Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(11): 2564-2579, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37622480

RESUMO

The type VI secretion system (T6SS) is a contractile nanomachine widespread in Gram-negative bacteria. The T6SS injects effectors into target cells including eukaryotic hosts and competitor microbial cells and thus participates in pathogenesis and intermicrobial competition. Pseudomonas fluorescens MFE01 possesses a single T6SS gene cluster that confers biocontrol properties by protecting potato tubers against the phytopathogen Pectobacterium atrosepticum (Pca). Here, we demonstrate that a functional T6SS is essential to protect potato tuber by reducing the pectobacteria population. Fluorescence microscopy experiments showed that MFE01 displays an aggressive behaviour with an offensive T6SS characterized by continuous and intense T6SS firing activity. Interestingly, we observed that T6SS firing is correlated with rounding of Pectobacterium cells, suggesting delivery of a potent cell wall targeting effector. Mutagenesis coupled with functional assays then revealed that a putative T6SS secreted amidase, Tae3Pf , is mainly responsible for MFE01 toxicity towards Pca. Further studies finally demonstrated that Tae3Pf is toxic when produced in the periplasm, and that its toxicity is counteracted by the Tai3Pf inner membrane immunity protein.


Assuntos
Pectobacterium , Pseudomonas fluorescens , Solanum tuberosum , Sistemas de Secreção Tipo VI , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Mutagênese , Pectobacterium/genética , Pectobacterium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-29868510

RESUMO

Francisella tularensis is the causative agent of tularemia and a Tier I bioterrorism agent. In the 1900s, several vaccines were developed against tularemia including the killed "Foshay" vaccine, subunit vaccines comprising F. tularensis protein(s) or lipoproteins(s) in an adjuvant formulation, and the F. tularensis Live Vaccine Strain (LVS); none were licensed in the U.S.A. or European Union. The LVS vaccine retains toxicity in humans and animals-especially mice-but has demonstrated efficacy in humans, and thus serves as the current gold standard for vaccine efficacy studies. The U.S.A. 2001 anthrax bioterrorism attack spawned renewed interest in vaccines against potential biowarfare agents including F. tularensis. Since live attenuated-but not killed or subunit-vaccines have shown promising efficacy and since vaccine efficacy against respiratory challenge with less virulent subspecies holarctica or F. novicida, or against non-respiratory challenge with virulent subsp. tularensis (Type A) does not reliably predict vaccine efficacy against respiratory challenge with virulent subsp. tularensis, the route of transmission and species of greatest concern in a bioterrorist attack, in this review, we focus on live attenuated tularemia vaccine candidates tested against respiratory challenge with virulent Type A strains, including homologous vaccines derived from mutants of subsp. holarctica, F. novicida, and subsp. tularensis, and heterologous vaccines developed using viral or bacterial vectors to express F. tularensis immunoprotective antigens. We compare the virulence and efficacy of these vaccine candidates with that of LVS and discuss factors that can significantly impact the development and evaluation of live attenuated tularemia vaccines. Several vaccines meet what we would consider the minimum criteria for vaccines to go forward into clinical development-safety greater than LVS and efficacy at least as great as LVS, and of these, several meet the higher standard of having efficacy ≥LVS in the demanding mouse model of tularemia. These latter include LVS with deletions in purMCD, sodBFt , capB or wzy; LVS ΔcapB that also overexpresses Type VI Secretion System (T6SS) proteins; FSC200 with a deletion in clpB; the single deletional purMCD mutant of F. tularensis SCHU S4, and a heterologous prime-boost vaccine comprising LVS ΔcapB and Listeria monocytogenes expressing T6SS proteins.


Assuntos
Vacinas Bacterianas , Francisella tularensis/patogenicidade , Tularemia/prevenção & controle , Vacinas Atenuadas/farmacologia , Animais , Cápsulas Bacterianas/genética , Proteínas de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/farmacocinética , Bioterrorismo , Modelos Animais de Doenças , Francisella tularensis/genética , Proteínas de Choque Térmico/genética , Humanos , Lipoproteínas/genética , Listeria monocytogenes/genética , Camundongos , Estresse Oxidativo/genética , Deleção de Sequência , Superóxido Dismutase/genética , Tularemia/imunologia , Tularemia/microbiologia , Sistemas de Secreção Tipo VI/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas de Subunidades Antigênicas , Virulência
3.
Microbiologyopen ; 7(2): e00559, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29314727

RESUMO

The proteobacteria Variovorax sp. WDL1, Comamonas testosteroni WDL7, and Hyphomicrobium sulfonivorans WDL6 compose a triple-species consortium that synergistically degrades and grows on the phenylurea herbicide linuron. To acquire a better insight into the interactions between the consortium members and the underlying molecular mechanisms, we compared the transcriptomes of the key biodegrading strains WDL7 and WDL1 grown as biofilms in either isolation or consortium conditions by differential RNAseq analysis. Differentially expressed pathways and cellular systems were inferred using the network-based algorithm PheNetic. Coculturing affected mainly metabolism in WDL1. Significantly enhanced expression of hylA encoding linuron hydrolase was observed. Moreover, differential expression of several pathways involved in carbohydrate, amino acid, nitrogen, and sulfur metabolism was observed indicating that WDL1 gains carbon and energy from linuron indirectly by consuming excretion products from WDL7 and/or WDL6. Moreover, in consortium conditions, WDL1 showed a pronounced stress response and overexpression of cell to cell interaction systems such as quorum sensing, contact-dependent inhibition, and Type VI secretion. Since the latter two systems can mediate interference competition, it prompts the question if synergistic linuron degradation is the result of true adaptive cooperation or rather a facultative interaction between bacteria that coincidentally occupy complementary metabolic niches.


Assuntos
Compostos de Anilina/metabolismo , Comamonadaceae/metabolismo , Herbicidas/metabolismo , Hyphomicrobium/metabolismo , Linurona/metabolismo , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Comamonadaceae/genética , Regulação Bacteriana da Expressão Gênica/genética , Hidrolases/genética , Hyphomicrobium/genética , Transcriptoma/genética , Sistemas de Secreção Tipo VI/genética
4.
PLoS Pathog ; 11(7): e1005020, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26134274

RESUMO

Type VI secretion systems (T6SSs) are widespread multi-component machineries that translocate effectors into either eukaryotic or prokaryotic cells, for virulence or for interbacterial competition. Herein, we report that the T6SS-4 from Yersinia pseudotuberculosis displays an unexpected function in the transportation of Zn2+ to combat diverse stresses and host immunity. Environmental insults such as oxidative stress induce the expression of T6SS-4 via OxyR, the transcriptional factor that also regulates many oxidative response genes. Zinc transportation is achieved by T6SS-4-mediated translocation of a novel Zn2+-binding protein substrate YezP (YPK_3549), which has the capacity to rescue the sensitivity to oxidative stress exhibited by T6SS-4 mutants when added to extracellular milieu. Disruption of the classic zinc transporter ZnuABC together with T6SS-4 or yezP results in mutants that almost completely lost virulence against mice, further highlighting the importance of T6SS-4 in resistance to host immunity. These results assigned an unconventional role to T6SSs, which will lay the foundation for studying novel mechanisms of metal ion uptake by bacteria and the role of this process in their resistance to host immunity and survival in harmful environments.


Assuntos
Adaptação Fisiológica/imunologia , Sistemas de Secreção Tipo VI/metabolismo , Infecções por Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/patogenicidade , Animais , Western Blotting , Ensaio de Desvio de Mobilidade Eletroforética , Camundongos , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/imunologia , Sistemas de Secreção Tipo VI/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA