Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Rev. neurol. (Ed. impr.) ; 64(2): 85-90, 16 ene., 2017. ilus
Artigo em Espanhol | IBECS | ID: ibc-159430

RESUMO

Introducción. Todos los días, millones de profesionales utilizan un sinfín de palabras técnicas para referirse a las distintas estructuras que se hallan dentro del cráneo, pero pocos sabrían explicar su procedencia. En este trabajo se indaga sobre el origen etimológico de algunos de estos términos neuroanatómicos. Desarrollo. Se realiza un recorrido etimológico por el sistema nervioso central; recorrido que no pretende ser una revisión exhaustiva y pormenorizada de los términos actualmente en uso, sino familiarizar al lector con el pasado lingüístico de palabras como cerebro, hipocampo, tálamo, claustro, fórnix, cuerpo calloso o sistema límbico. Todas ellas provienen del griego o del latín, durante siglos las lenguas francas de la ciencia. También se analiza la evolución de la palabra meninges, originalmente de procedencia grecolatina, si bien los usos actuales derivan del árabe. Conclusiones. Los términos neuroanatómicos que se utilizan hoy en día no proceden de palabras que asocien una determinada estructura encefálica con su función, sino de palabras que reflejan la similitud formal o conceptual entre una estructura y una entidad familiar o cotidiana (por ejemplo, un objeto o una parte del cuerpo humano). En otros casos, estas palabras indican la ubicación espacial de la estructura neuroanatómica respecto a un tercero, o bien son términos derivados de personajes de la mitología grecolatina (AU)


Introduction. Every day millions of professionals use a countless number of technical words to refer to the different structures inside the skull. But few of them would know how to explain their origin. In this study we take an in-depth look into the etymological origins of some of these neuroanatomical terms. Development. The study takes an etymological tour of the central nervous system. It is in no way meant to be an exhaustive, detailed review of the terms currently in use, but instead a means to familiarise the reader with the linguistic past of words like brain, hippocampus, thalamus, claustrum, fornix, corpus callosum or limbic system. All of them come from either Greek or Latin, which were used for centuries as the lingua francas of science. The study also analyses the evolution of the word meninges, originally of Greco-Latin origin, although its current usages derive from Arabic. Conclusions. The neuroanatomical terms that are in use today do not come from words that associate a particular brain structure with its function, but instead from words that reflect the formal or conceptual similarity between a structure and a familiar or everyday entity (for example, an object or a part of the human body). In other cases, these words indicate the spatial location of the neuroanatomical structure with respect to a third, or they may be terms derived from characters in Greco-Latin mythology (AU)


Assuntos
Humanos , Neuroanatomia , Sistema Nervoso Central/anatomia & histologia , Cérebro/anatomia & histologia , Encéfalo/anatomia & histologia , Cerebelo/anatomia & histologia , Tálamo/anatomia & histologia , Terminologia como Assunto , Mitologia
4.
PLoS Pathog ; 9(2): e1003169, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23468621

RESUMO

Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R-silenced worms also display an increase in migration rate. This work demonstrates that Gp-flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR.


Assuntos
FMRFamida/genética , Inativação Gênica , Proteínas de Helminto/genética , Receptores Acoplados a Proteínas G/genética , Solanum tuberosum/parasitologia , Tylenchoidea/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/metabolismo , FMRFamida/metabolismo , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Patógeno/genética , Ligantes , Moduladores de Transporte de Membrana/metabolismo , Dados de Sequência Molecular , Movimento , Doenças das Plantas/parasitologia , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Solanum tuberosum/metabolismo
5.
Biol Aujourdhui ; 205(3): 179-97, 2011.
Artigo em Francês | MEDLINE | ID: mdl-21982406

RESUMO

Accumulating evidence renders the dogma obsolete according to which the structural organization of the brain would remain essentially stable in adulthood, changing only in response to a need for compensatory processes during increasing age and degeneration. It has indeed become clear from investigations on various models that the adult nervous system can adapt to physiological demands by altering reversibly its synaptic circuits. This potential for structural and functional modifications results not only from the plastic properties of neurons but also from the inherent capacity of the glial cellular components to undergo remodeling as well. This is currently known for astrocytes, the major glial cells in brain which are well-recognized as dynamic partners in the mechanisms of synaptic transmission, and for the tanycytes and pituicytes which contribute to the regulation of neurosecretory processes in neurohemal regions of the hypothalamus. Studies on the neuroendocrine hypothalamus, whose role is central in homeostatic regulations, have gained good insights into the spectacular neuronal-glial rearrangements that may subserve functional plasticity in the adult brain. Following pioneering works on the morphological reorganizations taking place in the hypothalamo-neurohypophyseal system under certain physiological conditions such as dehydration and lactation, studies on the gonadotropic system that orchestrates reproductive functions have re-emphasized the dynamic interplay between neurons and glia in brain structural plasticity processes. This review summarizes the major contributions provided by these researches in the field and also addresses the question of the morphological rearrangements that occur on a 24-h basis in the central component of the circadian clock responsible for the temporal aspects of endocrine regulations. Taken together, the reviewed data highlight the close cooperation between neurons and glia in developing strategies for functional adaptation of the brain to the changing conditions of the internal and external environment.


Assuntos
Sistema Nervoso Central/anatomia & histologia , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Plasticidade Neuronal , Adaptação Fisiológica , Animais , Astrócitos/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Ritmo Circadiano/fisiologia , Ciclo Estral/fisiologia , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/ultraestrutura , Luz , Ciclo Menstrual/fisiologia , Modelos Neurológicos , Molécula L1 de Adesão de Célula Nervosa/fisiologia , Neurônios/fisiologia , Ovário/metabolismo , Estações do Ano , Ácidos Siálicos/fisiologia , Núcleo Supraquiasmático/fisiologia , Núcleo Supraquiasmático/efeitos da radiação , Sinapses/ultraestrutura
6.
Pesqui. vet. bras ; 31(1): 59-64, 2011.
Artigo em Português | LILACS | ID: lil-587961

RESUMO

Surtos de uma doença neurológica com sinais cerebelares ocorreram em três fazendas da região Agreste do Estado de Pernambuco. A morbidade foi de 3 a 25%, a mortalidade variou de 0 a 20% e a letalidade foi de 0 a 60%. Uma planta que predominava nos pastos das fazendas foi identificada como Solanum paniculatum. Os sinais clínicos apresentados foram de crises periódicas caracterizadas por incoordenação, extensão da cabeça e pescoço, ataxia, hipermetria, tremores de intenção, nistagmo e quedas. As crises eram induzidas pelo teste de levantar a cabeça ou quando os animais eram assustados ou quando aplicado o teste de levantar a cabeça. Alguns animais apresentaram sinais permanentes com alterações posturais, tremores de intenção, andar cambaleante com os membros em abdução e perda progressiva de peso. De dois bovinos que foram necropsiados, um apresentava diminuição de tamanho do cerebelo com marcada atrofia da substância cinzenta. Histologicamente, um dos bovinos apresentou vacuolização fina do pericário das células de Purkinje do cerebelo com marginalização do núcleo. Em algumas áreas havia perda de neurônios de Purkinje com proliferação de astrócitos de Bergmann. Degeneração do tipo Walleriana, com esferoides axonais e vacúolos, alguns contendo macrófagos, foi observada na camada granular do cerebelo, substância branca cerebelar e medula cerebelar. Neurônios vacuolizados e esferóides axonais foram observados também no núcleo gracilis. Em outro bovino com sinais permanentes, que permaneceu por aproximadamente 10 meses sem ter acesso a S. paniculatum, observou-se ausência quase total de células de Purkinje. Havia severa depleção das camadas granular e molecular que se encontravam marcadamente diminuídas de espessura e com rarefação do neurópilo e menor número de células. Considerando que se desconhece o princípio ativo de S. paniculatum e que a planta é largamente utilizada como planta medicinal é necessário alertar para os riscos de intoxicação em humanos.


Outbreaks of a disease of the nervous system are reported in cattle in three farms in the Agreste region of the state of Pernambuco. Morbidity, mortality and fatality rates varied from 3 to 25%, 0 to 20% and 0 to 60%, respectively. A weed found in large amounts in the pastures was identified as Solanum paniculatum. Clinical signs were characterized by transitory, periodic attacks with loss of balance, incoordinated gait, neck and head extension, hypermetria, intention tremors, nystagmus, and falls. The attacks were induced when the animals were disturbed or by the application of the head raising test. Two cows showed permanent signs including ataxia, abnormal posture, staggering gait with limbs in abduction, intention tremors, hypermetria, and progressive weight loss. Histological lesions in one cow were fine vacuolation of the cerebellar Purkinje neurons with marginalization of the nucleus. Loss of Purkinje neurons with proliferation of Bergmann astrocytes and Wallerian degeneration with axonal spheroids in the granular layer and cerebellar white matter were also observed. Neuronal vacuolation and axonal spheroids were observed in the gracillis nucleus. In one cow that stayed for approximately 10 months in an area free of S. paniculatum with permanent signs, there was a severe depletion of Purkinje neurons in the cerebellum. The granular and molecular layers were reduced and depleted of cells. Considering that the toxic compound of S. paniculatum is unknown, and that the plant is largely used as a medical plant, it is necessary to take into account the risk of human poisoning.


Assuntos
Animais , Bovinos/classificação , Intoxicação/veterinária , Solanum/toxicidade , Doenças por Armazenamento dos Lisossomos/complicações , Plantas Tóxicas/toxicidade , Sistema Nervoso Central/anatomia & histologia
7.
J Chem Neuroanat ; 38(3): 185-96, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19505570

RESUMO

Oestrogen is considered beneficial to cardiovascular health through protective effects not only on the heart and vasculature, but also on the autonomic nervous system via actions on oestrogen receptors. A plethora of evidence supports a role for the hormone within the central nervous system in modulating the pathways regulating cardiovascular function. A complex interaction of several brainstem, spinal and forebrain nuclei is required to receive, integrate and co-ordinate inputs that contribute appropriate autonomic reflex responses to changes in blood pressure and other cardiovascular parameters. Central effects of oestrogen and oestrogen receptors have already been demonstrated in many of these areas. In addition to the classical nuclear oestrogen receptors (ERalpha and ERbeta) a recently discovered G-protein coupled receptor, GPR30, has been shown to be a novel mediator of oestrogenic action. Many anatomical and molecular studies have described a considerable overlap in the regional expression of these receptors; however, the receptors do exhibit specific characteristics and subtype specific expression is found in many autonomic brain areas, for example ERbeta appears to predominate in the hypothalamic paraventricular nucleus, whilst ERalpha is important in the nucleus of the solitary tract. This review provides an overview of the available information on the localisation of oestrogen receptor subtypes and their multitude of possible modulatory actions in different groups of neurochemically and functionally defined neurones in autonomic-related areas of the brain.


Assuntos
Vias Autônomas/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Sistema Nervoso Central/fisiologia , Receptores de Estrogênio/fisiologia , Animais , Vias Autônomas/anatomia & histologia , Sistema Nervoso Central/anatomia & histologia , Estrogênios/fisiologia , Humanos , Hipotálamo/anatomia & histologia , Hipotálamo/fisiologia , Neurotransmissores/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Núcleo Solitário/anatomia & histologia , Núcleo Solitário/fisiologia
9.
Neurochem Res ; 32(7): 1224-37, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17404838

RESUMO

MHP-133 is one of a novel series of compounds designed to target multiple brain substrates expected to have synergistic actions in the treatment of cognitive and neurodegenerative disorders such as Alzheimer's disease. The strategy was to develop compounds with multiple targets relevant for enhancing cognition and memory, but avoiding the serious side effects attributed to high potency cholinergic agonists. MHP-133 was shown to interact with subtypes of cholinergic, serotonergic, and imidazoline receptors and to weakly inhibit acetylcholinesterase activity. In vitro, the drug enhanced nerve growth factor (TrkA) receptor expression; it prevented excitotoxicity in a hippocampal slice preparation; and increased the secretion of soluble (non-toxic) amyloid precursor protein. MHP-133 also enhanced cognitive performance by rats and by non-human primate in tasks designed to assess working memory. The results of this study are consistent with the potential use of MHP-133 in the treatment of neurodegenerative disorders such as Alzheimer's disease.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Cognição/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Compostos de Piridínio/farmacologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/metabolismo , Antagonistas Colinérgicos/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Macaca mulatta , Masculino , Aprendizagem em Labirinto , Estrutura Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Células PC12 , Compostos de Piridínio/química , Compostos de Piridínio/metabolismo , Compostos de Piridínio/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptor trkA/metabolismo , Receptores de Superfície Celular/metabolismo
10.
Acta Neurol Scand ; 113(6): 370-7, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16674603

RESUMO

OBJECTIVES: Although acupuncture therapy has demonstrated itself to be effective in several clinical areas, the underlying mechanisms of acupuncture in general and the analgesic effect in particular are, however, still not clearly delineated. We, therefore, have studied acupuncture analgesic effect through fMRI and proposed a hypothesis, based on the obtained result, which will enlighten the central role of the brain in acupuncture therapy. METHODS: The proposed model, termed as a broad sense hypothalamus-pituitary-adrenal (BS-HPA) axis, was based on our observed neuroimaging results. The model incorporates the stress-induced HPA axis model together with neuro-immune interaction including the cholinergic anti-inflammatory model. RESULTS: The obtained results coupled with accumulating evidence suggest that the central nervous system is essential for the processing of these effects via its modulation of the autonomic nervous system, neuroimmune system and hormonal regulation. CONCLUSIONS: Based on our fMRI study, it appears that understanding the effects of acupuncture within a neuroscience-based framework is vital. Further, we have proposed the broad sense-HPA axis hypothesis which incorporates the experimental results.


Assuntos
Terapia por Acupuntura , Sistema Nervoso Central/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Neuroimunomodulação/fisiologia , Sistemas Neurossecretores/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Animais , Sistema Nervoso Central/anatomia & histologia , Humanos , Sistema Hipotálamo-Hipofisário/anatomia & histologia , Inflamação/imunologia , Inflamação/fisiopatologia , Modelos Neurológicos , Sistema Hipófise-Suprarrenal/anatomia & histologia , Estresse Fisiológico/imunologia , Estresse Fisiológico/fisiopatologia
11.
Acta Neurol Belg ; 105(2): 62-7, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16076058

RESUMO

Vagus nerve stimulation (VNS), already used as a treatment for refractory epilepsy, has also been assessed for its analgesic effect. Numerous studies report that electrical stimulation of vagal afferents inhibits spinal nociceptive reflexes and transmission. However, results are partly contradictory, showing that the VNS effects depend on the stimulation parameters. Clinical data have been collected from VNS-implanted epileptic patients in whom pain thresholds were measured and the VNS effect on co-existing headaches was assessed. In addition, in 2 pilot studies of a few patients, VNS was used to treat resistant chronic headaches and migraines. Taken together these clinical studies tend to confirm the analgesic effect of VNS and to suggest its potential utility in chronic headache patients. In order to better define the nature of neuronal and behavioural changes induced by VNS with devices used in humans and to determine the most adequate stimulation stimulation protocols, we have used a commercially available stimulator (NCP-Cyberonics) for prolonged VNS in rats. Our results show a clear antinociceptive effect of VNS in models of acute or inflammatory pain with different stimulation protocols including the one used in epileptic patients. Using immunocytochemical methods, we find that activity changes in spinal trigeminal nucleus neurons could underlie at least part of the VNS-induced analgesia.


Assuntos
Sistema Nervoso Central/fisiologia , Terapia por Estimulação Elétrica/tendências , Dor Intratável/terapia , Nervo Vago/fisiologia , Animais , Sistema Nervoso Central/anatomia & histologia , Ensaios Clínicos como Assunto/tendências , Terapia por Estimulação Elétrica/métodos , Eletrodos Implantados/normas , Cefaleia/terapia , Humanos , Modelos Animais , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Dor Intratável/fisiopatologia , Nervo Vago/anatomia & histologia
12.
Brain Res ; 1045(1-2): 157-63, 2005 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-15910774

RESUMO

Neuropeptide B (NPB) is a recently identified endogenous ligand for the orphan G protein-coupled receptors GPR7 and GPR8. NPB mRNA is expressed in the human, rat, and mouse brain. With the use of an antiserum directed against the rat NPB, immunoreactivity to NPB (irNPB) was detected in several discrete areas of the hypothalamus and midbrain. In the hypothalamus, irNPB cells were present in the medial preoptic area and nucleus, ventromedial preoptic nucleus, retrochiasmatic nucleus, paraventricular hypothalamic nucleus, supraoptic nucleus, accessory neurosecretory nuclei, periventricular hypothalamic nucleus, dorsomedial hypothalamic nucleus, supraoptic retrochiasmatic nucleus, lateral hypothalamic area, posterior hypothalamic area, dorsal hypothalamic area, and zona incerta. A few irNPB perikarya were noted in the arcuate nucleus, whereas a dense network of nerve fibers was present in the median eminence. In the midbrain, irNPB somata were noted in the substantia nigra (compact, reticular, medial, and lateral parts), paranigral nucleus, ventral tegmental area, interfascicular nucleus, and dorsal raphe nucleus. Neurons in the Edinger-Westphal were strongly labeled. Labeled cells were not detected in the cortex, medulla oblongata, and spinal cord; few lightly labeled cells were occasionally seen in the hippocampus. Double labeling the hypothalamic sections with NPB antiserum and vasopressin or oxytocin antibody revealed that a population of vasopressin- but not oxytocin-immunoreactive cells was irNPB. Tyrosine hydroxylase-positive neurons in the midbrain, presumably dopaminergic, were irNPB. The distribution of irNPB neurons in several areas of the hypothalamus and midbrain together with the colocalization with vasopressin or tyrosine hydroxylase suggests that the peptide may subserve neuroendocrine, autonomic, and motor functions.


Assuntos
Sistema Nervoso Central/metabolismo , Neurônios/metabolismo , Neuropeptídeos/biossíntese , Animais , Sistema Nervoso Autônomo/anatomia & histologia , Sistema Nervoso Autônomo/metabolismo , Mapeamento Encefálico , Sistema Nervoso Central/anatomia & histologia , Dopamina/metabolismo , Hipotálamo/anatomia & histologia , Hipotálamo/metabolismo , Imuno-Histoquímica , Masculino , Mesencéfalo/anatomia & histologia , Mesencéfalo/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Neuropeptídeos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Vasopressinas/metabolismo
13.
J Comp Neurol ; 484(1): 80-92, 2005 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-15717307

RESUMO

Na+-activated K+ currents (K(Na)) have been reported in multiple neuronal nuclei and the properties of K(Na) vary in different cell types. We have described previously the distribution of Slack, a Na+-activated K+ channel subunit. Another recently cloned Na+-activated K+ channel is Slick, which differs from Slack in its rapid activation and its sensitivity to intracellular ATP levels. We now report the localization of Slick in the rat central nervous system using in situ and immunohistochemical techniques. As for Slack, we find that Slick is widely distributed in the brain. Specifically, strong hybridization signals and immunoreactivity were found in the brainstem, including auditory neurons such as the medial nucleus of the trapezoid body. As has also been shown for Slack, Slick is expressed in the olfactory bulb, red nucleus, facial nucleus, pontine nucleus, oculomotor nucleus, substantia nigra, deep cerebellar nuclei, vestibular nucleus, and the thalamus. Slick mRNA and protein, however, also are found in certain neurons that do not express Slack. These neurons include those of the hippocampal CA1, CA2, and CA3 regions, the dentate gyrus, supraoptic nucleus, hypothalamus, and cortical layers II, III, and V. These data suggest that Slick may function independently of Slack in these regions. Computer simulations indicate that Slick currents can cause adaptation during prolonged stimuli. Such adaptation allows a neuron to respond to high-frequency stimulation with lower-frequency firing that remains temporally locked to individual stimuli, a property seen in many auditory neurons. Although it is not yet known if Slick and Slack subunits heteromultimerize, the existence of two genes that encode K(Na), that are widely expressed in the nervous system, with both overlapping and nonoverlapping distributions, provides the basis for the reported heterogeneity in the properties of K(Na) from various neurons.


Assuntos
Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/metabolismo , Canais de Potássio/metabolismo , Animais , Vias Auditivas/anatomia & histologia , Vias Auditivas/metabolismo , Vias Auditivas/ultraestrutura , Células CHO , Simulação por Computador , Cricetinae , DNA Complementar/genética , Nervo Facial/anatomia & histologia , Nervo Facial/metabolismo , Nervo Facial/ultraestrutura , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Cinética , Modelos Neurológicos , Neurônios/metabolismo , Neurônios/ultraestrutura , Bulbo Olfatório/metabolismo , Canais de Potássio Ativados por Sódio , Sondas RNA , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura
14.
Neuroscience ; 125(2): 441-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15062986

RESUMO

The actions of somatostatin (SST) in the nervous system are mediated by specific high affinity SST receptors (SSTR1-5). However, the role of this hormone and the distribution of its receptor subtypes have not yet been defined in neural structures of the human fetus. We have analyzed four neural tissues (CNS, hypothalamus, pituitary and spinal cord) from early to midgestation for the expression of five human SSTR mRNAs, using a reverse transcription-polymerase chain reaction and Southern blot approach. These fetal neural tissues all express mRNA for multiple SSTR subtypes from as early as 16 weeks of fetal life but the developmental patterns of expression vary considerably. Transcripts for SSTR1 and SSTR2A are the most widely distributed, being expressed in all four neural tissues. SSTR2A is often the earliest transcript to be detected (7.5 weeks in CNS). SSTR3 mRNA is confined to the pituitary, hypothalamus, and spinal cord. SSTR4 is expressed in fetal brain, hypothalamus and spinal cord but not pituitary. SSTR5 mRNA is detectable in the pituitary and spinal cord by 14-16 weeks of fetal life. This mapping of SSTR mRNA expression patterns in human fetal neural tissues is an important first step toward our goal of determining the role of SST in the nervous system during early stages in human development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/metabolismo , Hipófise/metabolismo , Receptores de Somatostatina/metabolismo , Medula Espinal/metabolismo , Feto Abortado , Southern Blotting/métodos , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/metabolismo , Idade Gestacional , Humanos , Hipotálamo/embriologia , Hipófise/embriologia , RNA Mensageiro/biossíntese , Receptores de Somatostatina/classificação , Receptores de Somatostatina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Medula Espinal/embriologia
15.
J Comp Neurol ; 468(3): 425-40, 2004 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-14681935

RESUMO

The rostral agranular insular cortex (RAIC) has recently been identified as a site where local changes in GABA and dopamine levels, or application of opioids, can alter nociceptive thresholds in awake animals. The connections of the cortex dorsal to the rhinal fissure that includes the RAIC have been examined previously, with emphasis on visceral and gustatory functions but not nociception. Here we examined the afferent and efferent connections of the RAIC with sites implicated in nociceptive processing. Sensory information from the thalamus reaches the RAIC via the submedius and central lateral nuclei and the parvicellular part of the ventral posterior nucleus. The RAIC has extensive reciprocal cortico-cortical connections with the orbital, infralimbic, and anterior cingulate cortices and with the contralateral RAIC. The amygdala, particularly the basal complex, and the nucleus accumbens are important targets of RAIC efferent fibers. Other connections include projections to lateral hypothalamus, dorsal raphe, periaqueductal gray matter, pericerulear region, rostroventral medulla, and parabrachial nuclei. The connectivity of the RAIC suggests it is involved in multiple aspects of pain behavior. Projections to the RAIC from medial thalamic nuclei are associated with motivational/affective components of pain. RAIC projections to mesolimbic/mesocortical ventral forebrain circuits are likely to participate in the sensorimotor integration of nociceptive processing, while its brainstem projections are most likely to contribute to descending pain inhibitory control.


Assuntos
Tronco Encefálico/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Sistema Límbico/anatomia & histologia , Dor , Tálamo/anatomia & histologia , Animais , Sistema Nervoso Central/anatomia & histologia , Imuno-Histoquímica , Masculino , Vias Neurais/anatomia & histologia , Dor/patologia , Ratos , Ratos Sprague-Dawley
16.
Am J Chin Med ; 31(4): 591-609, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14587882

RESUMO

The purpose of this morphological study was to investigate the relations between meridians, acupoints and viscera using neuroanatomical tracers. The labeled areas of the spinal ganglia, sympathetic chain ganglia, spinal cord and the brain projecting to the heart, Nei-Kuan (EH-6) and Shen-Men (He-7) were observed following injection of WGA-HRP and pseudorabies virus (PRV). The results were as follows. Overlapping bilaterally labeled ganglion areas after heart, Nei-Kuan (EH-6) or Shen-Men (He-7) injection of WGA-HRP were found in middle cervical, stellate and T4 sympathetic and T2-T6 spinal ganglia. In brain, labeled neurons from all three sites were found in the A1 noradrenalin cell group/C1 adrenalin cell group/caudoventrolateral reticular n., n. tractus solitarius, n. ambiguus, rostroventrolateral n., C3 adrenaline cell group, raphe obscurus n., raphe pallidus n., raphe magnus n., lateral paragigantocellular reticular n., locus coeruleus, subcoeruleus n., Kolliker-Fuse n., A5 cell group, central gray matter, paraventricular hypothalamic n. and arcuate hypothalamic n.. In conclusion, these morphological results suggest that the interrelationship of acupoints (Nei-Kuan and Shen-Men) and viscera (heart) may be related to the central autonomic centers of the spinal cord and brain.


Assuntos
Pontos de Acupuntura , Sistema Nervoso Central/anatomia & histologia , Coração/inervação , Sistema Nervoso Parassimpático/anatomia & histologia , Animais , Herpesvirus Suídeo 1 , Vias Neurais , Ratos , Ratos Sprague-Dawley
17.
Life Sci ; 72(8): 961-76, 2003 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-12493576

RESUMO

The protein kinase C (PKC) family of enzymes is broadly distributed and has been implicated in a diverse array of cellular functions. Recent evidence supporting PKC involvement in the regulation of the Limulus choline cotransporter prompted us to clone PKC from a Limulus central nervous system (CNS) cDNA library. An Aplysia californica calcium independent PKC (Apl II) cDNA probe was used to screen the library and 5' RACE SMART PCR was used to obtain the full-length sequence. The resulting cDNA, which included 5' and 3' nontranslation regions, was 4675 bp. Analysis of the encoded peptide sequence using the Swiss-prot database revealed at least 58% identity to PKC epsilon. A commercial polyclonal antibody against PKC epsilon was used in Western blots to positively label a 30 kDa protein from Limulus CNS and the expressed fusion protein of the encoded sequence. These data support the presence of a newly identified PKC-like homolog in Limulus which likely represents a PKC epsilon equivalent.


Assuntos
Encéfalo/enzimologia , Clonagem Molecular , DNA Complementar/genética , Biblioteca Gênica , Caranguejos Ferradura/fisiologia , Proteína Quinase C/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/anatomia & histologia , Sistema Nervoso Central/anatomia & histologia , Feminino , Caranguejos Ferradura/anatomia & histologia , Caranguejos Ferradura/química , Hibridização In Situ , Isoenzimas , Masculino , Dados de Sequência Molecular , Peso Molecular , Reação em Cadeia da Polimerase , Proteína Quinase C/química , Análise de Sequência de Proteína
18.
J Neurosci Methods ; 120(2): 211-223, 2002 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-12385771

RESUMO

We describe a low cost, novel virtual reality-based insect flight simulator that combines visual, olfactory and mechanosensory stimuli with multichannel neurophysiological recording techniques. Three-dimensional visual environments were created using customized modifications of a first person flight simulator computer game. Experiments could be performed in open-loop, where the flying insect's movement through the environment is 'driven' by the human operator, or in closed-loop where the movement of the environment is controlled by optically sensed movements of the insect's abdomen. During flight, we recorded multineuronal activity from the ventral nerve cord between the brain and thoracic ganglia. Results show that in open-loop conditions, induced turns of the environment evoked characteristic compensatory optomotor responses. Coordination of wing and body kinematics was similar to that observed in free flight. In closed-loop conditions, the insect was able to navigate through the simulated environment and produce flight tracks in response to presentation of pheromone that resemble those observed in free flight. We discuss the effectiveness of this preparation and its utility for addressing specific questions of insect flight as well as general questions in neuroethology.


Assuntos
Sistema Nervoso Central/fisiologia , Voo Animal/fisiologia , Manduca/fisiologia , Psicologia Experimental/instrumentação , Animais , Biorretroalimentação Psicológica , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/citologia , Simulação por Computador , Meio Ambiente , Masculino , Mecanorreceptores/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Visão Ocular/fisiologia
19.
Am J Chin Med ; 29(2): 211-20, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11527064

RESUMO

The purpose of this morphological study was to investigate the relation between the meridian, meridian points and viscera using neuroanatomical tracers. The common locations of the spinal cord and brain projecting to the stomach and Zusanli were observed following injection of CTB (cholera toxin B subunit) and pseudorabies viruses (PRV-Ba, Bartha strain and PRV-Ba-Gal, galactosidase insertion) into the stomach and Zusanli (ST36). After 4-5 days of survival following injection into twelve rats, they were perfused, and their spinal cords and brains were frozen sectioned (30 microm). These sections were stained by X-gal histochemical, CTB and PRV-Ba immunohistochemical staining methods, and examined with the light microscope. The results were as follows: Commonly labeled medulla oblongata regions were dorsal motor nucleus of vagus nerve (DMV), nucleus tractus solitarius (NTS) and area postrema (AP) following injection of CTB and PRV-Ba-Gal into stomach and Zusanli, respectively. In the spinal cord, commonly labeled neurons were found in thoracic, lumbar and sacral spinal segments. Densely labeled areas were found in lamina IV, V, VII (intermediolateral nucleus) and X of the spinal cord. In the brain, commonly labeled neurons were found in the Al noradrenalin cells/Cl adrenalin cells/caudoventrolateral reticular nucleus, dorsal motor nucleus of vagus nerve, nucleus tractus solitarius, area postrema, raphe obscurus nucleus, raphe pallidus nucleus, raphe magnus nucleus, gigantocellular nucleus, locus coeruleus, parabrachial nucleus, Kolliker-Fuse nucleus, A5 cell group, central gray matter, paraventricular hypothalamic nucleus, lateral hypothalamic nucleus, retrochiasmatic hypothalamic nucleus, bed nucleus of stria terminalis and amygdaloid nucleus. Thus central autonomic center project both to the stomach and Zusanli. These morphological results suggest that there is a commonality of CNS cell groups in brain controlling stomach (viscera) and Zusanli (limb).


Assuntos
Pontos de Acupuntura , Sistema Nervoso Central/anatomia & histologia , Estômago/inervação , Animais , Sistema Nervoso Central/citologia , Toxina da Cólera , Herpesvirus Suídeo 1 , Histocitoquímica , Locus Cerúleo/citologia , Masculino , Bulbo/citologia , Vias Neurais , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Nervo Vago/citologia , Nervo Vago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA