been characterized by poor prognosis, early metastasis and dissatisfactory treatment outcome. The high basal level of autophagy in tumor cells leads to chemoresistance and tumor progression. Thus, it is imminent to explore novel effective chemotherapeutic adjuvants to increase patients' survival rate. Isoliquiritigenin (ISL) is a bioactive flavonoid obtained from the Traditional Chinese herbal medicine Glycyrrhiza glabra, and it possesses a broad range of pharmacological effects. In this study, the anti-cancer effect of ISL in pancreatic cancer treatment and the underlying mechanism are investigated. METHODS: MTT assay, colony formation and EdU analysis were performed to explore the growth inhibition of ISL on pancreatic cancer cells. Apoptosis were analyzed using TUNEL and flow cytometry. The formations of autophagosomes were analyzed by immunofluorescence microscopy and transmission electron microscopy. RFP-GFP-LC3B probe was applied to detect the autophagy flux. To assess the structural interaction of ISL with p38 protein, molecular docking assays were performed. The molecular mechanism was elucidated by using western immunoblotting. Subsequently, the inhibition of ISL on tumor growth was determined in vivo using pancreatic tumor mice model. RESULTS: ISL inhibited pancreatic cancer cell growth and induced apoptosis, both in vitro and in vivo. ISL caused accumulation of autophagosome through blockade of late stage autophagic flux. Moreover, autophagy inducer rapamycin enhanced ISL-evoked cell growth inhibition and promoted apoptosis, while inhibition of autophagosome formation by siAtg5 attenuated ISL-induced apoptosis. It is remarkable that ISL synergistically sensitized the cytotoxic effect of gemcitabine and 5-fluorouracil on pancreatic cancer cells as both drugs induced autophagy. Molecular docking analysis has indicated that ISL acted by direct targeting of p38 MAPK, which was confirmed by ISL-induced phosphorylation of p38. The autophagy flux induced by p38 inhibitor SB203580 was blocked by ISL, with further increasing toxicity of ISL in pancreatic cancer cells. CONCLUSION: The results have revealed that ISL inhibited pancreatic cancer progression by blockade of autophagy through p38 MAPK signaling.


Assuntos
Chalconas , Medicamentos de Ervas Chinesas , Neoplasias Pancreáticas , Animais , Apoptose , Autofagia , Linhagem Celular Tumoral , Chalconas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Fluoruracila/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Sirolimo/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA