Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 853
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Diabetes Obes Metab ; 26(4): 1430-1442, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38229447

RESUMO

Brown and white adipose tissue mediate thermogenesis through the thermogenetic centre of the brain, but safe methods for activating thermogensis and knowledge of the associated molecular mechanisms are lacking. We investigated body surface electroacupuncture stimulation (ES) at ST25 (targeted at the abdomen) induction of brown adipose thermogenesis and the neural mechanism of this process. Inguinal white adipose tissue (iWAT) and interscapular brown adipose tissue (iBAT) were collected and the thermogenic protein expression levels were measured to evaluate iBAT thermogenesis capacity. The thermogenic centre activating region and sympathetic outflow were evaluated based on neural electrical activity and c-fos expression levels. iWAT sensory axon plasticity was analysed with whole-mount adipose tissue imaging. ES activated the sympathetic nerves in iBAT and the c-fos-positive cells induced sympathetic outflow activation to the iBAT from the medial preoptic area (MPA), the dorsomedial hypothalamus (DM) and the raphe pallidus nucleus (RPA). iWAT denervation mice exhibited decreased c-fos-positive cells in the DM and RPA, and lower recombinant uncoupling orotein 1 peroxisome proliferator-activated receptor, ß3-adrenergic receptor, and tyrosine hydroxylase expression. Remodelling the iWAT sensory axons recovered the signal from the MPA to the RPA and induced iBAT thermogenesis. The sympathetic denervation attenuated sensory nerve density. ES induced sympathetic outflow from the thermogenetic centres to iBAT, which mediated thermogenesis. iWAT sensory axon remodelling induced the MPA-DM-RPA-iBAT thermogenesis pathway.


Assuntos
Eletroacupuntura , Camundongos , Animais , Sistema Nervoso Simpático/fisiologia , Obesidade/terapia , Obesidade/metabolismo , Tecido Adiposo Branco , Tecido Adiposo Marrom/metabolismo , Termogênese , Órgãos dos Sentidos
2.
Acta Neurobiol Exp (Wars) ; 83(1): 34-44, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37078812

RESUMO

The autonomic nervous system regulates internal organs and peripheral circulation, which enables the maintenance of homeostasis in vertebrate species. One of the brain regions involved in autonomic and endocrine homeostasis regulation is the paraventricular nucleus of the hypothalamus (PVN). The PVN is a unique site at which multiple input signals can be assessed and integrated. The regulation of the autonomic system by the PVN and, especially, the sympathetic flow, depends upon the integration of inhibitory and excitatory neurotransmitter action. The excitatory neurotransmitters such as glutamate and angiotensin II, and inhibitory neurotransmitters such as γ­aminobutyric acid and nitric oxide, play a key role in the physiological function of the PVN. Moreover, arginine-vasopressin (AVP) and oxytocin (OXT) are important in the regulation of sympathetic system activity. The PVN is also crucial for maintaining cardiovascular regulation, with its integrity being pivotal for blood pressure regulation. Studies have shown that pre­autonomic sympathetic PVN neurons increase blood pressure and the dysfunction of these neurons is directly related to elevated sympathetic nervous system activity under hypertension. Etiology of hypertension in patients is not fully known. Thus, understanding the role of PVN in the generation of hypertension may help to treat this cardiovascular disease. This review focuses on the PVN's inhibitory and excitatory neurotransmitter interactions that regulate sympathetic system activity in physiological conditions and hypertension.


Assuntos
Hipertensão , Núcleo Hipotalâmico Paraventricular , Humanos , Núcleo Hipotalâmico Paraventricular/fisiologia , Pressão Sanguínea/fisiologia , Hipotálamo/fisiologia , Sistema Nervoso Simpático/fisiologia
3.
Auton Neurosci ; 245: 103058, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36538864

RESUMO

Brown adipose tissue (BAT) contributes to energy homeostasis via nonshivering thermogenesis. The BAT is densely innervated by the sympathetic nervous system (SNS) and activity of pre-autonomic neurons modulates the sympathetic outflow. Leptin, an adipocyte hormone, alters energy homeostasis and thermogenesis of BAT via several neuronal circuits; however, the cellular effects of leptin on interscapular BAT (iBAT)-related neurons in the hypothalamus remain to be determined. In this study, we used pseudorabies virus (PRV) to identify iBAT-related neurons in the paraventricular nucleus (PVN) of the hypothalamus and test the hypothesis that iBAT-related PVN neurons are modulated by leptin. Inoculation of iBAT with PRV in leptin receptor reporter mice (Lepr:EGFP) demonstrated that a population of iBAT-related PVN neurons expresses Lepr receptors. Our electrophysiological findings revealed that leptin application caused hyperpolarization in some of iBAT-related PVN neurons. Bath application of leptin also modulated excitatory and inhibitory neurotransmission to most of iBAT-related PVN neurons. Using channel rhodopsin assisted circuit mapping we found that GABAergic and glutamatergic Lepr-expressing neurons in the dorsomedial hypothalamus/dorsal hypothalamic area (dDMH/DHA) project to PVN neurons; however, connected iBAT-related PVN neurons receive exclusively inhibitory signals from Lepr-expressing dDMH/DHA neurons.


Assuntos
Leptina , Núcleo Hipotalâmico Paraventricular , Camundongos , Animais , Leptina/metabolismo , Leptina/farmacologia , Receptores para Leptina , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/fisiologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Termogênese/fisiologia , Sistema Nervoso Simpático/fisiologia
4.
Anat Rec (Hoboken) ; 306(9): 2264-2275, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717590

RESUMO

Along with well-known data on the neurochemical mechanisms of nociceptor activation, there are still no clear data regarding changes in the cellular composition and morphological characteristics of spinal preganglionic neurons (SPN) after capsaicin treatment. The mechanism of capsaicin toxicity differs in developing and mature nerve cells. This study aimed to determine the number of SPN in the autonomic nuclei on spinal cord (SC) sections and their cross-sectional area, the localization, percentage, and profile area of SPN containing neuronal nitric oxide synthase (nNOS) and calbindin (CB) in the thoracic SC of rats of different ages (from birth to 1-year-old) after capsaicin treatment. Neonatal capsaicin treatment generally decreased the cross-sectional area of the SPN pericarya. However, the cross-sectional area of the CB-immunoreactive (IR) SPN increased in the central autonomic area in rats aged 10-30 days old after capsaicin treatment. The number of SPN decreased only in the central autonomic area of rats aged <20 days. The proportion of nNOS-IR neurons remained steady and did not change during development. The cross-sectional area of nNOS-IR SPN in capsaicin-treated rats was less than that in control rats. The results obtained will promote further studies on the mechanisms of sensory processing in the SC and the development of the sympathetic nervous system.


Assuntos
Capsaicina , Neurônios , Ratos , Animais , Óxido Nítrico Sintase Tipo I/metabolismo , Capsaicina/farmacologia , Capsaicina/metabolismo , Calbindinas/metabolismo , Neurônios/metabolismo , Sistema Nervoso Simpático/fisiologia , Medula Espinal , Fibras Autônomas Pré-Ganglionares/metabolismo
5.
J Appl Physiol (1985) ; 133(1): 234-245, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35736952

RESUMO

Acute whole body heat stress evokes sympathetic activation. However, the chronic effects of repeated moderate heat exposure (RMHE) on muscle sympathetic nerve activity (MSNA) in healthy individuals remain unclear. We performed RMHE with 4 wk (5 days/wk) of warm baths (∼40°C, for 30 min) in nine healthy older (59 ± 2 yr) volunteers. Hemodynamic variables and MSNA were examined before, 1 day after, and 1 wk following 4 wk of RMHE in a laboratory at ∼23°C. Cold pressor test (CPT) and handgrip (HG) exercise were performed during the tests. Under normothermic condition, the resting MSNA burst rate (prior, post, post 1-wk: 31.6 ± 2.0, 25.2 ± 2.0, and 27.7 ± 1.7 bursts/min; P < 0.001) and burst incidence (P < 0.001) significantly decreased after RMHE. Moreover, the resting heart rate significantly decreased after RMHE (62 ± 2, 60 ± 2, and 58 ± 2 beats/min, P = 0.031). The sensitivity of baroreflex control of MSNA and heart rate were not altered by RMHE, although the operating points were reset. The MSNA and hemodynamic responses (i.e., changes) to handgrip exercise or cold pressor test were not significantly altered. These data suggest that the RMHE evoked by warm baths decreases resting sympathetic activity and heart rate, which can be considered beneficial effects. The mechanism(s) should be examined in future studies.NEW & NOTEWORTHY To our knowledge, this is the first study to observe the effects of repeated warm baths on sympathetic nerve activity during rest and stress in healthy middle age and older individuals. The data suggest that the repeated warm baths decreased resting sympathetic activity and heart rate, which can be considered beneficial effects. This study also provides the first evidence that the repeated warm baths did not alter the baroreflex sensitivity and the sympathetic responses to stress.


Assuntos
Banhos , Força da Mão , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Força da Mão/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Sistema Nervoso Simpático/fisiologia , Água
6.
PLoS One ; 16(12): e0260642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855830

RESUMO

BACKGROUND: The impact of manual therapy interventions on the autonomic nervous system have been largely assessed, but with heterogeneous findings regarding the direction of these effects. We conducted an overview of systematic reviews to describe if there is a specific autonomic effect elicited by manual therapy interventions, its relation with the type of technique used and the body region where the intervention was applied. METHODS: We conducted an overview according to a publicly registered protocol. We searched the Cochrane Database of Systematic Reviews, MEDLINE, EPISTEMONIKOS and SCOPUS, from their inception to march 2021. We included systematic reviews for which the primary aim of the intervention was to assess the autonomic effect elicited by a manual therapy intervention in either healthy or symptomatic individuals. Two authors independently applied the selection criteria, assessed risk of bias from the included reviews and extracted data. An established model of generalisation guided the data analysis and interpretation. RESULTS: We included 12 reviews (5 rated as low risk of bias according the ROBIS tool). The findings showed that manual therapies may have an effect on both sympathetic and parasympathetic systems. However, the results from included reviews were inconsistent due to differences in their methodological rigour and how the effects were measured. The reviews with a lower risk of bias could not discriminate the effects depending on the body region to which the technique was applied. CONCLUSION: The magnitude of the specific autonomic effect elicited by manual therapies and its clinical relevance is uncertain. We point out some specific recommendations in order to improve the quality and relevance of future research in this field.


Assuntos
Doenças do Sistema Nervoso Autônomo/terapia , Manipulações Musculoesqueléticas , Fármacos do Sistema Nervoso Autônomo , Bases de Dados Factuais , Humanos , Sistema Nervoso Parassimpático/fisiologia , Sistema Nervoso Simpático/fisiologia
7.
J Comp Neurol ; 529(16): 3564-3592, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33978232

RESUMO

The objective of the study was to identify brain structures that mediate reward as evidenced by positive reinforcing effects of stimuli on behavior. Testing by intracerebral self-stimulation enabled monkeys to inform whether activation of ~2900 sites in 74 structures of 4 sensorimotor pathways and 4 modulatory loop pathways was positive, negative or neutral. Stimulation was rewarding at 30% of sites, negative at 17%, neutral at 52%. Virtually all (99%) structures yielded some positive or negative sites, suggesting a ubiquitous distribution of pathways transmitting valence information. Mapping of sites to structures with dense versus sparse dopaminergic (DA) or noradrenergic (NA) innervation showed that stimulation of DA-pathways was rewarding or neutral. Stimulation of NA-pathways was not rewarding. Stimulation of association areas was generally rewarding; stimulation of purely sensory or motor structures was generally negative. Reward related more to structures' sensorimotor function than to density of DA-innervation. Stimulation of basal ganglia loop pathways was rewarding except in lateral globus pallidus, an inhibitory structure in the negative feedback loop; stimulation of the cerebellar loop was rewarding in anterior vermis and the spinocerebellar pathway; and stimulation of the hippocampal CA1 loop was rewarding. While most positive sites were in the DA reward system, numerous sites in sparsely DA-innervated posterior cingulate and parietal cortices may represent a separate reward system. DA-density represents concentrations of plastic synapses that mediate acquisition of new synaptic connections. DA-sparse areas may represent innate, genetically programmed reward-associated pathways. Implications of findings in regard to response habituation and addiction are discussed.


Assuntos
Encéfalo/fisiologia , Recompensa , Autoestimulação/fisiologia , Animais , Gânglios da Base/fisiologia , Biorretroalimentação Psicológica , Mapeamento Encefálico , Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Macaca mulatta , Masculino , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Norepinefrina/metabolismo , Sistema Nervoso Simpático/fisiologia
8.
Cereb Cortex ; 31(9): 4115-4139, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34003210

RESUMO

Noradrenaline (NA) in the thalamus has important roles in physiological, pharmacological, and pathological neuromodulation. In this work, a complete characterization of NA axons and Alpha adrenoceptors distributions is provided. NA axons, revealed by immunohistochemistry against the synthesizing enzyme and the NA transporter, are present in all thalamic nuclei. The most densely innervated ones are the midline nuclei, intralaminar nuclei (paracentral and parafascicular), and the medial sector of the mediodorsal nucleus (MDm). The ventral motor nuclei and most somatosensory relay nuclei receive a moderate NA innervation. The pulvinar complex receives a heterogeneous innervation. The lateral geniculate nucleus (GL) has the lowest NA innervation. Alpha adrenoceptors were analyzed by in vitro quantitative autoradiography. Alpha-1 receptor densities are higher than Alpha-2 densities. Overall, axonal densities and Alpha adrenoceptor densities coincide; although some mismatches were identified. The nuclei with the highest Alpha-1 values are MDm, the parvocellular part of the ventral posterior medial nucleus, medial pulvinar, and midline nuclei. The nucleus with the lowest Alpha-1 receptor density is GL. Alpha-2 receptor densities are highest in the lateral dorsal, centromedian, medial and inferior pulvinar, and midline nuclei. These results suggest a role for NA in modulating thalamic involvement in consciousness, limbic, cognitive, and executive functions.


Assuntos
Norepinefrina/fisiologia , Receptores Adrenérgicos/fisiologia , Sistema Nervoso Simpático/fisiologia , Tálamo/fisiologia , Animais , Autorradiografia , Axônios/fisiologia , Dopamina beta-Hidroxilase/metabolismo , Fenômenos Eletrofisiológicos , Feminino , Macaca mulatta , Macaca nemestrina , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Receptores Adrenérgicos/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Sistema Nervoso Simpático/diagnóstico por imagem , Sistema Nervoso Simpático/efeitos dos fármacos
9.
Diabetes ; 70(7): 1443-1457, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33883213

RESUMO

The counterregulatory response to hypoglycemia is an essential survival function. It is controlled by an integrated network of glucose-responsive neurons, which trigger endogenous glucose production to restore normoglycemia. The complexity of this glucoregulatory network is, however, only partly characterized. In a genetic screen of a panel of recombinant inbred mice we previously identified Fgf15, expressed in neurons of the dorsomedial hypothalamus (DMH), as a negative regulator of glucagon secretion. Here, we report on the generation of Fgf15CretdTomato mice and their use to further characterize these neurons. We show that they were glutamatergic and comprised glucose-inhibited and glucose-excited neurons. When activated by chemogenetics, Fgf15 neurons prevented the increase in vagal nerve firing and the secretion of glucagon normally triggered by insulin-induced hypoglycemia. On the other hand, they increased the activity of the sympathetic nerve in the basal state and prevented its silencing by glucose overload. Higher sympathetic tone increased hepatic Creb1 phosphorylation, Pck1 mRNA expression, and hepatic glucose production leading to glucose intolerance. Thus, Fgf15 neurons of the DMH participate in the counterregulatory response to hypoglycemia by a direct adrenergic stimulation of hepatic glucose production while suppressing vagally induced glucagon secretion. This study provides new insights into the complex neuronal network that prevents the development of hypoglycemia.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Glucagon/metabolismo , Gluconeogênese/fisiologia , Hipotálamo/metabolismo , Fígado/metabolismo , Neurônios/fisiologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Feminino , Hipoglicemia/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Nervoso Simpático/fisiologia
10.
Circ Res ; 128(7): 1080-1099, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793330

RESUMO

In the past decade, efforts to improve blood pressure control have looked beyond conventional approaches of lifestyle modification and drug therapy to embrace interventional therapies. Based upon animal and human studies clearly demonstrating a key role for the sympathetic nervous system in the etiology of hypertension, the newer technologies that have emerged are predominantly aimed at neuromodulation of peripheral nervous system targets. These include renal denervation, baroreflex activation therapy, endovascular baroreflex amplification therapy, carotid body ablation, and pacemaker-mediated programmable hypertension control. Of these, renal denervation is the most mature, and with a recent series of proof-of-concept trials demonstrating the safety and efficacy of radiofrequency and more recently ultrasound-based renal denervation, this technology is poised to become available as a viable treatment option for hypertension in the foreseeable future. With regard to baroreflex activation therapy, endovascular baroreflex amplification, carotid body ablation, and programmable hypertension control, these are developing technologies for which more human data are required. Importantly, central nervous system control of the circulation remains a poorly understood yet vital component of the hypertension pathway and mandates further investigation. Technology to improve blood pressure control through deep brain stimulation of key cardiovascular control territories is, therefore, of interest. Furthermore, alternative nonsympathomodulatory intervention targeting the hemodynamics of the circulation may also be worth exploring for patients in whom sympathetic drive is less relevant to hypertension perpetuation. Herein, we review the aforementioned technologies with an emphasis on the preclinical data that underpin their rationale and the human evidence that supports their use.


Assuntos
Hipertensão/terapia , Animais , Derivação Arteriovenosa Cirúrgica/métodos , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Corpo Carotídeo/cirurgia , Estimulação Encefálica Profunda/métodos , Denervação/métodos , Humanos , Hipertensão/etiologia , Rim/inervação , Marca-Passo Artificial , Sistema Nervoso Simpático/fisiologia , Estimulação Elétrica Nervosa Transcutânea
11.
Sci Rep ; 10(1): 19358, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168874

RESUMO

5-HT inhibits cardiac sympathetic neurotransmission in normoglycaemic rats, via 5-HT1B, 5-HT1D and 5-HT5A receptor activation. Since type 1 diabetes impairs the cardiac sympathetic innervation leading to cardiopathies, this study aimed to investigate whether the serotonergic influence on cardiac noradrenergic control is altered in type 1 diabetic rats. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/kg, i.p.). Four weeks later, the rats were anaesthetized, pithed and prepared for producing tachycardic responses by electrical preganglionic stimulation (C7-T1) of the cardioaccelerator sympathetic outflow or i.v. noradrenaline bolus injections. Immunohistochemistry was performed to study 5-HT1B, 5-HT1D and 5-HT5A receptor expression in the stellate ganglion from normoglycaemic and diabetic rats. In the diabetic group, i) i.v. continuous infusions of 5-HT induced a cardiac sympatho-inhibition that was mimicked by the 5-HT1/5A agonist 5-carboxamidotryptamine (without modifying noradrenaline-induced tachycardia), but not by the agonists indorenate (5-HT1A), CP 93,129 (5-HT1B), PNU 142633 (5-HT1D), or LY344864 (5-HT1F); ii) SB 699551 (5-HT5A antagonist; i.v.) completely reversed 5-CT-induced cardiac sympatho-inhibition; and iii) 5-HT5A receptors were more expressed in the stellate ganglion compared to normoglycaemic rats. These results show the prominent role of the peripheral 5-HT5A receptors prejunctionally inhibiting the cardiac sympathetic drive in type 1 diabetic rats.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Receptores de Serotonina/fisiologia , Sistema Nervoso Simpático/fisiologia , 5-Metoxitriptamina/análogos & derivados , 5-Metoxitriptamina/farmacologia , Animais , Compostos de Bifenilo/farmacologia , Carbazóis/farmacologia , Cromanos/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/metabolismo , Terapia por Estimulação Elétrica , Fluorbenzenos/farmacologia , Imuno-Histoquímica , Masculino , Norepinefrina/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Wistar , Receptor 5-HT1B de Serotonina/fisiologia , Receptor 5-HT1D de Serotonina/fisiologia , Serotonina/análogos & derivados , Serotonina/química , Serotonina/metabolismo
12.
Biomed Res Int ; 2020: 9684792, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33145363

RESUMO

RESULTS: Following fighting, the adrenaline concentration was significantly higher in all athletes, most markedly in K (p < 0.001). Baseline cortisol and BDNF levels did not differ among the groups and rose significantly in all the groups after the performance. Baseline testosterone concentration was slightly higher in K than in JSW and rose in all the groups to reach similar levels; the increase in T was significantly higher than in K. CONCLUSIONS: Despite substantial differences in the characteristics of the combat sports investigated, including the type of physical effort and the required balance between restraint and aggression, the performance in each of them gives rise to similar hormonal changes with a possible exception of karate showing higher stress hormone levels.


Assuntos
Desempenho Atlético/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Artes Marciais/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Sistema Nervoso Simpático/fisiologia , Luta Romana/fisiologia , Adaptação Fisiológica , Atletas/psicologia , Desempenho Atlético/psicologia , Fator Neurotrófico Derivado do Encéfalo/sangue , Epinefrina/sangue , Humanos , Hidrocortisona/sangue , Masculino , Artes Marciais/psicologia , Norepinefrina/sangue , Consumo de Oxigênio/fisiologia , Esforço Físico/fisiologia , Estresse Fisiológico , Testosterona/sangue , Luta Romana/psicologia , Adulto Jovem
13.
Am J Physiol Heart Circ Physiol ; 319(5): H1069-H1077, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32946297

RESUMO

The arcuate nucleus of the hypothalamus (ARC) plays a key role in linking peripheral metabolic status to the brain melanocortin system, which influences a wide range of physiological processes including the sympathetic nervous system and blood pressure. The importance of the activity of agouti-related peptide (AgRP)- and proopiomelanocortin (POMC)-expressing neurons, two molecularly distinct populations of ARC neurons, for metabolic regulation is well established, but their relevance for sympathetic and cardiovascular control remains unclear. We used designer receptors exclusively activated by designer drug (DREADD) technology to study how activation of AgRP and POMC neurons affect renal sympathetic nerve traffic and blood pressure. In addition to the drastic feeding-stimulatory effect, DREADD-mediated activation of AgRP, but not POMC neurons, induced an acute reduction in renal sympathetic nerve activity in conscious mice. Paradoxically, however, DREADD-mediated chronic activation of AgRP neurons caused a significant increase in blood pressure specifically in the inactive light phase. On the other hand, chronic activation of POMC neurons led to a significant reduction in blood pressure. These results bring new insights to a previously unappreciated role of ARC AgRP and POMC neuronal activity in autonomic and cardiovascular regulation.NEW & NOTEWORTHY Agouti-related peptide (AgRP)- and proopiomelanocortin (POMC)-expressing neurons of the arcuate nucleus are essential components of the brain melanocortin system that controls various physiological processes. Here, we tested the metabolic and cardiovascular effects of direct activation of these two populations of neurons. Our findings show that, in addition to stimulation of food intake, chemogenetic mediated activation of hypothalamic arcuate nucleus AgRP, but not POMC, neurons reduce renal sympathetic traffic. Despite this, chronic activation of AgRP neurons increased blood pressure. However, chronic activation of POMC neurons led to a significant reduction in blood pressure. Our findings highlight the importance of arcuate nucleus AgRP and POMC neuronal activity in autonomic and cardiovascular regulation.


Assuntos
Coração/fisiologia , Hipotálamo/fisiologia , Neurônios/fisiologia , Sistema Nervoso Simpático/fisiologia , Potenciais de Ação , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Pressão Sanguínea , Hipotálamo/citologia , Camundongos , Neurônios/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo
14.
Neuron ; 108(3): 436-450.e7, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-32791039

RESUMO

The neuroanatomical basis behind acupuncture practice is still poorly understood. Here, we used intersectional genetic strategy to ablate NPY+ noradrenergic neurons and/or adrenal chromaffin cells. Using endotoxin-induced systemic inflammation as a model, we found that electroacupuncture stimulation (ES) drives sympathetic pathways in somatotopy- and intensity-dependent manners. Low-intensity ES at hindlimb regions drives the vagal-adrenal axis, producing anti-inflammatory effects that depend on NPY+ adrenal chromaffin cells. High-intensity ES at the abdomen activates NPY+ splenic noradrenergic neurons via the spinal-sympathetic axis; these neurons engage incoherent feedforward regulatory loops via activation of distinct adrenergic receptors (ARs), and their ES-evoked activation produces either anti- or pro-inflammatory effects due to disease-state-dependent changes in AR profiles. The revelation of somatotopic organization and intensity dependency in driving distinct autonomic pathways could form a road map for optimizing stimulation parameters to improve both efficacy and safety in using acupuncture as a therapeutic modality.


Assuntos
Eletroacupuntura , Neurônios/fisiologia , Neuropeptídeo Y/metabolismo , Sistema Nervoso Simpático/fisiologia , Animais , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Appl Psychophysiol Biofeedback ; 45(3): 221-228, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32367339

RESUMO

Mindfulness is typically understood as non-judgmental, focused attention on the present moment, although it may be conceptualized as a state, a trait, and an outcome of intervention. There is a limited understanding of the physiological effects of state and trait mindfulness, and it has been a challenge to the research community to measure these effects. This study examined whether state and trait mindfulness are associated with reduced stress response activation in healthy young adults. Fifty-four undergraduate participants completed self-ratings of state and trait mindfulness, and continuous measures of psychophysiological reactivity (i.e., skin conductance response) before, during, and after an interview about a recurrent stressor. Results indicated that individuals with greater self-reported state mindfulness had lower sympathetic psychophysiological activation than those with lower state mindfulness. Moreover, those with greater self-reported state mindfulness experienced greater drops in psychophysiological activation following a stressful task. However, differences in psychophysiological activation were not evident when comparing those with higher and lower self-reported trait mindfulness. The findings suggest that state mindfulness, or "being in the moment", rather than trait mindfulness results in less engagement of metabolically costly psychophysiological activation in response to stress. Thus, intentional mindfulness during a stressful event may be important for decreasing sympathetic activation, resulting in lower bodily stress.


Assuntos
Resposta Galvânica da Pele/fisiologia , Atenção Plena , Personalidade/fisiologia , Estresse Psicológico/fisiopatologia , Sistema Nervoso Simpático/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
16.
Nat Commun ; 11(1): 1517, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251290

RESUMO

Leptin stimulates the sympathetic nervous system (SNS), energy expenditure, and weight loss; however, the underlying molecular mechanism remains elusive. Here, we uncover Sh2b1 in leptin receptor (LepR) neurons as a critical component of a SNS/brown adipose tissue (BAT)/thermogenesis axis. LepR neuron-specific deletion of Sh2b1 abrogates leptin-stimulated sympathetic nerve activation and impairs BAT thermogenic programs, leading to reduced core body temperature and cold intolerance. The adipose SNS degenerates progressively in mutant mice after 8 weeks of age. Adult-onset ablation of Sh2b1 in the mediobasal hypothalamus also impairs the SNS/BAT/thermogenesis axis; conversely, hypothalamic overexpression of human SH2B1 has the opposite effects. Mice with either LepR neuron-specific or adult-onset, hypothalamus-specific ablation of Sh2b1 develop obesity, insulin resistance, and liver steatosis. In contrast, hypothalamic overexpression of SH2B1 protects against high fat diet-induced obesity and metabolic syndromes. Our results unravel an unrecognized LepR neuron Sh2b1/SNS/BAT/thermogenesis axis that combats obesity and metabolic disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fígado Gorduroso/patologia , Resistência à Insulina , Neurônios/metabolismo , Obesidade/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Feminino , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Humanos , Hipotálamo/patologia , Leptina/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/etiologia , Receptores para Leptina/metabolismo , Sistema Nervoso Simpático/fisiologia , Termogênese/fisiologia
17.
Invest Ophthalmol Vis Sci ; 61(3): 26, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182332

RESUMO

Purpose: Elevated IOP can cause the development of glaucoma. The circadian rhythm of IOP depends on the dynamics of the aqueous humor and is synchronized with the circadian rhythm pacemaker, that is, the suprachiasmatic nucleus. The suprachiasmatic nucleus resets peripheral clocks via sympathetic nerves or adrenal glucocorticoids. However, the detailed mechanisms underlying IOP rhythmicity remain unclear. The purpose of this study was to verify this regulatory pathway. Methods: Adrenalectomy and/or superior cervical ganglionectomy were performed in C57BL/6J mice. Their IOP rhythms were measured under light/dark cycle and constant dark conditions. Ocular administration of corticosterone or norepinephrine was also performed. Localization of adrenergic receptors, glucocorticoid receptors, and clock proteins Bmal1 and Per1 were analyzed using immunohistochemistry. Period2::luciferase rhythms in the cultured iris/ciliary bodies of adrenalectomized and/or superior cervical ganglionectomized mice were monitored to evaluate the effect of the procedures on the local clock. The IOP rhythm of retina and ciliary epithelium-specific Bmal1 knockout mice were measured to determine the significance of the local clock. Results: Adrenalectomy and superior cervical ganglionectomy disrupted IOP rhythms and the circadian clock in the iris/ciliary body cultures. Instillation of corticosterone and norepinephrine restored the IOP rhythm. ß2-Adrenergic receptors, glucocorticoid receptors, and clock proteins were strongly expressed within the nonpigmented epithelia of the ciliary body. However, tissue-specific Bmal1 knock-out mice maintained their IOP rhythm. Conclusions: These findings suggest direct driving of the IOP rhythm by the suprachiasmatic nucleus, via the dual corticosterone and norepinephrine pathway, but not the ciliary clock, which may be useful for chronotherapy of glaucoma.


Assuntos
Ritmo Circadiano/fisiologia , Corticosterona/farmacologia , Pressão Intraocular/fisiologia , Norepinefrina/farmacologia , Sistema Nervoso Simpático/fisiologia , Fatores de Transcrição ARNTL/metabolismo , Administração Oftálmica , Adrenalectomia , Animais , Células Cultivadas , Corpo Ciliar/efeitos dos fármacos , Corpo Ciliar/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Ganglionectomia , Imuno-Histoquímica , Iris/efeitos dos fármacos , Iris/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Circadianas Period/metabolismo , Fotoperíodo , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Glucocorticoides/metabolismo , Gânglio Cervical Superior/cirurgia , Tonometria Ocular
18.
Physiotherapy ; 107: 118-132, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32026812

RESUMO

BACKGROUND: A potential mechanism of action of manual therapy is the activation of a sympathetic-excitatory response. OBJECTIVE: To evaluate the effects of joint mobilisation on changes in clinical manifestations of sympathetic nervous system activity. DATA SOURCES: MEDLINE, EMBASE, AMED, CINAHL, EBSCO, PubMed, PEDro, Cochrane Collaboration Trials Register, Cochrane Database of Systematic Reviews and SCOPUS databases. STUDY SELECTION: Randomised controlled trials that compared a mobilisation technique applied to the spine or the extremities with a control or placebo. DATA EXTRACTION AND DATA SYNTHESIS: Human studies collecting data on skin conductance or skin temperature were used. Data were extracted by two reviewers. Risk of bias was assessed using the Cochrane guidelines, and quality of evidence was assessed using the GRADE approach. Standardised mean differences (SMD) and random effects were calculated. RESULTS: Eighteen studies were included in the review and 17 were included in the meta-analysis. The meta-analysis found a significant increase in skin conductance [SMD 1.21, 95% confidence interval (CI) 0.88 to 1.53, n=269] and a decrease in temperature (SMD 0.92, 95% CI -1.47 to -0.37, n=128) after mobilisation compared with the control group. An increase in skin conductance (SMD 0.73, 95% CI 0.51 to 0.96, n=293) and a decrease in temperature (SMD -0.50, 95% CI -0.82 to -0.18, n=134) were seen after mobilisation compared with placebo. The risk of bias was generally low, but the heterogenicity of the results downgraded the level of evidence. LIMITATIONS: Most trials (14/18) were conducted on asymptomatic healthy subjects. CONCLUSION: There is moderate evidence suggesting a sympatho-excitatory effect of joint mobilisation. Systematic Review Registration Number PROSPERO CRD42018089991.


Assuntos
Manipulações Musculoesqueléticas/métodos , Sistema Nervoso Simpático/fisiologia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Temperatura Cutânea
19.
J Physiol Sci ; 70(1): 2, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32039689

RESUMO

Fragrance inhalation of essential oils is widely used in aromatherapy, and it is known to affect blood pressure (BP) and heart rate (HR) via autonomic control of circulation. In this study, we aimed to test the hypothesis that the changes in hemodynamics with fragrance inhalation were observed along with changes in muscle sympathetic nerve activity (MSNA). In study 1, thirteen healthy men were exposed to fragrance stimulation of grapefruit essential oil for 10 min, and BP, HR, and MSNA were continuously measured. In study 2, another nine healthy men were exposed to the same fragrance stimulation; responses in BP and HR were continuously measured, and plasma noradrenaline and cortisol concentrations were determined. We found that diastolic BP increased significantly during fragrance inhalation, while the other variables remained unchanged in both studies. Although MSNA burst frequency, burst incidence, and total activity remained unchanged during fragrance inhalation, we found a significant linear correlation between changes in diastolic BP in the last 5 min of fragrance inhalation and changes in MSNA burst frequency. The plasma cortisol concentration decreased significantly at 10 min of fragrance inhalation, though the noradrenaline concentration remained unchanged. These results suggest, for the first time, that changes in BP with fragrance inhalation of essential oil are associated with changes in MSNA even with decreased stress hormone.


Assuntos
Citrus paradisi/química , Diástole/efeitos dos fármacos , Músculo Esquelético/inervação , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Estudos Cross-Over , Humanos , Masculino , Odorantes , Óleos Voláteis/química , Óleos de Plantas/química , Sistema Nervoso Simpático/fisiologia , Adulto Jovem
20.
J Manipulative Physiol Ther ; 42(8): 623-634, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31771839

RESUMO

OBJECTIVE: The purpose of this study was to systematically review the effects of spinal manipulative therapy (SMT) on autonomic nervous system (ANS)-mediated outcomes, in both symptomatic and healthy populations, and to assess the quality of evidence for the most prevalent outcomes with the Grading of Recommendations, Assessment, Development and Evaluation approach. METHODS: PubMed, Cochrane Library, PEDro, Web of Science, and EMBASE were searched from their inception to March 2014. Randomized controlled trials involving SMT, such as mobilization and manipulation, that reported at least 1 outcome related to the ANS, with placebo, control groups, or other SMT techniques as comparators, with either healthy or symptomatic samples were included. The Physiotherapy Evidence Database scale and the Grading of Recommendations, Assessment, Development and Evaluation approach were used to assess risk of bias and the quality of evidence, respectively. RESULTS: Eighteen trials were included in this systematic review. Passive accessory intervertebral mobilization produced sympathoexcitation independently of the treated region (cervical, thoracic, or lumbar spine); although sustained natural apophyseal glides did not influence the ANS, conflicting results were observed regarding manipulation techniques. The overall quality of evidence for all analyzed outcomes ranged from low to very low quality. CONCLUSION: There is evidence pointing toward the existence of sympathoexcitatory short-term effects following passive accessory intervertebral mobilization mobilizations, but not for sustained natural apophyseal glide mobilizations. There is conflicting evidence regarding the ability of manipulation to elicit sympathoexcitation. However, the low quality of the evidence precludes a definitive conclusion of such effects. Based on the current evidence, there is uncertainty regarding the true effect estimates of SMT on ANS-mediated outcomes.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Manipulação da Coluna , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Sistema Nervoso Simpático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA