Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Microbiol Spectr ; 10(6): e0294922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36377917

RESUMO

The increasingly serious problem of bacterial drug resistance has led to the development of antivirulence agents. The Salmonella enterica serovar Typhimurium Salmonella pathogenicity island (SPI)-encoded type III secretion system (T3SS) and its effector proteins are important virulence factors for S. Typhimurium invasion and replication in host cells and for antivirulence drug screening. Fraxetin is isolated from Fraxinus spp. Extensive studies have reported its multiple pharmacological activities. However, it remains to be elucidated whether fraxetin affects the function of the S. Typhimurium T3SS. In this study, the anti-infection mechanism of fraxetin on S. Typhimurium and its T3SS was investigated. Fraxetin inhibited the S. Typhimurium invasion of HeLa cells without affecting the growth of bacteria in vitro. Further findings on the mechanism showed that fraxetin had an inhibitory effect on the S. Typhimurium T3SS by inhibiting the transcription of the pathogenesis-related SPI-1 transcriptional activator genes hilD, hilC, and rtsA. Animal experiments showed that fraxetin treatment protected mice against S. Typhimurium infection. Collectively, we provide the first demonstration that fraxetin may serve as an effective T3SS inhibitor for the development of treatments for Salmonella infection. IMPORTANCE The increasingly serious problem of bacterial antibiotic resistance limits the clinical application of antibiotics, which increases the need for the development of antivirulence agents. The type III secretion system (T3SS) plays a critical role in host cell invasion and pathogenesis of Salmonella and becomes a popular target for antivirulence agents screening. Our study found, for the first time, that fraxetin inhibited S. Typhimurium invasion by inhibiting the transcription of genes in a feed-forward regulatory loop. Further in vivo testing showed that fraxetin decreased bacterial burdens in the spleen and liver of S. Typhimurium-infected mice and improved survival outcomes in an in vivo mouse model of S. Typhimurium infection. Collectively, these results demonstrate that fraxetin inhibits S. Typhimurium infection by targeting the T3SS and may serve as a potential agent for the treatment of S. Typhimurium infection.


Assuntos
Salmonella typhimurium , Sistemas de Secreção Tipo III , Humanos , Animais , Camundongos , Sistemas de Secreção Tipo III/metabolismo , Células HeLa , Sorogrupo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Food Funct ; 13(19): 9761-9771, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36124641

RESUMO

The antimicrobial actions of natural compounds derived from medicinal plants have been well documented. However, their detailed mechanisms underlying the action against microorganisms remain largely unexplored. Salmonella enterica is a common pathogen causing both gastrointestinal and systemic diseases. In Salmonella enterica, the type III secretion system (T3SS) is employed to export secreted effectors directly to the cytoplasm of host cells. Using a SipA-ß-lactamase reporter, we found that hyperoside (HYP) inhibited the activity of Salmonella T3SS needle protein InvG, prevented damage to host cells and protected mice against Salmonella enterica serovar Typhimurium. It was also observed that HYP binds to InvG directly through hydrogen-bridged cations and hydrophobic interactions. The unique mechanism of antibacterial action of HYP suggested that it could be used as a potentially effective candidate for future antimicrobial regimens.


Assuntos
Salmonella enterica , Salmonella typhimurium , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cátions , Hidrogênio/farmacologia , Camundongos , Quercetina/análogos & derivados , Sistemas de Secreção Tipo III/metabolismo , beta-Lactamases/metabolismo , beta-Lactamases/farmacologia
3.
Mol Plant Pathol ; 23(5): 679-692, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122373

RESUMO

A syringe-like type III secretion system (T3SS) plays essential roles in the pathogenicity of Ralstonia solanacearum, which is a causal agent of bacterial wilt disease on many plant species worldwide. Here, we characterized functional roles of a CysB regulator (RSc2427) in R. solanacearum OE1-1 that was demonstrated to be responsible for cysteine synthesis, expression of the T3SS genes, and pathogenicity of R. solanacearum. The cysB mutants were cysteine auxotrophs that failed to grow in minimal medium but grew slightly in host plants. Supplementary cysteine substantially restored the impaired growth of cysB mutants both in minimal medium and inside host plants. Genes of cysU and cysI regulons have been annotated to function for R. solanacearum cysteine synthesis; CysB positively regulated expression of these genes. Moreover, CysB positively regulated expression of the T3SS genes both in vitro and in planta through the PrhG to HrpB pathway, whilst impaired expression of the T3SS genes in cysB mutants was independent of growth deficiency under nutrient-limited conditions. CysB was also demonstrated to be required for exopolysaccharide production and swimming motility, which contribute jointly to the host colonization and infection process of R. solanacearum. Thus, CysB was identified here as a novel regulator on the T3SS expression in R. solanacearum. These results provide novel insights into understanding of various biological functions of CysB regulators and complex regulatory networks on the T3SS in R. solanacearum.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência/genética
4.
J Microbiol Methods ; 184: 106201, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33713725

RESUMO

Enteropathogenic E. coli (EPEC) causes intestinal infections leading to severe diarrhea. EPEC attaches to the host cell causing lesions to the intestinal epithelium coupled with the effacement of microvilli. In the process, actin accumulates into a pedestal-like structure under bacterial microcolonies. We designed an automated fluorescence microscopy-based screening method for discovering compounds capable of inhibiting EPEC adhesion and virulence using aurodox, a type three secretion system (T3SS) inhibitor, as a positive control. The screening assay employs an EPEC strain (2348/69) expressing a fluorescent protein and actin staining for monitoring the bacteria and their pedestals respectively, analyzing these with a custom image analysis pipeline. The assay allows for the discovery of compounds capable of preventing the formation of pathogenic actin rearrangements. These compounds may be interfering with virulence-related molecular pathways relevant for developing antivirulence leads.


Assuntos
Antibacterianos/farmacologia , Automação/métodos , Aderência Bacteriana/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/fisiologia , Microscopia de Fluorescência/métodos , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Humanos , Sistemas de Secreção Tipo III/antagonistas & inibidores , Sistemas de Secreção Tipo III/metabolismo , Virulência/efeitos dos fármacos
5.
Mol Plant Microbe Interact ; 34(5): 511-523, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33630651

RESUMO

Similar to pathogenic bacteria, rhizobia can inject effector proteins into host cells directly to promote infection via the type III secretion system (T3SS). Nodulation outer protein P (NopP), a specific T3SS effector of rhizobia, plays different roles in the establishment of multiple rhizobia-legume symbiotic systems. Mesorhizobium amorphae CCNWGS0123 (GS0123), which infects Robinia pseudoacacia specifically, secretes several T3SS effectors, including NopP. Here, we demonstrate that NopP is secreted through T3SS-I of GS0123 during the early stages of infection, and its deficiency decreases nodule nitrogenase activity of R. pseudoacacia nodules. A trafficking protein particle complex subunit 13-like protein (TRAPPC13) has been identified as a NopP target protein in R. pseudoacacia roots by screening a yeast two-hybrid library. The physical interaction between NopP and TRAPPC13 is verified by bimolecular fluorescence complementation and coimmunoprecipitation assays. In addition, subcellular localization analysis reveals that both NopP and its target, TRAPPC13, are colocalized on the plasma membrane. Compared with GS0123-inoculated R. pseudoacacia roots, some genes associated with cell wall remodeling and plant innate immunity down-regulated in ΔnopP-inoculated roots at 36 h postinoculation. The results suggest that NopP in M. amorphae CCNWGS0123 acts in multiple processes in R. pseudoacacia during the early stages of infection, and TRAPPC13 could participate in the process as a NopP target.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Mesorhizobium , Rhizobium , Robinia , Mesorhizobium/genética , Simbiose , Sistemas de Secreção Tipo III/genética
6.
Tree Physiol ; 41(5): 817-835, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33219377

RESUMO

Under nitrogen-limiting conditions, symbiotic nodulation promotes the growth of legume plants via the fixation of atmospheric nitrogen to ammonia by rhizobia in root nodules. The rhizobial Nod factor (NF) and type III secretion system (T3SS) are two key signaling pathways for establishing the legume-rhizobium symbiosis. However, whether NF signaling is involved in the nodulation of Robinia pseudoacacia and Mesorhizobium amorphae CCNWGS0123, and its symbiotic differences compared with T3SS signaling remain unclear. Therefore, to elucidate the function of NF signaling in nodulation, we mutated nodC in M. amorphae CCNWGS0123, which aborted NF synthesis. Compared with the plants inoculated with the wild type strain, the plants inoculated with the NF-deficient strain exhibited shorter shoots with etiolated leaves. These phenotypic characteristics were similar to those of the plants inoculated with the T3SS-deficient strain, which served as a Nod- (non-effective nodulation) control. The plants inoculated with both the NF- and T3SS-deficient strains formed massive root hair swellings, but no normal infection threads were detected. Sections of the nodules showed that inoculation with the NF- and T3SS-deficient strains induced small, white bumps without any rhizobia inside. Analyzing the accumulation of 6 plant hormones and the expression of 10 plant genes indicated that the NF- and T3SS-deficient strains activated plant defense reactions while suppressing plant symbiotic signaling during the perception and nodulation processes. The requirement for NF signaling appeared to be conserved in two other leguminous trees that can establish symbiosis with M. amorphae CCNWGS0123. In contrast, the function of the T3SS might differ among species, even within the same subfamily (Faboideae). Overall, this work demonstrated that nodulation of R. pseudoacacia and M. amorphae CCNWGS0123 was both NF and T3SS dependent.


Assuntos
Mesorhizobium , Robinia , Mesorhizobium/genética , Nodulação , Nódulos Radiculares de Plantas , Simbiose , Sistemas de Secreção Tipo III/genética
7.
Mol Plant Microbe Interact ; 34(4): 337-350, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33332146

RESUMO

The infection of potato with Ralstonia solanacearum UW551 gives rise to bacterial wilt disease via colonization of roots. The type III secretion system (T3SS) is a determinant factor for the pathogenicity of R. solanacearum. To fully understand perturbations in potato by R. solanacearum type III effectors(T3Es), we used proteomics to measure differences in potato root protein abundance after inoculation with R. solanacearum UW551 and the T3SS mutant (UW551△HrcV). We identified 21 differentially accumulated proteins. Compared with inoculation with UW551△HrcV, 10 proteins showed significantly lower abundance in potato roots after inoculation with UW551, indicating that those proteins were significantly downregulated by T3Es during the invasion. To identify their functions in immunity, we silenced those genes in Nicotiana benthamiana and tested the resistance of the silenced plants to the pathogen. Results showed that miraculin, HBP2, and TOM20 contribute to immunity to R. solanacearum. In contrast, PP1 contributes to susceptibility. Notably, none of four downregulated proteins (HBP2, PP1, HSP22, and TOM20) were downregulated at the transcriptional level, suggesting that they were significantly downregulated at the posttranscriptional level. We further coexpressed those four proteins with 33 core T3Es. To our surprise, multiple effectors were able to significantly decrease the studied protein abundances. In conclusion, our data showed that T3Es of R. solanacearum could subvert potato root immune-related proteins in a redundant manner.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ralstonia solanacearum , Solanum tuberosum , Proteínas de Bactérias/genética , Doenças das Plantas , Proteômica , Sistemas de Secreção Tipo III/genética
8.
Drug Discov Ther ; 14(5): 243-248, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33116038

RESUMO

The bark of Cinnamomum bejolghota (Buch.-Ham.) Sweet (C. bejolghota) is widely used as medicine to treat bacterial diarrhea in Myanmar. We previously reported that the bark extract of C. bejolghota significantly inhibited secretion effector proteins of the type three secretion system (T3SS) in Salmonella. This study is designed to investigate the anti-virulence potential of the C. bejolghota bark extract against Salmonella Typhimuriumin in in vivo and in vitro experiments. The results suggested that the polar fraction Fr.M1 inhibited the secretion of effector proteins SipA, SipB, SipC and SipD without affecting bacteria growth and the translocation of SipC into MDA-MB-231 cells. In addition, Fr.M1 alleviated inflammatory symptoms of mice in Salmonella-infected mouse model. Overall, the results provide evidence for medicinal usage of C. bejolghota bark to treat diarrhea in Myanmar.


Assuntos
Cinnamomum/química , Plantas Medicinais/química , Salmonella typhimurium/efeitos dos fármacos , Sistemas de Secreção Tipo III/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Cinnamomum/efeitos adversos , Cinnamomum/metabolismo , Disenteria/tratamento farmacológico , Feminino , Humanos , Masculino , Camundongos , Modelos Animais , Mianmar/epidemiologia , Plantas Medicinais/efeitos adversos , Plantas Medicinais/metabolismo , Infecções por Salmonella/prevenção & controle , Salmonella typhimurium/metabolismo
9.
Int J Syst Evol Microbiol ; 70(4): 2440-2448, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32100697

RESUMO

Pectobacterium strains isolated from potato stems in Finland, Poland and the Netherlands were subjected to polyphasic analyses to characterize their genomic and phenotypic features. Phylogenetic analysis based on 382 core proteins showed that the isolates clustered closest to Pectobacterium polaris but could be divided into two clades. Average nucleotide identity (ANI) analysis revealed that the isolates in one of the clades included the P. polaris type strain, whereas the second clade was at the border of the species P. polaris with a 96 % ANI value. In silico genome-to-genome comparisons between the isolates revealed values below 70%, patristic distances based on 1294 core proteins were at the level observed between closely related Pectobacterium species, and the two groups of bacteria differed in genome size, G+C content and results of amplified fragment length polymorphism and Biolog analyses. Comparisons between the genomes revealed that the isolates of the atypical group contained SPI-1-type Type III secretion island and genes coding for proteins known for toxic effects on nematodes or insects, and lacked many genes coding for previously characterized virulence determinants affecting rotting of plant tissue by soft rot bacteria. Furthermore, the atypical isolates could be differentiated from P. polaris by their low virulence, production of antibacterial metabolites and a citrate-negative phenotype. Based on the results of a polyphasic approach including genome-to-genome comparisons, biochemical and virulence assays, presented in this report, we propose delineation of the atypical isolates as a novel species Pectobacterium parvum, for which the isolate s0421T (CFBP 8630T=LMG 30828T) is suggested as a type strain.


Assuntos
Pectobacterium/classificação , Filogenia , Solanum tuberosum/microbiologia , Sistemas de Secreção Tipo III , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Finlândia , Países Baixos , Pectobacterium/isolamento & purificação , Doenças das Plantas/microbiologia , Caules de Planta/microbiologia , Polônia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Virulência
10.
Appl Microbiol Biotechnol ; 104(4): 1673-1682, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31897522

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important zoonotic pathogen in public health and food safety. The type III secretion system (T3SS) encoded by Salmonella pathogenicity island (SPI) is a sophisticated molecular machine that facilitates active invasion, intracellular replication, and host inflammation. Due to increasing antibiotic resistance, new therapeutic strategies that target the Salmonella T3SS have received considerable attention. In this study, paeonol was identified as an inhibitor of the S. Typhimurium T3SS. Paeonol significantly blocked the translocation of SipA into host cells and suppressed the expression of effector proteins without affecting bacterial growth in the effective concentration range. Additionally, S. Typhimurium-mediated cell injury and invasion levels were significantly reduced after treatment with paeonol, without cytotoxicity. Most importantly, the comprehensive protective effect of paeonol was confirmed in an S. Typhimurium mouse infection model. Preliminary mechanistic studies suggest that paeonol inhibits the expression of effector proteins by reducing the transcription level of the SPI-1 regulatory pathway gene hilA. This work provides proof that paeonol could be used as a potential drug to treat infections caused by Salmonella.


Assuntos
Acetofenonas/farmacologia , Paeonia/química , Infecções por Salmonella/tratamento farmacológico , Salmonella typhimurium/efeitos dos fármacos , Sistemas de Secreção Tipo III/antagonistas & inibidores , Animais , Carga Bacteriana , Proteínas de Bactérias/antagonistas & inibidores , Translocação Bacteriana/efeitos dos fármacos , Citocinas/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/farmacologia , Transativadores/antagonistas & inibidores , Sistemas de Secreção Tipo III/efeitos dos fármacos
11.
Pest Manag Sci ; 76(7): 2294-2303, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31994325

RESUMO

BACKGROUND: The bacterial type III secretion system (T3SS) is one of the virulence determinants of Gram-negative bacteria through which various effector and virulence proteins are translocated into host cells. RESULTS: We constructed an assay system to screen inhibitors of hrpA gene expression (a structural gene of Hrp pili) in Pseudomonas syringae pv. tomato DC3000. In a plant extract library screening, the root extract of Vitis vinifera L. displayed the most prominent activity. Three resveratrol oligomers, hopeaphenol, isohopeaphenol and ampelopsin A, were identified in grapevine root extract, which significantly reduced the transcription levels of the hrpA, hrpL and hopP1 genes without growth retardation. Additional resveratrol derivatives identified in other plant extracts were also examined for their inhibitory effect on hrpA expression. Another resveratrol oligomer, kobophenol A, also inhibited the transcription of the hrpA gene and other T3SS-related genes, while resveratrol monomers (resveratrol and piceatannol) were not effective. The severity of bacterial specks was reduced by each hopeaphenol, isohopeaphenol and ampelopsin A treatment. CONCLUSION: These results show the potential of resveratrol derivatives as anti-virulence agents for the control of plant diseases.


Assuntos
Pseudomonas syringae , Solanum lycopersicum , Vitis , Proteínas de Bactérias , Proteínas de Ligação a DNA , Doenças das Plantas , Resveratrol , Sistemas de Secreção Tipo III
12.
J Appl Microbiol ; 128(5): 1355-1365, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31869477

RESUMO

AIM: The study was aimed at purifying the active principle from Alpinia officinarum rhizomes responsible for inhibition of swarming motility of Pseudomonas aeruginosa and analysing the mechanism of action. METHODS AND RESULTS: The active compound from methanol extract of A. officinarum was purified by silica gel column chromatography followed by elution from Amberlite resin. The compound 1-(3,5-dihydroxyphenyl)-2-(methylamino)ethan-1-one, inhibited swarming motility at 12·5 µg ml-1 . This inhibition was independent of rhamnolipid production. Real-time PCR analysis showed significant down-regulation of virulence-associated genes including T3SS exoS, exoT and flagella master regulator fleQ. CONCLUSIONS: The compound from A. officinarum inhibited swarming motility and significantly down-regulated the expression of type III secretory system effector genes exoS and exoT and flagellar master regulator fleQ genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The study identifies a potent swarming inhibitory compound from the common medicinal plant A. officinarum and reinstates the potential of plant-derived compounds in tackling virulence properties of pathogenic bacteria.


Assuntos
Alpinia/química , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/química , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Extratos Vegetais/química , Plantas Medicinais/química , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Rizoma/química , Sistemas de Secreção Tipo III/genética , Virulência/genética
13.
Proc Natl Acad Sci U S A ; 116(43): 21758-21768, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591240

RESUMO

Several Bradyrhizobium species nodulate the leguminous plant Aeschynomene indica in a type III secretion system-dependent manner, independently of Nod factors. To date, the underlying molecular determinants involved in this symbiotic process remain unknown. To identify the rhizobial effectors involved in nodulation, we mutated 23 out of the 27 effector genes predicted in Bradyrhizobium strain ORS3257. The mutation of nopAO increased nodulation and nitrogenase activity, whereas mutation of 5 other effector genes led to various symbiotic defects. The nopM1 and nopP1 mutants induced a reduced number of nodules, some of which displayed large necrotic zones. The nopT and nopAB mutants induced uninfected nodules, and a mutant in a yet-undescribed effector gene lost the capacity for nodule formation. This effector gene, widely conserved among bradyrhizobia, was named ernA for "effector required for nodulation-A." Remarkably, expressing ernA in a strain unable to nodulate A. indica conferred nodulation ability. Upon its delivery by Pseudomonas fluorescens into plant cells, ErnA was specifically targeted to the nucleus, and a fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy approach supports the possibility that ErnA binds nucleic acids in the plant nuclei. Ectopic expression of ernA in A. indica roots activated organogenesis of root- and nodule-like structures. Collectively, this study unravels the symbiotic functions of rhizobial type III effectors playing distinct and complementary roles in suppression of host immune functions, infection, and nodule organogenesis, and suggests that ErnA triggers organ development in plants by a mechanism that remains to be elucidated.


Assuntos
Bradyrhizobium/metabolismo , Fabaceae/microbiologia , Organogênese Vegetal/fisiologia , Nodulação/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Bradyrhizobium/genética , Nitrogenase/genética , Nitrogenase/metabolismo , Organogênese Vegetal/genética , Raízes de Plantas/metabolismo , Pseudomonas fluorescens/genética , Simbiose/fisiologia , Sistemas de Secreção Tipo III/metabolismo
14.
Drug Discov Ther ; 13(4): 222-227, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534074

RESUMO

Based on the anti-virulence activity on Salmonella, the ethyl acetate extract (EAE) of Mesua ferrea flower was investigated for its chemical constituents. Ten purified compounds were identified and assayed for their inhibitory activity against Type III secretion system (T3SS) by polyacrylamide gel electrophoresis (SDS-PAGE) and Western blots experiments. We found the biflavonoids, rhusflavanone and mesuaferrone B, exhibited inhibitory effects on the secretion of Salmonella pathogenicity island 1 (SPI-1) effector proteins (SipA, B, C and D) without effecting the bacterial growth. In addition, 5, 6, 6'-trihydroxy-[1,1'-biphenyl]-3,3'-dicarboxylic acid (6) is a new natural product from M. ferrea flower.


Assuntos
Antibacterianos/farmacologia , Biflavonoides/farmacologia , Magnoliopsida/química , Salmonella/efeitos dos fármacos , Antibacterianos/química , Biflavonoides/química , Flores/química , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Salmonella/metabolismo , Salmonella/patogenicidade , Sistemas de Secreção Tipo III/efeitos dos fármacos , Fatores de Virulência/metabolismo
15.
Tree Physiol ; 39(9): 1533-1550, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274160

RESUMO

Rhizobia and legume plants are famous mutualistic symbiosis partners who provide nitrogen nutrition to the natural environment. Rhizobial type III secretion systems (T3SSs) deliver effectors that manipulate the metabolism of eukaryotic host cells. Mesorhizobium amorphae CCNWGS0123 (GS0123) contains two T3SS gene clusters, T3SS-I and T3SS-II. T3SS-I contains all the basal components for an integrated T3SS, and the expression of T3SS-I genes is up-regulated in the presence of flavonoids. In contrast, T3SS-II lacks the primary extracellular elements of T3SSs, and the expression of T3SS-II genes is down-regulated in the presence of flavonoids. Inoculation tests on Robinia pseudoacacia displayed considerable differences in gene expression patterns and levels among roots inoculated with GS0123 and T3SS-deficient mutant (GS0123ΔrhcN1 (GS0123ΔT1), GS0123ΔrhcN2 (GS0123ΔT2) and GS0123ΔrhcN1ΔrhcN2 (GS0123ΔS)). Compared with the GS0123-inoculated plants, GS0123ΔT1-inoculated roots formed very few infection threads and effective nodules, while GS0123ΔT2-inoculated roots formed a little fewer infection threads and effective nodules with increased numbers of bacteroids enclosed in one symbiosome. Moreover, almost no infection threads or effective nodules were observed in GS0123ΔS-inoculated roots. In addition to evaluations of plant immunity signals, we observed that the coexistence of T3SS-I and T3SS-II promoted infection by suppressing host defense response in the reactive oxygen species defense response pathway. Future studies should focus on identifying rhizobial T3SS effectors and their host target proteins.


Assuntos
Mesorhizobium , Robinia , Simbiose , Sistemas de Secreção Tipo III
16.
Mol Plant Pathol ; 20(5): 701-715, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30919570

RESUMO

The type III secretion system (T3SS) is required for Xanthomonas citri subsp. citri (Xcc) virulence by translocating effectors into host cytoplasm to promote disease development. The T3SS is controlled by the master transcriptional regulators HrpG and HrpX. While the function of HrpG and HrpX are well characterized, their upstream regulation remains elusive. By using transposon mutagenesis, we identified XAC3052, a TetR-family transcriptional regulator, which regulates T3SS gene expression. Deletion of XAC3052 caused significant reduction in the expression of T3SS and effector genes in vitro and in planta; as well as reduction of virulence in sweet orange (Citrus sinensis). Overexpression of hrpG restored the virulence of ∆XAC3052, suggesting that the loss of virulence is caused by reduction of T3SS gene expression. XAC3052 directly binds to the promoter region and represses the transcription of fadE, mhpC and fadH genes. FadE, MhpC and FadH are not involved in T3SS regulation, but involved in fatty acid catabolism. ∆XAC3052 displays altered fatty acid composition and retarded growth in environments limited in fatty acids. Exogenously supplemented long-chain fatty acids activate the fadE/mhpC promoter and suppress T3SS promoters in wild-type Xac but not in ∆XAC3052. Moreover, the binding of XAC3052 to its target promoter was disrupted by long-chain fatty acids in vitro. Herein, XAC3052 is designated as TfmR (T3SS and Fatty acid Mechanism Regulator). This study identifies a novel regulator of fatty acid metabolism and suggests that fatty acids play an important role in the metabolic control of virulence in Xcc.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/farmacologia , Fatores de Transcrição/metabolismo , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Ácidos Graxos/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Óperon/genética , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Virulência/efeitos dos fármacos , Xanthomonas/efeitos dos fármacos , Xanthomonas/genética
17.
Gut Microbes ; 10(5): 615-630, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30712505

RESUMO

Shigella is one of the major enteric pathogens worldwide. We present a murine model of S. flexneri infection and investigate the role of zinc deficiency (ZD). C57BL/6 mice fed either standard chow (HC) or ZD diets were pretreated with an antibiotic cocktail and received S. flexneri strain 2457T orally. Antibiotic pre-treated ZD mice showed higher S. flexneri colonization than non-treated mice. ZD mice showed persistent colonization for at least 50 days post-infection (pi). S. flexneri-infected mice showed significant weight loss, diarrhea and increased levels of fecal MPO and LCN in both HC and ZD fed mice. S. flexneri preferentially colonized the colon, caused epithelial disruption and inflammatory cell infiltrate, and promoted cytokine production which correlated with weight loss and histopathological changes. Infection with S. flexneri ΔmxiG (critical for type 3 secretion system) did not cause weight loss or diarrhea, and had decreased stool shedding duration and tissue burden. Several biochemical changes related to energy, inflammation and gut-microbial metabolism were observed. Zinc supplementation increased weight gains and reduced intestinal inflammation and stool shedding in ZD infected mice. In conclusion, young antibiotic-treated mice provide a new model of oral S. flexneri infection, with ZD promoting prolonged infection outcomes.


Assuntos
Diarreia/patologia , Modelos Animais de Doenças , Disenteria Bacilar/patologia , Shigella flexneri/patogenicidade , Zinco/deficiência , Animais , Antibacterianos/administração & dosagem , Peso Corporal , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Diarreia/tratamento farmacológico , Diarreia/metabolismo , Diarreia/microbiologia , Disenteria Bacilar/tratamento farmacológico , Disenteria Bacilar/metabolismo , Disenteria Bacilar/microbiologia , Fezes/enzimologia , Fezes/microbiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Metaboloma , Camundongos Endogâmicos C57BL , Mutação , Shigella flexneri/genética , Shigella flexneri/crescimento & desenvolvimento , Sistemas de Secreção Tipo III/genética
18.
Mol Plant Pathol ; 20(1): 20-32, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30062690

RESUMO

The identification of chemical compounds that prevent and combat bacterial diseases is fundamental for crop production. Bacterial virulence inhibitors are a promising alternative to classical control treatments, because they have a low environmental impact and are less likely to generate bacterial resistance. The major virulence determinant of most animal and plant bacterial pathogens is the type III secretion system (T3SS). In this work, we screened nine plant extracts and 12 isolated compounds-including molecules effective against human pathogens-for their capacity to inhibit the T3SS of plant pathogens and for their applicability as virulence inhibitors for crop protection. The screen was performed using a luminescent reporter system developed in the model pathogenic bacterium Ralstonia solanacearum. Five synthetic molecules, one natural product and two plant extracts were found to down-regulate T3SS transcription, most through the inhibition of the regulator hrpB. In addition, for three of the molecules, corresponding to salicylidene acylhydrazide derivatives, the inhibitory effect caused a dramatic decrease in the secretion capacity, which was translated into impaired plant responses. These candidate virulence inhibitors were then tested for their ability to protect plants. We demonstrated that salicylidene acylhydrazides can limit R. solanacearum multiplication in planta and protect tomato plants from bacterial speck caused by Pseudomonas syringae pv. tomato. Our work validates the efficiency of transcription reporters to discover compounds or natural product extracts that can be potentially applied to prevent bacterial plant diseases.


Assuntos
Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Sistemas de Secreção Tipo III , Anidridos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Ralstonia solanacearum/efeitos dos fármacos , Ralstonia solanacearum/genética , Ralstonia solanacearum/crescimento & desenvolvimento , Transcrição Gênica/efeitos dos fármacos , Sistemas de Secreção Tipo III/efeitos dos fármacos , Sistemas de Secreção Tipo III/genética
19.
Chem Biol Drug Des ; 91(3): 717-727, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29068165

RESUMO

Chlamydia trachomatis is a widespread sexually transmitted pathogen that resides within a special vacuole inside host cells. Although acute infection can be treated with antibiotics, chlamydia can enter persistent state, leading to chronic infection that is difficult to cure. Thus, novel anti-chlamydial compounds active against persistent chlamydia are required. Chlamydiae rely upon type III secretion system (T3SS) to inject effector proteins into host cell cytoplasm, and T3SS inhibitors are viewed as promising compounds for treatment of chlamydial infections. C. trachomatis ATPase SctN is an important T3SS component and has not been targeted before. We thus used virtual screening against homology modeled SctN structure to search for SctN inhibitors. Selected compounds were tested for their ability to inhibit chlamydial survival and development within eukaryotic cells, and for the ability to suppress normal T3SS functioning. We identified two compounds that were able to block normal protein translocation through T3SS and inhibit chlamydial survival within eukaryotic cells in 50-100 µm concentrations. These two novel T3SS inhibitors also possessed relatively low toxicity toward eukaryotic cells. A small series of derivatives was further synthesized for the most active of two inhibitors to probe SAR properties.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antibacterianos , Proteínas de Bactérias/antagonistas & inibidores , Chlamydia trachomatis/metabolismo , Inibidores Enzimáticos , Sistemas de Secreção Tipo III/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Linhagem Celular , Infecções por Chlamydia/tratamento farmacológico , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/patologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Sistemas de Secreção Tipo III/metabolismo
20.
J Am Chem Soc ; 138(7): 2209-18, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26847396

RESUMO

Traditional Chinese Medicines (TCMs) have been historically used to treat bacterial infections. However, the molecules responsible for these anti-infective properties and their potential mechanisms of action have remained elusive. Using a high-throughput assay for type III protein secretion in Salmonella enterica serovar Typhimurium, we discovered that several TCMs can attenuate this key virulence pathway without affecting bacterial growth. Among the active TCMs, we discovered that baicalein, a specific flavonoid from Scutellaria baicalensis, targets S. Typhimurium pathogenicity island-1 (SPI-1) type III secretion system (T3SS) effectors and translocases to inhibit bacterial invasion of epithelial cells. Structurally related flavonoids present in other TCMs, such as quercetin, also inactivated the SPI-1 T3SS and attenuated S. Typhimurium invasion. Our results demonstrate that specific plant metabolites from TCMs can directly interfere with key bacterial virulence pathways and reveal a previously unappreciated mechanism of action for anti-infective medicinal plants.


Assuntos
Antibacterianos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Plantas Medicinais/química , Salmonella typhimurium/efeitos dos fármacos , Sistemas de Secreção Tipo III/metabolismo , Antibacterianos/química , Antibacterianos/isolamento & purificação , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Estrutura Molecular , Salmonella typhimurium/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA