Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Dev Comp Immunol ; 82: 104-112, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29341872

RESUMO

It is well known that iron is an essential element for all living organism. The intracellular iron availability is also important for the host's innate immune response to various pathogens, in which the iron homeostasis can be regulated by ferritin due to its iron storage property. In this study, a full-length cDNA sequence of ferritin (named as CqFerritin) was identified with 1410 bp from red claw crayfish Cherax quadricarinatus, which contained an open reading frame of 513 bp, encoding 170 amino acids with a conserved ferritin domain. Tissue distribution analysis demonstrated that CqFerritin was widely expressed in various tissues with high presence in haemocyte, haematopoietic tissue (Hpt) and heart, while lowest expression in hepatopancreas. In addition, loss-of-function of CqFerritin by gene silencing resulted in significantly higher expression of an envelope protein VP28 of white spot syndrome virus (WSSV) in red claw crayfish Hpt cell cultures, indicating the potential antiviral response of CqFerritin. To further explore the effect on WSSV replication by CqFerritin, recombinant CqFerritin protein (rCqFerritin) was transfected into Hpt cells followed by WSSV infection. Importantly, the replication of WSSV was obviously decreased in Hpt cells if transfected with rCqFerritin protein, suggesting that CqFerritin had clearly negative effect on WSSV infection. Furthermore, intracellular accumulation of iron ions was found to promote the WSSV replication in a dose-dependent manner, illustrating that the iron level regulated by CqFerritin was likely to be vital for WSSV infection in red claw crayfish. Taken together, these data suggest that CqFerritin plays an important role in immune defense against WSSV infection in a crustacean C. quadricarinatus.


Assuntos
Proteínas de Artrópodes/metabolismo , Astacoidea/imunologia , Infecções por Vírus de DNA/imunologia , Ferritinas/metabolismo , Sistema Hematopoético/metabolismo , Ferro/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Proteínas de Artrópodes/genética , Astacoidea/virologia , Células Cultivadas , Clonagem Molecular , DNA Complementar/genética , Ferritinas/genética , Imunidade Inata , Transporte de Íons , Miocárdio/metabolismo , Replicação Viral
2.
Free Radic Res ; 49(3): 317-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25564093

RESUMO

This study is aimed at the development of a safe radioprotective formulation to minimize human sufferings during accidental nuclear exposures. In the current study, a combination of three active principles, namely podophyllotoxin, podophyllotoxin beta-D-glucoside, and rutin (G-002M), isolated from Podophyllum hexandrum rhizomes, has been evaluated for its radioprotective potential and mode of action. Total body protection studies have demonstrated that a single prophylactic dose of G-002M delivered more than 85% survival in mice exposed to a lethal (9 Gy) dose of gamma radiation, and significantly protected the radiosensitive hematopoietic and gastrointestinal organs. Studies have also revealed a reduction in free radical generation, lipid peroxidation, protein carbonylation, and cell death in mouse intestine after G-002M treatment, while GSH was observed to be enhanced in the same tissue. Redox-sensitive transcription factor (Nrf2) activation and subsequent upregulation of heme oxygenase-1 (HO-1) and SOD-1 revealed the cytoprotective role of G-002M. A histological examination of the jejunum pretreated with the formulation also demonstrated less damage to the villi, crypts, and the mucosal layers. These observations reiterated that the reduction in the ROS levels, protection of cellular macromolecules, and activation of the antioxidant signaling pathway may have been the principle factors involved in G-002M- mediated protection against radiation-induced tissue impairment. The potentially safe and effective radioprotective characteristics of this new combination are encouraging for further studies for human application.


Assuntos
Trato Gastrointestinal/efeitos da radiação , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Podofilotoxina/farmacologia , Protetores contra Radiação/farmacologia , Rutina/farmacologia , Irradiação Corporal Total , Animais , Raios gama , Trato Gastrointestinal/efeitos dos fármacos , Sistema Hematopoético/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Podofilotoxina/análogos & derivados , Podophyllum/química , Transdução de Sinais/efeitos dos fármacos
3.
J Appl Toxicol ; 34(1): 76-86, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161408

RESUMO

The aim of this work was to delineate the effects of chronic ingestion of strontium 90 ((90) Sr) at low concentrations on the hematopoiesis and the bone physiology. A mouse model was used for that purpose. Parent animals ingested water containing 20 kBq l(-1) of (90) Sr two weeks before mating. Offspring were then continuously contaminated with (90) Sr through placental transfer during fetal life, through lactation after birth and through drinking water after weaning. At various ages between birth and 20 weeks, animals were tested for hematopoietic parameters such as blood cell counts, colony forming cells in spleen and bone marrow and cytokine concentrations in the plasma. However, we did not find any modification in (90) Sr ingesting animals as compared with control animals. By contrast, the analysis of bone physiology showed a modification of gene expression towards bone resorption. This was confirmed by an increase in C-telopeptide of collagen in the plasma of (90) Sr ingesting animals as compared with control animals. This modification in bone metabolism was not linked to a modification of the phosphocalcic homeostasis, as measured by calcium, phosphorus, vitamin D and parathyroid hormone in the blood. Overall these results suggest that the chronic ingestion of (90) Sr at low concentration in the long term may induce modifications in bone metabolism but not in hematopoiesis.


Assuntos
Osso e Ossos/efeitos dos fármacos , Sistema Hematopoético/efeitos dos fármacos , Estrôncio/administração & dosagem , Estrôncio/toxicidade , Animais , Contagem de Células Sanguíneas , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Osso e Ossos/metabolismo , Cálcio/sangue , Colágeno Tipo I/sangue , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica , Sistema Hematopoético/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Hormônio Paratireóideo/sangue , Peptídeos/sangue , Fenótipo , Fósforo/sangue , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo , Vitamina D/sangue
4.
J Exp Med ; 210(11): 2465-76, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24062413

RESUMO

NOD2 functions as an intracellular sensor for microbial pathogen and plays an important role in epithelial defense. The loss-of-function mutation of NOD2 is strongly associated with human Crohn's disease (CD). However, the mechanisms of how NOD2 maintains the intestinal homeostasis and regulates the susceptibility of CD are still unclear. Here we found that the numbers of intestinal intraepithelial lymphocytes (IELs) were reduced significantly in Nod2(-/-) mice and the residual IELs displayed reduced proliferation and increased apoptosis. Further study showed that NOD2 signaling maintained IELs via recognition of gut microbiota and IL-15 production. Notably, recovery of IELs by adoptive transfer could reduce the susceptibility of Nod2(-/-) mice to the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Our results demonstrate that recognition of gut microbiota by NOD2 is important to maintain the homeostasis of IELs and provide a clue that may link NOD2 variation to the impaired innate immunity and higher susceptibility in CD.


Assuntos
Epitélio/imunologia , Homeostase , Intestinos/imunologia , Intestinos/microbiologia , Linfócitos/metabolismo , Microbiota , Proteína Adaptadora de Sinalização NOD2/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Suplementos Nutricionais , Suscetibilidade a Doenças , Epitélio/efeitos dos fármacos , Epitélio/patologia , Sistema Hematopoético/efeitos dos fármacos , Sistema Hematopoético/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Interleucina-15/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/patologia , Linfócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Proteína Adaptadora de Sinalização NOD2/deficiência , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Baço/citologia , Timo/citologia , Ácido Trinitrobenzenossulfônico
5.
Br J Haematol ; 152(3): 307-21, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21155757

RESUMO

Infant leukaemia is an embryonal disease in which the underlying MLL translocations initiate in utero. Zebrafish offer unique potential to understand how MLL impacts haematopoiesis from the earliest embryonic timepoints and how translocations cause leukaemia as an embryonal process. In this study, a zebrafish mll cDNA syntenic to human MLL spanning the 5' to 3' UTRs, was cloned from embryos, and mll expression was characterized over the zebrafish lifespan. The protein encoded by the 35-exon ORF exhibited 46·4% overall identity to human MLL and 68-100% conservation in functional domains (AT-hooks, SNL, CXXC, PHD, bromodomain, FYRN, taspase1 sites, FYRC, SET). Maternally supplied transcripts were detected at 0-2 hpf. Strong ubiquitous early zygotic expression progressed to a cephalo-caudal gradient during later embryogenesis. mll was expressed in the intermediate cell mass (ICM) where primitive erythrocytes are produced and in the kidney where definitive haematopoiesis occurs in adults. mll exhibits high cross species conservation, is developmentally regulated in haematopoietic and other tissues and is expressed from the earliest embryonic timepoints throughout the zebrafish lifespan. Haematopoietic tissue expression validates using zebrafish for MLL haematopoiesis and leukaemia models.


Assuntos
Sistema Hematopoético/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Peixe-Zebra/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Biologia Computacional , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/fisiologia , Humanos , Dados de Sequência Molecular , Proteína de Leucina Linfoide-Mieloide/genética , Fases de Leitura Aberta , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Especificidade da Espécie , Peixe-Zebra/genética
6.
Immunol Rev ; 224: 44-57, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18759919

RESUMO

Numerous autoimmune and inflammatory disorders stem from the dysregulation of hematopoietic cell activation. The activity of inositol lipid and protein tyrosine phosphatases, and the receptors that recruit them, is critical for prevention of these disorders. Balanced signaling by inhibitory and activating receptors is now recognized to be an important factor in tuning cell function and inflammatory potential. In this review, we provide an overview of current knowledge of membrane proximal events in signaling by inhibitory/regulatory receptors focusing on structural and functional characteristics of receptors and their effectors Src homology 2 (SH2) domain-containing tyrosine phosphatase 1 and SH2 domain-containing inositol 5-phosphatase-1. We review use of new strategies to identify novel regulatory receptors and effectors. Finally, we discuss complementary actions of paired inhibitory and activating receptors, using Fc gammaRIIA and Fc gammaRIIB regulation human basophil activation as a prototype.


Assuntos
Basófilos/metabolismo , Retroalimentação Fisiológica/imunologia , Receptores de IgG/metabolismo , Transdução de Sinais/imunologia , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Basófilos/imunologia , Sistema Hematopoético/citologia , Sistema Hematopoético/imunologia , Sistema Hematopoético/metabolismo , Humanos , Inositol Polifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/imunologia , Monoéster Fosfórico Hidrolases/metabolismo , Ligação Proteica , Proteínas Tirosina Fosfatases/metabolismo , Agregação de Receptores/imunologia , Receptores de IgG/química , Receptores de IgG/imunologia , Relação Estrutura-Atividade , Domínios de Homologia de src
7.
Proc Natl Acad Sci U S A ; 102(52): 19069-74, 2005 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-16354839

RESUMO

Global expression profiles of a consecutive series of 121 childhood acute leukemias (87 B lineage acute lymphoblastic leukemias, 11 T cell acute lymphoblastic leukemias, and 23 acute myeloid leukemias), six normal bone marrows, and 10 normal hematopoietic subpopulations of different lineages and maturations were ascertained by using 27K cDNA microarrays. Unsupervised analyses revealed segregation according to lineages and primary genetic changes, i.e., TCF3(E2A)/PBX1, IGH@/MYC, ETV6(TEL)/RUNX1(AML1), 11q23/MLL, and hyperdiploidy (>50 chromosomes). Supervised discriminatory analyses were used to identify differentially expressed genes correlating with lineage and primary genetic change. The gene-expression profiles of normal hematopoietic cells were also studied. By using principal component analyses (PCA), a differentiation axis was exposed, reflecting lineages and maturation stages of normal hematopoietic cells. By applying the three principal components obtained from PCA of the normal cells on the leukemic samples, similarities between malignant and normal cell lineages and maturations were investigated. Apart from showing that leukemias segregate according to lineage and genetic subtype, we provide an extensive study of the genes correlating with primary genetic changes. We also investigated the expression pattern of these genes in normal hematopoietic cells of different lineages and maturations, identifying genes preferentially expressed by the leukemic cells, suggesting an ectopic activation of a large number of genes, likely to reflect regulatory networks of pathogenetic importance that also may provide attractive targets for future directed therapies.


Assuntos
Regulação Neoplásica da Expressão Gênica , Leucemia/genética , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Linhagem Celular , Linhagem da Célula , Aberrações Cromossômicas , Análise por Conglomerados , DNA Complementar/metabolismo , Regulação da Expressão Gênica , Genes Neoplásicos , Hematopoese , Células-Tronco Hematopoéticas/citologia , Sistema Hematopoético/metabolismo , Humanos , Leucemia/metabolismo , Leucemia Mieloide Aguda/genética , Modelos Genéticos , Proteína de Leucina Linfoide-Mieloide , Análise de Sequência com Séries de Oligonucleotídeos , Ploidias , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Análise de Componente Principal , Fatores de Transcrição/química
8.
Blood ; 87(2): 630-41, 1996 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-8555485

RESUMO

An early step in the formation of the extraembryonic and intraembryonic vasculature is endothelial cell differentiation and organization in blood islands and vascular structures. This involves the expression and function of specific adhesive molecules at cell-to-cell junctions. Previous work showed that endothelial cells express a cell-specific cadherin (vascular endothelial [VE]-cadherin, or 7B4/cadherin-5) that is organized at cell-to-cell contacts in cultured cells and is able to promote intercellular adhesion. In this study, we investigated whether VE-cadherin could be involved in early cardiovascular development in the mouse embryo. We first cloned and sequenced the mouse VE-cadherin cDNA. At the protein level, murine VE-cadherin presented 75% identity (90%, considering conservative amino acid substitutions) with the human homologue. Transfection of murine VE-cadherin cDNA in L cells induced Ca(++)-dependent cell-to-cell aggregation and reduced cell detachment from monolayers. In situ hybridization of adult tissues showed that the murine molecule is specifically expressed by endothelial cells. In mouse embryos, VE-cadherin transcripts were detected at the very earliest stages of vascular development (E7.5) in mesodermal cells of the yolk sac mesenchyme. At E9.5, expression of VE-cadherin was restricted to the peripheral cell layer of blood islands that gives rise to endothelial cells. Hematopoietic cells in the center of blood islands were not labeled. At later embryonic stages, VE-cadherin transcripts were detected in vascular structures of all organs examined, eg, in the ventricle of the heart, the inner cell lining of the atrium and the dorsal aorta, in intersomitic vessels, and in the capillaries of the developing brain. A comparison with flk-1 expression during brain angiogenesis revealed that brain capillaries expressed relatively low amounts of VE-cadherin. In the adult brain, the level of VE-cadherin transcript was further reduced. By immunohistochemistry, murine VE-cadherin protein was detected at cell-to-cell junctions of endothelial cells. Overall, these data demonstrate that VE-cadherin is an early, constitutive, and specific marker of endothelial cells. This distinguishes this molecule from other cadherins and suggests that its expression is associated with the early assembly of vascular structures.


Assuntos
Caderinas/genética , Sistema Cardiovascular/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Sequência de Aminoácidos , Animais , Antígenos CD , Biomarcadores , Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Caderinas/biossíntese , Cálcio/metabolismo , Adesão Celular , Agregação Celular , Movimento Celular , Células Cultivadas , Clonagem Molecular , DNA Complementar/genética , Endotélio Vascular/embriologia , Endotélio Vascular/metabolismo , Coração Fetal/metabolismo , Sistema Hematopoético/embriologia , Sistema Hematopoético/metabolismo , Humanos , Junções Intercelulares/metabolismo , Células L , Camundongos , Dados de Sequência Molecular , Neovascularização Fisiológica/fisiologia , Especificidade de Órgãos , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Transfecção
9.
Acta Haematol ; 89(2): 57-60, 1993.
Artigo em Inglês | MEDLINE | ID: mdl-8503244

RESUMO

Based on the mode of action of iron chelators, one might expect a decrease in bone marrow iron availability, resulting in worsening of the anaemia in certain types of iron-loading anaemia. However, improvement of anaemia or reduction in transfusion requirements during chelation treatment has been reported in various types of iron-loading anaemia. It is suggested that iron chelators act as mediators facilitating iron release from storage sites and its delivery to haematopoietic tissues. In addition, a reduction of iron stores may upregulate erythropoietin response and bring about a decrease of disease activity in inflammatory disorders, resulting in a haemoglobin rise. Large trials with (oral) iron chelators are required to verify these possible effects.


Assuntos
Anemia/tratamento farmacológico , Terapia por Quelação , Eritropoese/efeitos dos fármacos , Eritropoetina/metabolismo , Sistema Hematopoético/efeitos dos fármacos , Quelantes de Ferro/uso terapêutico , Ferro/metabolismo , Anemia/metabolismo , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Avaliação de Medicamentos , Eritropoetina/uso terapêutico , Sistema Hematopoético/metabolismo , Humanos , Proteínas Recombinantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA