Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chin J Nat Med ; 21(11): 812-829, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38035937

RESUMO

Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic ß cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Morus , Camundongos , Animais , Tecido Adiposo Marrom , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Morus/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Estudos Prospectivos , Transdução de Sinais , Tecido Adiposo Branco , Folhas de Planta , Proteína Desacopladora 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
2.
Altern Ther Health Med ; 29(8): 156-165, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37535922

RESUMO

Objective: Diabetic retinopathy (DR), characterized by neuronal damage in the retina, is primarily driven by oxidative stress resulting from diabetes (DM). This study investigated the potential effects of methylene blue (MB) on streptozotocin (STZ)-induced DR. Methods: A rat model of DR was established via STZ injection, while a cell model was created using high-glucose (HG) exposure of human retinal microvascular endothelial cells. Evaluation of oxidative stress markers, pro-inflammatory cytokines, and pro-apoptotic proteins was performed based on their expression profiles in human retinal microvascular endothelial cells. Results: MB treatment significantly upregulated the expression of sirtuin 1 (SIRT1), which was found to be downregulated in the retinal tissues of STZ-treated rats and HG-exposed human retinal microvascular endothelial cells, as determined by polymerase chain reaction (PCR). Furthermore, MB therapy effectively suppressed STZ-induced oxidative stress, inflammation, and cell death. Consistent with the in vivo findings, MB activated the expression of SIRT1, thereby protecting HG-treated human retinal microvascular endothelial cells against oxidative stress, inflammation, and apoptosis. Conclusion: These results support the conclusion that MB mitigates DR by activating SIRT1, leading to a reduction of inflammation, apoptosis, and oxidative stress.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Ratos , Humanos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Azul de Metileno/efeitos adversos , Azul de Metileno/metabolismo , Células Endoteliais/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , Estresse Oxidativo/fisiologia , Inflamação/tratamento farmacológico , Apoptose
3.
Arch Gerontol Geriatr ; 112: 105035, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37075585

RESUMO

OBJECTIVES: The aim of this study was to investigate how melatonin administration affects retinal oxidative damage and retinal SIRT1 gene activation in diabetic elderly female rat model. METHODS: 16-months-old female rats were used in the study. A total of 24 rats were divided into 4 groups in equal numbers: Group 1. Control, Group 2. Control + Melatonin, Group 3. Diabetes, Group 4. Diabetes + Melatonin. In group 3 and 4 rats, diabetes was induced by intraperitoneal (IP) injection of streptozotocin. Groups 2 and 4 were given ip melatonin for 4 weeks. SIRT-1 gene expression was determined by PCR method and GSH and MDA levels by ELISA in retinal tissue samples taken from animals sacrificed under general anesthesia. RESULTS: In our study, the highest retinal SIRT1 expression values were obtained in the diabetes + melatonin (G4) group. The retinal SIRT1 expression values of the diabetes group (G3) were lower than group 4 and higher than the general control (G1) and control + melatonin (G2) groups. Again in our study, the highest retinal MDA values were obtained in the diabetes group (G3). The highest retinal GSH values were obtained in the Diabetes + melatonin group (G4). CONCLUSION: The results of our study showed that melatonin supplementation has a protective effect on retinal tissue in a diabetic elderly female rat model. This protective effect of melatonin supplementation occurs by increasing both retinal antioxidant activity and retinal SIRT1 gene expression.


Assuntos
Diabetes Mellitus Experimental , Melatonina , Humanos , Ratos , Feminino , Animais , Melatonina/farmacologia , Melatonina/uso terapêutico , Estreptozocina/farmacologia , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Diabetes Mellitus Experimental/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo/fisiologia
4.
Cell Biochem Biophys ; 80(3): 579-589, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35907080

RESUMO

It was the aim of this study to determine whether abdominal massage reverses high-fat diet-induced insulin resistance compared with RSV treatment. A total of sixty male Sprague-Dawley rats were randomly placed in one of four groups:the non-fat diet (NFD), the high-fat diet (HFD), the HFD with abdominal massage (HFD+ AM), and the HFD plus resveratrol (HFD+ RSV). For eight weeks, rats were fed high-fat diets to create insulin resistance, followed by six weeks of either AM or RSV. Molecular mechanisms of adipogenesis and cytokine production in rats with high-fat diets were investigated. The model rat adipose tissue showed significant improvements in obesity, glucose intolerance, and the accumulation of lipid in the body [the total cholesterol level (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)], metabolic effects of glucose [The fasting blood glucose (FBG), Fasting insulin levels (FINS)], inflammatory status [interleukin-6 (IL-6) and tumor necrosis factor (TNF)-α, C-reactive protein (CRP)], and macrophage polarization after AM or RSV treatment. Further, AM increased SIRT1/NF-κB signaling in rat adipose tissue. Accordingly, in rat adipose tissue, our results indicate that AM regulates the secretion of proinflammatory cytokines, blood sugar levels, and related signaling pathways, contributing to improvement of IR, which may serves as a new therapeutic approach for the treatment for IR.


Assuntos
Resistência à Insulina , Insulina , Tecido Adiposo/patologia , Animais , Proteína C-Reativa/metabolismo , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Massagem , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Sirtuína 1/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
5.
Mil Med Res ; 9(1): 23, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35614465

RESUMO

BACKGROUND: LncRNA AK044604 (regulator of insulin sensitivity and autophagy, Risa) and autophagy-related factors Sirt1 and GSK3ß play important roles in diabetic nephropathy (DN). In this study, we sought to explore the effect of Risa on Sirt1/GSK3ß-induced podocyte injury. METHODS: Diabetic db/db mice received Risa-inhibition adeno-associated virus (AAV) via tail vein injection, and intraperitoneal injection of lithium chloride (LiCl). Blood, urine, and kidney tissue samples were collected and analyzed at different time points. Immortalized mouse podocyte cells (MPCs) were cultured and treated with Risa-inhibition lentivirus (LV), EX-527, and LiCl. MPCs were collected under different stimulations as noted. The effects of Risa on podocyte autophagy were examined by qRT-PCR, Western blotting analysis, transmission electron microscopy, Periodic Acid-Schiff staining, and immunofluorescence staining. RESULTS: Risa and activated GSK3ß were overexpressed, but Sirt1 was downregulated in DN mice and high glucose-treated MPCs (P < 0.001, db/m vs. db/db, NG or HM vs. HG), which was correlated with poor prognosis. Risa overexpression attenuated Sirt1-mediated downstream autophagy levels and aggravated podocyte injury by inhibiting the expression of Sirt1 (P < 0.001, db/m vs. db/db, NG or HM vs. HG). In contrast, Risa suppression enhanced Sirt1-induced autophagy and attenuated podocyte injury, which could be abrogated by EX-527 (P < 0.001, db/db + Risa-AAV vs. db/db, HG + Risa-LV vs. HG). Furthermore, LiCl treatment could restore GSK3ß-mediated autophagy of podocytes (P < 0.001, db/db + LiCl vs. db/db, HG + LiCl vs. HG), suggesting that Risa overexpression aggravated podocyte injury by decreasing autophagy. CONCLUSION: Risa could inhibit autophagy by regulating the Sirt1/GSK3ß axis, thereby aggravating podocyte injury in DN. Risa may serve as a therapeutic target for the treatment of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Glicogênio Sintase Quinase 3 beta , Podócitos , RNA Longo não Codificante , Sirtuína 1 , Animais , Autofagia/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Regulação para Baixo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Camundongos , Podócitos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia
6.
Curr Stem Cell Res Ther ; 17(8): 756-771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34493197

RESUMO

Neuronal damage or degeneration is the main feature of neurological diseases. Regulation of neurogenesis and neuronal differentiation is important in developing therapies to promote neuronal regeneration or synaptic network reconstruction. Neurogenesis is a multistage process in which neurons are generated and integrated into existing neuronal circuits. Neuronal differentiation is extremely complex because it can occur in different cell types and can be caused by a variety of inducers. Recently, natural compounds that induce neurogenesis and neuronal differentiation have attracted extensive attention. In this paper, the potential neural induction effects of medicinal plant-derived natural compounds on neural stem/progenitor cells (NS/PCs), the cultured neuronal cells, and mesenchymal stem cells (MSCs) are reviewed. The natural compounds that are efficacious in inducing neurogenesis and neuronal differentiation include phenolic acids, polyphenols, flavonoids, glucosides, alkaloids, terpenoids, quinones, coumarins, and others. They exert neural induction effects by regulating signal factors and cellspecific genes involved in the process of neurogenesis and neuronal differentiation, including specific proteins (ß-tubulin III, MAP-2, tau, nestin, neurofilaments, GFAP, GAP-43, NSE), related genes and proteins (STAT3, Hes1, Mash1, NeuroD1, notch, cyclin D1, SIRT1, Reggie-1), transcription factors (CREB, Nkx-2.5, Ngn1), neurotrophins (BDNF, NGF, NT-3), and signaling pathways (JAK/STAT, Wnt/ß-catenin, MAPK, PI3K/Akt, GSK-3ß/ß-catenin, Ca2+/CaMKII/ATF1, Nrf2/HO-1, BMP).The natural compounds with neural induction effects are of great value for neuronal regenerative medicine and provide promising prevention and treatment strategies for neurological diseases.


Assuntos
Ciclina D1 , beta Catenina , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Diferenciação Celular/fisiologia , Cumarínicos/farmacologia , Ciclina D1/farmacologia , Proteína GAP-43/farmacologia , Glucosídeos/farmacologia , Glicogênio Sintase Quinase 3 beta/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/farmacologia , Fator de Crescimento Neural/farmacologia , Nestina , Neurogênese/fisiologia , Fosfatidilinositol 3-Quinases , Polifenóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Quinonas/farmacologia , Sirtuína 1/farmacologia , Terpenos/farmacologia , Tubulina (Proteína) , beta Catenina/metabolismo
7.
Arthritis Res Ther ; 17: 253, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26373839

RESUMO

INTRODUCTION: Nutrient deprivation is a likely contributor to intervertebral disc (IVD) degeneration. Silent mating type information regulator 2 homolog 1 (SIRT1) protects cells against limited nutrition by modulation of apoptosis and autophagy. However, little evidence exists regarding the extent to which SIRT1 affects IVD cells. Therefore, we conducted an in vitro study using human IVD nucleus pulposus (NP) cells. METHODS: Thirty-two IVD specimens were obtained from patients who underwent surgical intervention and were categorized based on Pfirrmann IVD degeneration grades. Cells were isolated from the NP and cultured in the presence of recombinant human SIRT1 (rhSIRT1) under different serum conditions, including 10 % (v/v) fetal bovine serum (FBS) as normal nutrition (N) and 1 % (v/v) FBS as low nutrition (LN). 3-Methyladenine (3-MA) was used to inhibit autophagy. Autophagic activity was assessed by measuring the absorbance of monodansylcadaverine and immunostaining and Western blotting for light chain 3 and p62/SQSTM1. Apoptosis and pathway analyses were performed by flow cytometry and Western blotting. RESULTS: Cells cultured under LN conditions decreased in number and exhibited enhanced autophagy compared with the N condition. Medium supplementation with rhSIRT1 inhibited this decrease in cell number and induced an additional increase in autophagic activity (P < 0.05), whereas the combined use of rhSIRT1 and 3-MA resulted in drastic decreases in cell number and autophagy (P < 0.05). The incidence of apoptotic cell death increased under the LN condition, which was decreased by rhSIRT1 (P < 0.05) but increased further by a combination of rhSIRT1 and 3-MA (P < 0.05). Under LN conditions, NP cells showed a decrease in antiapoptotic Bcl-2 and an increase in proapoptotic Bax, cleaved caspase 3, and cleaved caspase 9, indicating apoptosis induction via the mitochondrial pathway. These changes were suppressed by rhSIRT1 but elevated further by rhSIRT1 with 3-MA, suggesting an effect of rhSIRT1-induced autophagy on apoptosis inhibition. Furthermore, the observed autophagy and apoptosis were more remarkable in cells from IVDs of Pfirrmann grade IV than in those from IVDs of Pfirrmann grade II. CONCLUSIONS: SIRT1 protects against nutrient deprivation-induced mitochondrial apoptosis through autophagy induction in human IVD NP cells, suggesting that rhSIRT1 may be a potent treatment agent for human degenerative IVD disease.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Meios de Cultura/farmacologia , Disco Intervertebral/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Sirtuína 1/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Caspases/metabolismo , Bovinos , Células Cultivadas , Criança , Meios de Cultura/química , Feminino , Sangue Fetal/química , Humanos , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sirtuína 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA