Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Elife ; 122024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650461

RESUMO

Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Transportadores de Ácidos Monocarboxílicos , Serina , Serina/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Humanos , Rim/metabolismo , Camundongos , Sódio/metabolismo , Transporte Biológico , Masculino
2.
Int Immunopharmacol ; 119: 110216, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37116342

RESUMO

BACKGROUND: Oral lichen planus (OLP) is a chronic inflammatory disease characterized by T cell infiltration at lesion sites. T cell migration is greatly facilitated by chemokines produced by epithelial cells. Studies have noted the potential role of glutamine uptake in OLP and other inflammatory diseases. Here, we investigated the effect of altered glutamine uptake of epithelial cells on T cell infiltration and its underlying mechanisms in OLP. METHODS: Immunohistochemistry was used to identify the expressions of glutamine transporter alanine-serine-cysteine transporter 2 (ASCT2) and C-C motif chemokine ligand 5 (CCL5) in oral tissues of OLP and healthy controls. Human gingival epithelial cells (HGECs) were treated with glutamine deprivation and ASCT2 inhibiter GPNA respectively to detect the expressions of CCL5 and its related signaling molecules. Additionally, we had determined the impact of epithelial cell-derived CCL5 on T-cell migration using a co-culture system in vitro. RESULTS: ASCT2 and CCL5 expressions in OLP were significantly higher than healthy controls and positively correlated with the density of inflammatory infiltrations. Glutamine supplement significantly increased CCL5 production in HGECs, which was effectively inhibited by GPNA. Besides, glutamine could inhibit reactive oxygen species (ROS) production to activate the signal transducer and activator of transcription 3 (STAT3) causing higher expression level of CCL5 in HGECs. Simultaneously, T cell migration could be blocked by anti-CCL5 neutralizing antibody and STAT3 inhibitor stattic in the co-culture system. CONCLUSION: The upregulated ASCT2-mediated glutamine uptake in epithelial cells promotes CCL5 production via ROS-STAT3 signaling, which boosts the T-cell infiltration in OLP lesion.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Líquen Plano Bucal , Linfócitos T , Humanos , Células Epiteliais/metabolismo , Glutamina/metabolismo , Ligantes , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo , Quimiocina CCL5/metabolismo
3.
Oxid Med Cell Longev ; 2022: 3403009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262284

RESUMO

Ionizing radiation-derived oxidative stress and ferroptosis are one of the most important biological effects on destroying the liver tumor, whereas radioresistance of liver tumor remains a leading cause of radiotherapy (RT) failure mainly because of the protective antiferroptosis, in which oxidative stress and subsequent lipid peroxidation are the key initiators. Thus, it is of great importance to overcome ferroptosis resistance to improve the therapeutic efficacy of RT in liver tumor patients. Irradiation-resistant HepG2 cells (HepG2-IRR) were established by long-term exposure to X-ray (2 to 8 Gy), and targeted metabolomics analysis revealed an obvious increase in intracellular amino acids in HepG2-IRR cells upon ferroptosis stress. Among these amino acids with obvious changes, N-acetylglutamine, a derivative of glutamine, is essential for the redox homeostasis and progression of tumor cells. Interestingly, the treatment of glutamine starvation could promote the ferroptosis effect significantly, whereas glutamine supplementation reversed the ferroptosis effect completely. Consistent with the changes in amino acids pattern, the glutamine transporter SLC1A5 was verified in liver tumor samples from TCGA training and validation cohorts as an independent prognostic amino acid-ferroptosis gene (AFG). A risk score for screening prognosis based on the SLC1A5, SLC7A11, ASNS, and TXNRD1 demonstrated that a high-risk score was correlated with poor survival. In vitro studies had shown that the knockdown of SLC1A5 resulted in a significant decrease in cell viability and promoted lipid peroxidation and oxidative damage introduced by irradiation (10 Gy). Collectively, our findings indicated that SLC1A5 may act as a suppressor gene against ferroptosis and can be a potential target for ionizing radiation mediated effects.


Assuntos
Ferroptose , Neoplasias Hepáticas , Humanos , Glutamina/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Estresse Oxidativo , Radiação Ionizante
4.
J Biochem Mol Toxicol ; 36(11): e23192, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35929395

RESUMO

To investigate the potential antitumor activity of synthetic triterpenoid, methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) in pancreatic ductal adenocarcinoma (PDAC), MTT cytotoxicity assay, and xenograft nude mice assay were performed to evaluate tumor growth in vitro and in vivo. Seahorse XFe96 bioenergetics analyzer was applied to determine aerobic glycolysis and mitochondrial respiration. Western blot and quantitative reverse transcription-polymerase chain reactions are used to detect protein and messenger RNA transcripts of SLC1A5 and metabolic enzymes. We confirmed the strong antitumor activity of CDDO-Me in suppressing PDAC growth. Mechanistically, we demonstrated CDDO-Me induced mitochondrial respiration and aerobic glycolysis dysfunction. We also verified CDDO-Me downregulated glutamine transporter SLC1A5, resulting in excessive reactive oxygen species (ROS) levels that suppressed tumor growth. Moreover, we confirmed that SLC1A5 depletion reduced the ratio of glutathione/oxidized glutathione. We also found CDDO-Me could inhibit N-linked glycosylation of SLC1A5, which promotes protease-mediated degradation. Finally, we confirmed SLC1A5 was significantly overexpressed in PDAC and closely correlated with the poor prognosis of PDAC patients. Our work uncovers CDDO-Me is effective at suppressing PDAC cell growth in vitro and in vivo and illuminates CDDO-Me caused excessive ROS and cellular bioenergetics disruption which contributed to CDDO-Me inhibited PDAC growth. Our data highlights CDDO-Me could be considered a potential compound for PDAC therapy, and SLC1A5 could be a novel biomarker for PDAC patients.


Assuntos
Adenocarcinoma , Ácido Oleanólico , Neoplasias Pancreáticas , Triterpenos , Camundongos , Animais , Humanos , Triterpenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Apoptose , Ácido Oleanólico/farmacologia , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/farmacologia , Sistema ASC de Transporte de Aminoácidos/metabolismo , Neoplasias Pancreáticas
5.
J Ethnopharmacol ; 270: 113776, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33421597

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: After cerebral ischemia/reperfusion injury, pro-inflammatory M1 and anti-inflammatory M2 phenotypes of microglia are involved in neuroinflammation, in which activation of NLRP3 inflammasome and subsequent pyroptosis play essential roles. Salvianolic Acids for Injection (SAFI) is Chinese medicine injection which composed of multiple phenolic acids extracted from Radix Salviae Miltiorrhizae, and has been reported to generate neuroprotective effects after cerebral ischemic insult in clinical and animal studies. AIM OF THE STUDY: The present study was designed to investigate whether SAFI exerts neuroprotective effects by switching microglial phenotype and inhibiting NLRP3 inflammasome/pyroptosis axis in microglia. MATERIALS AND METHODS: The middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats and oxygen-glucose deprivation/reoxygenation (OGD/R) model in co-cultured primary neurons and primary microglia were utilized. The neuroprotective effect of SAFI was evaluated through measuring neurological deficit scores, neuropathological changes, inflammatory factors, cell phenotype markers, and related proteins of NLRP3 inflammasome/pyroptosis axis. RESULTS: The results showed that SAFI treatment was able to: (1) produce a significant increase in neurological deficit scores and decrease in infarct volumes, and alleviate histological injury and neuronal apoptosis in cerebral cortex in MCAO/R model; (2) increase neuronal viability and reduce neuronal apoptosis in the OGD model; (3) reshape microglial polarization patterns from M1-like phenotype to M2-like phenotype; (4) inhibit the activation of the NLRP3 inflammasome and the expression of proteins related to NLRP3 inflammasome/pyroptosis axis in vivo and in vitro. CONCLUSION: These findings indicate that SAFI exert neuroprotective effect, probably via reducing neuronal apoptosis, switching microglial phenotype from M1 towards M2, and inhibiting NLRP3 inflammasome/pyroptosis axis in microglia.


Assuntos
Alcenos/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Polifenóis/farmacologia , Piroptose/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 1/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Injeções Intraperitoneais , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Ligação a Fosfato/antagonistas & inibidores , Proteínas de Ligação a Fosfato/genética , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo
6.
Mol Imaging Biol ; 21(6): 1117-1126, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30850970

RESUMO

PURPOSE: This study aims to explore whether 4-(2S,4R)-[18F]fluoroglutamine (4-[18F]FGln) positron emission tomography (PET) imaging is helpful in identifying and monitoring MYCN-amplified neuroblastoma by enhanced glutamine metabolism. PROCEDURES: Cell uptake studies and dynamic small-animal PET studies of 4-[18F]FGln and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) were conducted in human MYCN-amplified (IMR-32 and SK-N-BE (2) cells) and non-MYCN-amplified (SH-SY5Y cell) neuroblastoma cells and animal models. Subsequently, short hairpin RNA (shRNA) knockdown of alanine-serine-cysteine transporter 2 (ASCT2/SLC1A5) in IMR-32 cells and xenografts were investigated in vitro and in vivo. Western blot (WB), real-time polymerase chain reaction (RT-PCR), and immunofluorescence (IF) assays were used to measure the prevalence of ASCT2, Ki-67, and c-Caspase 3, respectively. RESULTS: IMR-32 and SK-N-BE (2) cells showed high glutamine uptake in vitro (31.6 ± 1.7 and 21.6 ± 6.6 %ID/100 µg). In the in vivo study, 4-[18F]FGln was localized in IMR-32, SK-N-BE (2), and SH-SY5Y tumors with a high uptake (6.6 ± 0.3, 5.6 ± 0.2, and 3.7 ± 0.1 %ID/g). The maximum uptake (tumor-to-muscle, T/M) of the IMR-32 and SK-N-BE (2) tumors (3.71 and 2.63) was significantly higher than that of SH-SY5Y (1.54) tumors (P < 0.001, P < 0.001). The maximum uptake of 4-[18F]FGln in IMR-32 and SK-N-BE (2) tumors was 2.3-fold and 2.1-fold higher than that of [18F]FDG, respectively. Furthermore, in the in vitro and in vivo studies, the maximum uptake of 4-[18F]FGln in shASCT2-IMR-32 cells and tumors was 2.1-fold and 2.5-fold lower than that of the shControl-IMR-32. No significant difference in [18F]FDG uptake was found between shASCT2-IMR-32 and shControl-IMR-32 cells and tumors. CONCLUSION: 4-[18F]FGln PET can provide a valuable clinical tool in the assessment of metabolic glutamine uptake in MYCN-amplified neuroblastoma. ASCT2-targeted therapy may provide a supplementary method in MYCN-amplified neuroblastoma treatment.


Assuntos
Fluordesoxiglucose F18/química , Amplificação de Genes , Glutamina/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/metabolismo , Tomografia por Emissão de Pósitrons , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Fluordesoxiglucose F18/farmacocinética , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Antígenos de Histocompatibilidade Menor/metabolismo , Neuroblastoma/genética , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Phytomedicine ; 57: 117-128, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30668314

RESUMO

BACKGROUND: Topotecan (TPT) is a Topo I inhibitor and shows obvious anti-cancer effects on gastric cancer. Cancer cells reprogram their metabolic pathways to increase nutrients uptake, which has already been a hallmark of cancer. But the effect of TPT on metabolism in gastric cancer remains unknown. PURPOSE: To investigate the effect of TPT on metabolism in gastric cancer. METHODS: ATP production was measured by ATP Assay kit. Glucose and glutamine uptake were measured by Glucose (HK) Assay Kit and Glutamine/Glutamate Determination Kit respectively. To detect glutathione (GSH) concentration and reactive oxygen species (ROS) generation, GSH and GSSG Assay Kit and ROS Assay Kit were adopted. Apoptosis rates, mitochondrial membrane potential (MMP) were determined by flow cytometry and protein levels were analyzed by immumohistochemical staining and western blotting. RESULTS: TPT increased ATP production. TPT promoted glucose uptake possibly via up-regulation of hexokinase 2 (HK2) or glucose transporter 1 (GLUT1) expression, while decreased glutamine uptake by down-regulation of ASCT2 expression. ASCT2 inhibitor GPNA and ASCT2 knockdown significantly suppressed the growth of gastric cancer cells. Inhibition of ASCT2 reduced glutamine uptake which led to decreased production of GSH and increased ROS level. ASCT2 knockdown induced apoptosis via the mitochondrial pathway and weakened anti-cancer effect of TPT. CONCLUSION: TPT inhibits glutamine uptake via down-regulation of ASCT2 which causes oxidative stress and induces apoptosis through the mitochondrial pathway. Moreover, TPT inhibits proliferation partially via ASCT2. These observations reveal a previously undescribed mechanism of ASCT2 regulated gastric cancer proliferation and demonstrate ASCT2 is a potential anti-cancer target of TPT.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Antineoplásicos/farmacologia , Antígenos de Histocompatibilidade Menor/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Topotecan/farmacologia , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Glutationa/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Antígenos de Histocompatibilidade Menor/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia
8.
Gastroenterology ; 156(4): 1098-1111, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30452920

RESUMO

BACKGROUND & AIMS: Activating transcription factor 4 (ATF4) regulates genes involved in the inflammatory response, amino acid metabolism, autophagy, and endoplasmic reticulum stress. We investigated whether its activity is altered in patients with inflammatory bowel diseases (IBDs) and mice with enterocolitis. METHODS: We obtained biopsy samples during endoscopy from inflamed and/or uninflamed regions of the colon from 21 patients with active Crohn's disease (CD), 22 patients with active ulcerative colitis (UC), and 38 control individuals without IBD and of the ileum from 19 patients with active CD and 8 individuals without IBD in China. Mice with disruption of Atf4 specifically in intestinal epithelial cells (Atf4ΔIEC mice) and Atf4-floxed mice (controls) were given dextran sodium sulfate (DSS) to induce colitis. Some mice were given injections of recombinant defensin α1 (DEFA1) and supplementation of l-alanyl-glutamine or glutamine in drinking water. Human and mouse ileal and colon tissues were analyzed by quantitative real-time polymerase chain reaction, immunoblots, and immunohistochemistry. Serum and intestinal epithelial cell (IEC) amino acids were measured by high-performance liquid chromatography-tandem mass spectrometry. Levels of ATF4 were knocked down in IEC-18 cells with small interfering RNAs. Microbiomes were analyzed in ileal feces from mice by using 16S ribosomal DNA sequencing. RESULTS: Levels of ATF4 were significantly decreased in inflamed intestinal mucosa from patients with active CD or active UC compared with those from uninflamed regions or intestinal mucosa from control individuals. ATF4 was also decreased in colonic epithelia from mice with colitis vs mice without colitis. Atf4ΔIEC mice developed spontaneous enterocolitis and colitis of greater severity than control mice after administration of DSS. Atf4ΔIEC mice had decreased serum levels of glutamine and reduced levels of antimicrobial peptides, such as Defa1, Defa4, Defa5, Camp, and Lyz1, in ileal Paneth cells. Atf4ΔIEC mice had alterations in ileal microbiomes compared with control mice; these changes were reversed by administration of glutamine. Injections of DEFA1 reduced the severity of spontaneous enteritis and DSS-induced colitis in Atf4ΔIEC mice. We found that expression of solute carrier family 1 member 5 (SLC1A5), a glutamine transporter, was directly regulated by ATF4 in cell lines. Overexpression of SLC1A5 in IEC-18 or primary IEC cells increased glutamine uptake and expression of antimicrobial peptides. Knockdown of ATF4 in IEC-18 cells increased expression of inflammatory cytokines, whereas overexpression of SLC1A5 in the knockdown cells reduced cytokine expression. Levels of SLC1A5 were decreased in inflamed intestinal mucosa of patients with CD and UC and correlated with levels of ATF4. CONCLUSIONS: Levels of ATF4 are decreased in inflamed intestinal mucosa from patients with active CD or UC. In mice, ATF4 deficiency reduces glutamine uptake by intestinal epithelial cells and expression of antimicrobial peptides by decreasing transcription of Slc1a5. ATF4 might therefore be a target for the treatment of IBD.


Assuntos
Fator 4 Ativador da Transcrição/deficiência , Peptídeos Catiônicos Antimicrobianos/metabolismo , Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Glutamina/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Adolescente , Adulto , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Estudos de Casos e Controles , Linhagem Celular , Colite/induzido quimicamente , Colite/metabolismo , Colite Ulcerativa/sangue , Colite Ulcerativa/patologia , Colo/citologia , Colo/metabolismo , Doença de Crohn/sangue , Doença de Crohn/patologia , Células Epiteliais , Feminino , Técnicas de Silenciamento de Genes , Glutamina/sangue , Glutamina/farmacologia , Humanos , Íleo/citologia , Íleo/metabolismo , Íleo/microbiologia , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Microbiota/efeitos dos fármacos , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Celulas de Paneth/metabolismo , Adulto Jovem
9.
Nat Genet ; 49(8): 1192-1201, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628108

RESUMO

Few monogenic causes for severe manifestations of common allergic diseases have been identified. Through next-generation sequencing on a cohort of patients with severe atopic dermatitis with and without comorbid infections, we found eight individuals, from four families, with novel heterozygous mutations in CARD11, which encodes a scaffolding protein involved in lymphocyte receptor signaling. Disease improved over time in most patients. Transfection of mutant CARD11 expression constructs into T cell lines demonstrated both loss-of-function and dominant-interfering activity upon antigen receptor-induced activation of nuclear factor-κB and mammalian target of rapamycin complex 1 (mTORC1). Patient T cells had similar defects, as well as low production of the cytokine interferon-γ (IFN-γ). The mTORC1 and IFN-γ production defects were partially rescued by supplementation with glutamine, which requires CARD11 for import into T cells. Our findings indicate that a single hypomorphic mutation in CARD11 can cause potentially correctable cellular defects that lead to atopic dermatitis.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Dermatite Atópica/genética , Mutação em Linhagem Germinativa , Guanilato Ciclase/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Estudos de Coortes , Análise Mutacional de DNA , Dermatite Atópica/imunologia , Feminino , Genes Dominantes , Glutamina/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Antígenos de Histocompatibilidade Menor/metabolismo , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Linhagem , Linfócitos T/imunologia , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
Mol Imaging Biol ; 19(3): 421-428, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27770401

RESUMO

PURPOSE: This study aimed to study whether cancer cells possess distinguishing metabolic features compared with surrounding normal cells, such as increased glutamine uptake. Given this, quantitative measures of glutamine uptake may reflect critical processes in oncology. Approximately, 10 % of patients with colorectal cancer (CRC) express BRAF V600E , which may be actionable with selective BRAF inhibitors or in combination with inhibitors of complementary signaling axes. Non-invasive and quantitative predictive measures of response to these targeted therapies remain poorly developed in this setting. The primary objective of this study was to explore 4-[18F]fluoroglutamine (4-[18F]F-GLN) positron emission tomography (PET) to predict response to BRAFV600E-targeted therapy in preclinical models of colon cancer. PROCEDURES: Tumor microarrays from patients with primary human colon cancers (n = 115) and CRC liver metastases (n = 111) were used to evaluate the prevalence of ASCT2, the primary glutamine transporter in oncology, by immunohistochemistry. Subsequently, 4-[18F]F-GLN PET was evaluated in mouse models of human BRAF V600E -expressing and BRAF wild-type CRC. RESULTS: Approximately 70 % of primary colon cancers and 53 % of metastases exhibited positive ASCT2 immunoreactivity, suggesting that [18F]4-F-GLN PET could be applicable to a majority of patients with colon cancer. ASCT2 expression was not associated selectively with the expression of mutant BRAF. Decreased 4-[18F]F-GLN predicted pharmacological response to single-agent BRAF and combination BRAF and PI3K/mTOR inhibition in BRAF V600E -mutant Colo-205 tumors. In contrast, a similar decrease was not observed in BRAF wild-type HCT-116 tumors, a setting where BRAFV600E-targeted therapies are ineffective. CONCLUSIONS: 4-[18F]F-GLN PET selectively reflected pharmacodynamic response to BRAF inhibition when compared with 2-deoxy-2[18F]fluoro-D-glucose PET, which was decreased non-specifically for all treated cohorts, regardless of downstream pathway inhibition. These findings illustrate the utility of non-invasive PET imaging measures of glutamine uptake to selectively predict response to BRAF-targeted therapy in colon cancer and may suggest further opportunities to inform colon cancer clinical trials using targeted therapies against MAPK activation.


Assuntos
Glutamina/química , Mutação/genética , Tomografia por Emissão de Pósitrons , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Humanos , Neoplasias Hepáticas/secundário , Camundongos Nus , Antígenos de Histocompatibilidade Menor/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Cell Physiol ; 214(3): 645-54, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17960566

RESUMO

Cationic amino acid transport in primary cultured rat pneumocytes exhibiting characteristics of alveolar epithelial type I-like cells are described. Asymmetry and activator ion dependency of (3)H-L-arginine uptake were characterized from the apical or basolateral fluid of pneumocytes grown on permeable support. Substrate specificity of transport was evaluated as a function of (3)H-L-arginine uptake inhibition in the presence of other amino acids. Transepithelial transport studies estimated (3)H-L-arginine flux in the apical-to-basolateral and basolateral-to-apical directions. Full length cDNA of rat amino acid transporter B(0,+) (rATB(0,+)) was cloned and its relative expression level studied. Results indicate that uptake of (3)H-L-arginine from apical fluid is dependent on Na(+) and Cl(-). Zwitterionic and cationic amino acids (excluding L-proline and anionic amino acids) inhibited uptake of (3)H-L-arginine from apical, but not basolateral incubation fluid. Apical-to-basolateral transepithelial flux of (3)H-L-arginine was 20x higher than basolateral-to-apical transport. Kinetic studies of (3)H-L-arginine uptake from apical fluid revealed maximal velocity (V(max)) and Michaelis-Menten constants (K(t)) of 33.32 +/- 2.12 pmol/mg protein/15 min and 0.50 +/- 0.11 mM, respectively, in a cooperative process having a coupling ratio of 1.18 +/- 0.16 with Na(+) and 1.11 +/- 0.13 with Cl(-). Expression of rATB(0,+) mRNA was identified by RT-PCR and Northern analysis. Corresponding cloned 3.2 kb rATB(0,+) cDNA sequence exhibits pronounced homology in deduced amino acid sequence to mouse (95% identity and 97% similarity) and human (89% identity and 95% similarity) ATB(0,+) homologues. We conclude that rat pneumocytes express ATB(0,+), which may partly contribute towards recovering cationic and neutral amino acids from alveolar luminal fluid.


Assuntos
Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Sequência de Aminoácidos , Sistema ASC de Transporte de Aminoácidos/química , Animais , Arginina/metabolismo , Transporte Biológico , Células Cultivadas , Cloretos , Clonagem Molecular , DNA Complementar/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Cinética , Masculino , Dados de Sequência Molecular , Proteínas de Transporte de Neurotransmissores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sódio , Especificidade por Substrato , Fatores de Tempo , Trítio/metabolismo
12.
FASEB J ; 20(14): 2544-6, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17065219

RESUMO

Carnitine transporters have recently been implicated in susceptibility to inflammatory bowel disease (IBD). Because carnitine is required for beta-oxidation, it was suggested that decreased carnitine transporters, and hence reduced carnitine uptake, could lead to impaired fatty acid oxidation in intestinal epithelial cells, and to cell injury. We investigated this issue by examining the expression of the carnitine transporters OCTN2 and ATB0+, and butyrate metabolism in colonocytes in a rat model of IBD induced by trinitrobenzene sulfonic acid (TNBS). We found that Octn2 and Atb0+ expression was decreased in inflammatory samples at translational and functional level. Butyrate oxidation, evaluated based on CO2 production and acetyl-coenzyme A synthesis, was deranged in colonocytes from TNBS-treated rats. Treatment with carnitine-loaded liposomes corrected the butyrate metabolic alterations in vitro and reduced the severity of colitis in vivo. These results suggest that carnitine depletion in colonocytes is associated with the inability of mitochondria to maintain normal butyrate beta-oxidation. Our data indicate that carnitine is a rate-limiting factor for the maintenance of physiological butyrate oxidation in colonic cells. This hypothesis could also explain the contradictory therapeutic efficacy of butyrate supplementation observed in clinical trials of IBD.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Carnitina/metabolismo , Colite/metabolismo , Proteínas de Transporte de Neurotransmissores/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Ácido Butírico/metabolismo , Colite/induzido quimicamente , Lipossomos/química , Lipossomos/metabolismo , Dados de Sequência Molecular , Proteínas de Transporte de Neurotransmissores/química , Proteínas de Transporte de Neurotransmissores/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Ratos , Ratos Wistar , Membro 5 da Família 22 de Carreadores de Soluto , Ácido Trinitrobenzenossulfônico/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA