Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1357072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638435

RESUMO

Introduction: Clostridium perfringens α toxin is a main virulence factor responsible for gut damage in animals. Arginine is a functional amino acid exhibiting significant immunoregulatory activities. However, the effects and immunoregulatory mechanisms of arginine supplementation on α toxin-induced intestinal injury remain unclear. Methods: In vivo, 256 male Arbor Acres chickens were randomly assigned to a 2×2 factorial arrangement, involving diet treatments (with or without 0.3% arginine supplementation) and immunological stress (with or without α toxin challenge). In vitro, IEC-6 cells were treated with or without arginine in the presence or absence of α toxin. Moreover, IEC-6 cells were transfected with siRNA targeting mTOR and SLC38A9 to explore the underlying mechanisms. Results and discussion: The results showed that in vivo, arginine supplementation significantly alleviated the α toxin-induced growth performance impairment, decreases in serum immunoglobulin (Ig)A and IgG levels, and intestinal morphology damage. Arginine supplementation also significantly reduced the α toxin-induced increase in jejunal proinflammatory cytokines interleukin (IL)-1ß, IL-6 and IL-17 mRNA expression. Clostridium perfringens α toxin significantly decreased jejunal mechanistic target of rapamycin (mTOR) and solute carrier family 38 member 9 (SLC38A9) mRNA expression, while arginine supplementation significantly increased mTOR and SLC38A9 mRNA expression. In vitro, arginine pretreatment mitigated the α toxin-induced decrease in cell viability and the increase in cytotoxicity and apoptosis. Arginine pretreatment also alleviated the α toxin-induced upregulation of mRNA expression of inflammation-related cytokines IL-6, C-X-C motif chemokine ligand (CXCL)10, CXCL11 and transforming growth factor-ß (TGF-ß), as well as apoptosis-related genes B-cell lymphoma-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-XL) and cysteinyl aspartate specific proteinase 3 (Caspase-3) and the ratio of Bax to Bcl-2. Arginine pretreatment significantly increased the α toxin-induced decrease in mTOR, SLC38A9, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and ribosomal protein S6 kinase (S6K) mRNA expression. Knockdown SLC38A9 and mTOR largely abrogated the positive effects of arginine pretreatment on α toxin-induced intracellular changes. Furthermore, SLC38A9 silencing abolished the increased mTOR mRNA expression caused by arginine pretreatment. In conclusion, arginine administration attenuated α toxin-induced intestinal injury in vivo and in vitro, which could be associated with the downregulation of inflammation via regulating SLC38A9/mTORC1 pathway.


Assuntos
Arginina , Toxinas Bacterianas , Proteínas de Ligação ao Cálcio , Interleucina-6 , Fosfolipases Tipo C , Animais , Masculino , Arginina/farmacologia , Toxinas Bacterianas/toxicidade , Proteína X Associada a bcl-2 , Galinhas/genética , Inflamação , Alvo Mecanístico do Complexo 1 de Rapamicina , RNA Mensageiro/genética , Serina-Treonina Quinases TOR/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762256

RESUMO

This study investigated whether dietary supplementation with magnolol affects growth performance, anti-inflammatory abilities, serum and muscle amino acid profiles, and metabolisms in growing pigs. A total of 42 seventy-days-old growing barrows (Duroc × Landrace × Yorkshire) were randomly allocated into two dietary groups: Con, control group (basal diet); and Mag, magnolol group (basal diet supplemented with 400 mg/kg of magnolol). The results revealed that dietary supplementation with magnolol had no effect (p > 0.05) on growth performance. However, magnolol supplementation remarkably increased (p < 0.05) the serum content of albumin, total protein, immunoglobulin G, immunoglobulin M, and interleukin-22. In addition, dietary magnolol supplementation altered the amino acid (AA) profiles in serum and dorsal muscle and particularly increased (p < 0.05) the serum content of arginine and muscle glutamate. Simultaneously, the mRNA expression of genes associated with AA transport in jejunum (SLC38A2, SLC1A5, and SLC7A1) and ileum (SLC1A5 and SLC7A1) was higher (p < 0.05) in the Mag group than in the Con group. Additionally, the serum metabolomics analysis showed that the addition of magnolol significantly enhanced (p < 0.05) arginine biosynthesis, as well as D-glutamine and D-glutamate metabolism. Overall, these results suggested that dietary supplementation with magnolol has the potential to improve the accumulation of AAs, protein synthesis, immunity, and body health in growing pigs by increasing intestinal absorption and the transport of AAs.


Assuntos
Aminoácidos , Ácido Glutâmico , Suínos , Animais , Homeostase , Arginina , Sistemas de Transporte de Aminoácidos , Suplementos Nutricionais , Expressão Gênica
3.
Poult Sci ; 102(8): 102774, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302324

RESUMO

This study investigated the effects of dietary isoleucine (Ile) on growth performance, intestinal expression of amino acid transporters, protein metabolism-related genes and intestinal microbiota in starter phase Chinese yellow-feathered chickens. Female Xinguang yellow-feathered chickens (n = 1,080, aged 1 d) were randomly distributed to 6 treatments, each with 6 replicates of 30 birds. Chickens were fed diets with 6 levels of total Ile (6.8, 7.6, 8.4, 9.2, 10.0, and 10.8 g/kg) for 30 d. The average daily gain and feed conversion ratio were improved with dietary Ile levels (P < 0.05). Plasma uric acid content and glutamic-oxalacetic transaminase activity were linearly and quadratically decreased with increasing dietary Ile inclusion (P < 0.05). Dietary Ile level had a linear (P < 0.05) or quadratic (P < 0.05) effect on the jejunal expression of ribosomal protein S6 kinase B1 and eukaryotic translation initiation factor 4E binding protein 1. The relative expression of jejunal 20S proteasome subunit C2 and ileal muscle ring finger-containing protein 1 decreased linearly (P < 0.05) and quadratically (P < 0.05) with increasing dietary Ile levels. Dietary Ile level had a linear (P = 0.069) or quadratic (P < 0.05) effect on the gene expression of solute carrier family 15 member 1 in jejunum and solute carrier family 7 member 1 in ileum. In addition, bacterial 16S rDNA full-length sequencing showed that dietary Ile increased the cecal abundances of the Firmicutes phylum, and Blautia, Lactobacillus, and unclassified_Lachnospiraceae genera, while decreased that of Proteobacteria, Alistipes, and Shigella. Dietary Ile levels affected growth performance and modulated gut microbiota in yellow-feathered chickens. The appropriate level of dietary Ile can upregulate the expression of intestinal protein synthesis-related protein kinase genes and concomitantly inhibit the expression of proteolysis-related cathepsin genes.


Assuntos
Galinhas , Microbioma Gastrointestinal , Animais , Feminino , Galinhas/fisiologia , Suplementos Nutricionais/análise , Isoleucina , Dieta/veterinária , Sistemas de Transporte de Aminoácidos/genética , Ração Animal/análise
4.
Poult Sci ; 102(3): 102477, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36680861

RESUMO

Our previous study demonstrated that the zinc (Zn) proteinate with moderate chelation strength (Zn-Prot M) enhanced the Zn absorption in the small intestine partially via increasing the expression of some Zn and amino acid transporters in the duodenum of broilers. However, it remains unknown whether the Zn-Prot M could also regulate the expression of related transporters in the jejunum and ileum of broilers in the above enhancement of Zn absorption. The present study was conducted to investigate the effect of the Zn-Prot M on the expression of related transporters in the jejunum and ileum of broilers compared to the Zn sulfate (ZnS). Zinc-deficient broilers (13-d-old) were fed with the Zn-unsupplemented basal diets (control) or the basal diets supplemented with 60 mg Zn/kg as ZnS or Zn-Prot M for 26 d. The results showed that in the jejunum, compared to the control, supplementation of the organic or inorganic Zn increased (P < 0.05) mRNA and protein expression of b0,+-type amino acid transporter (rBAT), Zn transporter 10 (ZnT10), and peptide-transporter 1 (PepT1) mRNA expression and Zn transporter 7 (ZnT7) protein expression on d 28, while y+L-type amino transporter 2 (y+LAT2) mRNA and protein expression, and protein expression of ZnT7 and ZnT10 on 28 d and zrt-irt-like protein 3 (ZIP3) and zrt-irt-like protein 5 (ZIP5) on d 39 were higher (P < 0.05) for Zn-Prot M than for ZnS. In the ileum, Zn addition regardless of Zn source up-regulated (P < 0.05) mRNA expression of Zn transporter 9 (ZnT9) and ZIP3, ZIP5, and y+LAT2 protein expression on d 28, and PepT1 mRNA and protein expression, ZIP3 and y+LAT2 mRNA expression and ZnT10 protein expression on d 39. Furthermore, Zn transporter 4 (ZnT4) and ZnT9 mRNA expression and Zn transporter 1 (ZnT1) protein expression on d 28, and y+LAT2 mRNA expression and ZnT10 and PepT1 protein expression on d 39 were higher (P < 0.05) for Zn-Prot M than for ZnS. It was concluded that the Zn-Prot M enhanced the expression of the ZnT1, ZnT4, ZnT9, ZnT10, ZIP3, ZIP5, y+LAT2, and PepT1 in the jejunum or ileum of broilers compared to the ZnS.


Assuntos
Galinhas , Jejuno , Compostos Organometálicos , Zinco , Animais , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Galinhas/genética , Galinhas/metabolismo , Íleo/metabolismo , Jejuno/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Zinco/metabolismo , Compostos Organometálicos/metabolismo
5.
Food Funct ; 13(20): 10401-10414, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36148811

RESUMO

Rutin, a naturally derived flavonoid molecule with known neuroprotective properties, has been demonstrated to have anticonvulsive potential, but the mechanism of this effect is still unclear. The current study aimed to investigate the probable antiseizure mechanisms of rutin in rats using the kainic acid (KA) seizure model. Rutin (50 and 100 mg kg-1) and carbamazepine (100 mg kg-1) were administered daily by oral gavage for 7 days before KA (15 mg kg-1) intraperitoneal (i.p.) injection. Seizure behavior, neuronal cell death, glutamate concentration, excitatory amino acid transporters (EAATs), glutamine synthetase (GS), glutaminase, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1 and GluA2, N-methyl-D-aspartate (NMDA) receptor subunits GluN2A and GluN2B, activated astrocytes, and inflammatory and anti-inflammatory molecules in the hippocampus were evaluated. Supplementation with rutin attenuated seizure severity in KA-treated rats and reversed KA-induced neuronal loss and glutamate elevation in the hippocampus. Decreased glutaminase and GluN2B, and increased EAATs, GS, GluA1, GluA2 and GluN2A were observed with rutin administration. Rutin pretreatment also suppressed activated astrocytes, downregulated the protein levels of inflammatory molecules [interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), high mobility group Box 1 (HMGB1), interleukin-1 receptor 1 (IL-1R1), and Toll-like receptor-4 (TLR-4)] and upregulated anti-inflammatory molecule interleukin-10 (IL-10) protein expression. Taken together, the results indicate that the preventive treatment of rats with rutin attenuated KA-induced seizures and neuronal loss by decreasing glutamatergic hyperactivity and suppressing the IL-1R1/TLR4-related neuroinflammatory cascade.


Assuntos
Proteína HMGB1 , Ácido Caínico , Sistemas de Transporte de Aminoácidos , Animais , Anti-Inflamatórios/farmacologia , Carbamazepina , Glutamato-Amônia Ligase/metabolismo , Glutamato-Amônia Ligase/farmacologia , Ácido Glutâmico/metabolismo , Glutaminase/genética , Glutaminase/metabolismo , Glutaminase/farmacologia , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Hipocampo/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ácido Caínico/efeitos adversos , N-Metilaspartato/efeitos adversos , N-Metilaspartato/metabolismo , Ratos , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/uso terapêutico , Rutina/metabolismo , Rutina/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/efeitos adversos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
6.
Int J Biol Macromol ; 217: 330-344, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35839952

RESUMO

Tartary buckwheat (Fagopyrum tataricum L. Gaertn., TB) is an ancient minor crop and an important food source for humans to supplement nutrients such as flavonoids and essential amino acids. Amino acid transporters (AATs) play critical roles in plant growth and development through the transport of amino acids. In this study, 104 AATs were identified in TB genome and divided into 11 subfamilies by phylogenetic relationships. Tandem and segmental duplications promoted the expansion of FtAAT gene family, and the variations of gene sequence, protein structure and expression pattern were the main reasons for the functional differentiation of FtAATs. Based on RNA-seq and qRT-PCR, the expression patterns of FtAATs in different tissues and under different abiotic stresses were analyzed, and several candidate FtAATs that might affect grain development and response to abiotic stresses were identified, such as FtAAP12 and FtCAT7. Finally, combined with the previous studies, the expression patterns and phylogenetic relationships of AATs in multiple species, the functions of multiple high-confidence FtAAT genes were predicted, and the schematic diagram of FtAATs in TB was initially drawn. Overall, this work provided a framework for further functional analysis of FtAAT genes and important clues for the improvement of TB quality and stress resistance.


Assuntos
Fagopyrum , Sistemas de Transporte de Aminoácidos/genética , Fagopyrum/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Filogenia , Proteínas de Plantas/metabolismo
8.
Nat Commun ; 13(1): 1151, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241668

RESUMO

Autism spectrum disorder (ASD), a group of neurodevelopmental disorders characterized by social communication deficits and stereotyped behaviors, may be associated with changes to the gut microbiota. However, how gut commensal bacteria modulate brain function in ASD remains unclear. Here, we used chromodomain helicase DNA-binding protein 8 (CHD8) haploinsufficient mice as a model of ASD to elucidate the pathways through which the host and gut microbiota interact with each other. We found that increased levels of amino acid transporters in the intestines of the mouse model of ASD contribute to the high level of serum glutamine and the increased excitation/inhibition (E/I) ratio in the brain. In addition, elevated α-defensin levels in the haploinsufficient mice resulted in dysregulation of the gut microbiota characterized by a reduced abundance of Bacteroides. Furthermore, supplementation with Bacteroides uniformis improved the ASD-like behaviors and restored the E/I ratio in the brain by decreasing intestinal amino acid transport and the serum glutamine levels. Our study demonstrates associations between changes in the gut microbiota and amino acid transporters, and ASD-like behavioral and electrophysiology phenotypes, in a mouse model.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Microbiota , Sistemas de Transporte de Aminoácidos/genética , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Glutamina , Camundongos
9.
Nutrients ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36615799

RESUMO

The intestine is a key organ for the absorption of amino acids. L-theanine (LTA) is a structural analog of glutamine and a characteristic non-protein amino acid found in tea (Camellia sinensis) that regulates lipid and protein metabolism. The present study explored the role of LTA in intestinal amino acid absorption, protein synthesis, and its mechanisms. Overall, our findings suggest that LTA supplementation not only affects serum alkaline phosphatase (AKP), total protein (TP), and urea nitrogen (BUN) levels, but it also upregulates the mRNA and protein expression of amino acid transporters (EAAT3, EAAT1, 4F2hc, y+LAT1, CAT1, ASCT2, and B0AT1), and activates the mTOR signaling pathway. The downstream S6 and S6K1 proteins are regulated, and the expression of amino acid transporters is regulated. These findings suggest that LTA increases intestinal AA absorption, promotes protein metabolism, and increases nitrogen utilization by upregulating AAT expression, activating the mTOR signaling pathway, and phosphorylating the mTOR downstream proteins S6 and S6K1.


Assuntos
Aminoácidos , Jejuno , Camundongos , Animais , Jejuno/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Transdução de Sinais , Duodeno/metabolismo , Nitrogênio/metabolismo
10.
Cells ; 10(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34685533

RESUMO

Arginine plays an important role in the regulation of the target of the rapamycin (TOR) signaling pathway, and Solute Carrier Family 38 Member 9 (SLC38A9) was identified to participate in the amino acid-dependent activation of TOR in humans. However, the regulations of arginine on the TOR signaling pathway in abalone are still unclear. In this study, slc38a9 of abalone was cloned, and the slc38a9 was knocked down and overexpressed to explore its function in the regulation of the TOR signaling pathway. The results showed that knockdown of slc38a9 decreased the expression of tor, ribosomal s6 protein kinase (s6k) and eukaryotic translation initiation factor 4e (eif4e) and inhibited the activation of the TOR signaling pathway by arginine. Overexpression of slc38a9 up-regulated the expression of TOR-related genes. In addition, hemocytes of abalone were treated with 0, 0.2, 0.5, 1, 2 and 4 mmol/L of arginine, and abalones were fed diets with 1.17%, 1.68% and 3.43% of arginine, respectively, for 120 days. Supplementation of arginine (0.5-4 mmol/L) increased the expressions of slc38a9, tor, s6k and eif4e in hemocytes, and abalone fed with 1.68% of dietary arginine showed higher mRNA levels of slc38a9, tor, s6k and eif4e and phosphorylation levels of TOR, S6 and 4E-BP. In conclusion, the TOR signaling pathway of abalone can be regulated by arginine, and SLC38A9 plays an essential role in this regulation.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Arginina/metabolismo , Gastrópodes/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Humanos , Transdução de Sinais
11.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502151

RESUMO

The blood-brain barrier (BBB) is key to establishing and maintaining homeostasis in the central nervous system (CNS); meningitis bacterial infection can disrupt the integrity of BBB by inducing an inflammatory response. The changes in the cerebral uptake of amino acids may contribute to inflammatory response during infection and were accompanied by high expression of amino acid transporters leading to increased amino acid uptake. However, it is unclear whether amino acid uptake is changed and how to affect inflammatory responses in mouse brain microvascular endothelial (bEnd.3) cells in response to Avian Pathogenic Escherichia coli TW-XM (APEC XM) infection. Here, we firstly found that APEC XM infection could induce serine (Ser) and glutamate (Glu) transport from extracellular into intracellular in bEnd.3 cells. Meanwhile, we also shown that the expression sodium-dependent neutral amino acid transporter 2 (SNAT2) for Ser and excitatory amino acid transporter 4 (EAAT4) for Glu was also significantly elevated during infection. Then, in amino acid deficiency or supplementation medium, we found that Ser or Glu transport were involving in increasing SNAT2 or EAAT4 expression, mTORC1 (mechanistic target of rapamycin complex 1) activation and inflammation, respectively. Of note, Ser or Glu transport were inhibited after SNAT2 silencing or EAAT4 silencing, resulting in inhibition of mTORC1 pathway activation, and inflammation compared with the APEC XM infection group. Moreover, pEGFP-SNAT2 overexpression and pEGFP-EAAT4 overexpression in bEnd.3 cells all could promote amino acid uptake, activation of the mTORC1 pathway and inflammation during infection. We further found mTORC1 silencing could inhibit inflammation, the expression of SNAT2 and EAAT4, and amino acid uptake. Taken together, our results demonstrated that APEC TW-XM infection can induce Ser or Glu uptake depending on amino acid transporters transportation, and then activate amino acid-mTORC1 pathway to induce inflammation in bEnd.3 cells.


Assuntos
Aminoácidos/metabolismo , Doenças das Aves/metabolismo , Doenças das Aves/microbiologia , Escherichia coli , Inflamação/veterinária , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais , Ácido Glutâmico/metabolismo , Camundongos , Serina/metabolismo
12.
Plant J ; 107(6): 1616-1630, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216173

RESUMO

Glutamine is a product of ammonium (NH4+ ) assimilation catalyzed by glutamine synthetase (GS) and glutamate synthase (GOGAT). The growth of NH4+ -preferring paddy rice (Oryza sativa L.) depends on root NH4+ assimilation and the subsequent root-to-shoot allocation of glutamine; however, little is known about the mechanism of glutamine storage in roots. Here, using transcriptome and reverse genetics analyses, we show that the rice amino acid transporter-like 6 (OsATL6) protein exports glutamine to the root vacuoles under NH4+ -replete conditions. OsATL6 was expressed, along with OsGS1;2 and OsNADH-GOGAT1, in wild-type (WT) roots fed with sufficient NH4 Cl, and was induced by glutamine treatment. We generated two independent Tos17 retrotransposon insertion mutants showing reduced OsATL6 expression to determine the function of OsATL6. Compared with segregants lacking the Tos17 insertion, the OsATL6 knock-down mutant seedlings exhibited lower root glutamine content but higher glutamine concentration in the xylem sap and greater shoot growth under NH4+ -replete conditions. The transient expression of monomeric red fluorescent protein-fused OsATL6 in onion epidermal cells confirmed the tonoplast localization of OsATL6. When OsATL6 was expressed in Xenopus laevis oocytes, glutamine efflux from the cell into the acidic bath solution increased. Under sufficient NH4+ supply, OsATL6 transiently accumulated in sclerenchyma and pericycle cells, which are located adjacent to the Casparian strip, thus obstructing the apoplastic solute path, and in vascular parenchyma cells of WT roots before the peak accumulation of GS1;2 and NADH-GOGAT1 occurred. These findings suggest that OsATL6 temporarily stores excess glutamine, produced by NH4+ assimilation, in root vacuoles before it can be translocated to the shoot.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Glutamina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Amônia/metabolismo , Cloreto de Amônio/farmacologia , Animais , Feminino , Regulação da Expressão Gênica de Plantas , Homeostase , Mutação , Cebolas/citologia , Cebolas/genética , Oócitos/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Vacúolos/metabolismo , Xenopus laevis
13.
J Biol Chem ; 296: 100418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33837730

RESUMO

The nicotianamine-iron chelate [NA-Fe2+], which is found in many plant-based foods, has been recently described as a new form of bioavailable iron in mice and chickens. How NA-Fe2+ is assimilated from the diet, however, remains unclear. The current investigation by Murata et al. has identified the proton-coupled amino acid transporter 1 (PAT1) as the main mechanism by which NA-Fe2+ is absorbed in the mammalian intestine. Discovery of this new form of dietary iron and elucidation of its pathway of intestinal absorption may lead to the development of improved iron supplementation approaches.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Quelantes de Ferro/metabolismo , Simportadores/metabolismo , Animais , Ácido Azetidinocarboxílico/metabolismo , Absorção Intestinal , Ferro da Dieta/metabolismo , Camundongos , Xenopus
14.
Artigo em Inglês | MEDLINE | ID: mdl-33657457

RESUMO

Replacement of fishmeal as the major protein source in feeds is critical for continued growth and sustainability of the aquaculture industry. However, numerous studies have shown suboptimal fish growth performance and reduced protein retention efficiency when carnivorous fish species are fed low fishmeal-high plant protein feeds. A study was conducted using a commercial strain and a genetically improved strain of rainbow trout selected for improved performance when fed an all plant protein diet to identify physiological differences associated with growth performance in the selected trout strain. Fifty individuals per strain (average weight ~ 580 g) were force-fed a plant-protein blend with and without amino acid supplementation (lysine, methionine and threonine) at 0.5% body weight and sampled at intervals over 24 h. Samples from intestine and liver were analyzed for specific gene expression analysis related to amino acid transporters, digestive process control, protein degradation and amino acid metabolism. The results showed that expression levels of various intestinal amino acid transporters (SLC1A1, SLC7A9, SLC15A, SLC1A5 SLC6A19 and SLC36A1) were affected by strain, diet and time. Moreover, significant interactions were found regarding the temporal expression levels of cholecystokinin (CCK-L), Krüppel-like factor 15 (KLF15) and aspartate aminotransferase (GOT) transcripts in the examined tissues. The results provide evidence that improved growth and protein retention of the selected strain fed an all-plant protein diet is a result of nutritional adaptation and an overall change in physiological homeostatic control.


Assuntos
Sistemas de Transporte de Aminoácidos/biossíntese , Aminoácidos/farmacologia , Ração Animal , Proteínas de Peixes/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Oncorhynchus mykiss/metabolismo , Animais
15.
J Anim Physiol Anim Nutr (Berl) ; 105(1): 90-98, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32654243

RESUMO

Reducing crude protein and supplementation with synthetic amino acids in poultry nutrition is a recent trend to avoid wastage of protein and ammonia in production systems. Stress has been shown to impair intestinal barrier and increase inflammatory response. This study was performed on intestinal tissues of broiler chickens to understand the mechanism of stress induced by a synthetic glucocorticoid, dexamethasone (DEX) and the effect of supplementation of arginine, glutamine and glycine in reduced protein diets. Intestinal tissue samples from a previous study were utilized. Male Ross 308 chickens received a basal diet for the first seven days and then fed with crude protein that was reduced to 194 g/kg in grower experimental diets supplemented with glutamine, glycine and additional arginine at 10, 10 and 5 g/kg respectively. Half of the 96 individual birds were injected with DEX (0.5 mg/kg body weight) or saline on days 14, 16, 18 and 20 of age. mRNA expression for jejunum and ileum for amino acid transporters (y+LAT-1, Bo,+ AT, EAAT-3 and CAT-1), mechanistic genes (SGLT-1, mTOR, IAP and FABP-2) and pro-inflammatory genes (MUC-2, NF-κB, iNOS, IL-8 and IL-1ß) were analysed using real-time PCR. The results showed that DEX decreased y+ LAT1 in jejunum, Bo ,+ AT and EAAT-3 in ileum. Arginine increased CAT-1 in the jejunum and ileum under DEX treatment. Through an interaction, DEX reduced IAP in jejunum of glycine and arginine supplemented group and reduced mTOR in jejunum independently. DEX reduced MUC-2 and iNOS in jejunum and increased iNOS and IL8 in the ileum. Amino acid supplementation did not appear to ameliorate these effects; however, there were some positive effects of glycine on NF-κB and arginine through increased CAT-1. Mechanistic understanding of amino acid supplementation in broiler diets warrants further research particularly when dietary protein is reduced below the level tested in the present study.


Assuntos
Galinhas , Glutamina , Sistemas de Transporte de Aminoácidos/genética , Ração Animal/análise , Animais , Arginina , Dexametasona/farmacologia , Dieta/veterinária , Dieta com Restrição de Proteínas/veterinária , Suplementos Nutricionais , Glicina , Íleo , Jejuno , Masculino , Nutrientes
16.
J Sports Med Phys Fitness ; 61(12): 1605-1612, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33305552

RESUMO

BACKGROUND: Beta-alanine has become a dietary supplement widely used by athletes due to its ergogenic effect. However, there is still no consensus on the performance benefit of beta-alanine on exercise lasting longer than ten minutes. The present study aimed to evaluate the effect of beta-alanine supplementation on running performance and the expression of TauT and PAT1. METHODS: This double-blind, randomized study enrolled 16 long-distance runners (37±8 years) who were randomly allocated to two groups: placebo (PLA) and beta-alanine (BA) (4.8 g/day 1) for four weeks. Maximal oxygen consumption, anthropometry, body composition, and food intake were determined. Before and after the intervention, the athletes undertook a 5000 m running time trial. Venous blood (TauT and PAT1 expressions) and ear lobe capillary blood (lactate) collected before and after exercise. Between tests, we monitored the training variables. RESULTS: The results were analyzed by t-tests and an ANOVA of repeated measures, with Sidak's post hoc (P<0.05). PLA exhibited lower body fat than BA (8.7±2.2 vs. 11.5±2.8%, P=0.04). After supplementation, there was an increase in PAT1 expression in BA when compared to PLA (1.17±0.47 vs. 0.77±0.18, P=0.04). No significant differences were shown for the 5000 m running time in PLA (PRE: 1128±72; POST: 1123±72s) and BA (PRE: 1107±95; POST: 1093±86s). CONCLUSIONS: Although beta-alanine supplementation increased PAT1 expression, there was no statistically significant improvement in 5000 m running performance. However, individual responses should be considered as the BA showed a higher delta than the PLA.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Desempenho Atlético , Substâncias para Melhoria do Desempenho , Corrida , Simportadores/metabolismo , beta-Alanina/administração & dosagem , Adulto , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Ácido Láctico , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pessoa de Meia-Idade , Substâncias para Melhoria do Desempenho/administração & dosagem , Resistência Física , Fenômenos Fisiológicos da Nutrição Esportiva
17.
J Anim Sci ; 98(11)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33047125

RESUMO

This study was conducted to test the hypothesis that supplemental dietary Arg to late-pregnant and lactating sows increases serum prolactin concentrations and mRNA abundance of SLC7A1, SLC7A2, and SLC6A14 in mammary parenchymal tissue. From day 108 of gestation and until day 21 of lactation, sows were fed a diet either supplemented with 0.10 g of l-Arg/kg body weight (BW) per day (n = 10, ARG) or 0.34 g of l-Glu/kg BW per day (n = 10, control). Litters were standardized to 10 piglets on day 1 of lactation and piglets were weighed on days 1, 7, 14, and 21 of lactation. Sow BW was recorded on day 108 of gestation and days 1, 10, and 21 of lactation. Lactation sow feed intake was recorded daily. Mammary parenchymal tissue was biopsied on day 5 of lactation to measure mRNA abundance SLC7A1, SLC7A2, and SLC6A14. On days 4 and 18 of lactation, blood samples were collected from sows at 2, 4, and 6 hr postfeeding to measure serum prolactin concentrations. Milk samples were collected on days 4, 10, and 18 of lactation to measure fat, lactose, urea N, and true protein concentrations. Sow BW, backfat, and feed intake over all sampling days did not differ between treatments. Piglet BW on d 1 tended to be greater for the ARG treatment than the control treatment (P = 0.12). Sow milk yield and composition (fat, protein, lactose, and urea N) and mammary mRNA abundance of candidate genes did not differ between the ARG and the control group. Compared to controls, serum prolactin concentrations tended to be greater (P = 0.08) in ARG sows on day 4 of lactation, and did not differ on day 18. Current findings show a potential beneficial effect of dietary supplementation with Arg to late-pregnant multiparous sows on BW of their piglets on day 1. Dietary Arg supplementation at a rate of 0.10 g/kg BW during late pregnancy and lactation tended to increase serum prolactin concentrations with no increase in mammary transcript abundance of SLC7A1, SLC7A2, and SLC6A14 in early lactation.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Arginina/farmacologia , Suplementos Nutricionais/análise , Leite/metabolismo , Prolactina/sangue , Suínos/fisiologia , Ração Animal/análise , Animais , Dieta/veterinária , Feminino , Lactação , Leite/química , Gravidez , RNA Mensageiro/genética
18.
Elife ; 92020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32744498

RESUMO

How cells adjust nutrient transport across their membranes is incompletely understood. Previously, we have shown that S. cerevisiae broadly re-configures the nutrient transporters at the plasma membrane in response to amino acid availability, through endocytosis of sugar- and amino acid transporters (AATs) (Müller et al., 2015). A genome-wide screen now revealed that the selective endocytosis of four AATs during starvation required the α-arrestin family protein Art2/Ecm21, an adaptor for the ubiquitin ligase Rsp5, and its induction through the general amino acid control pathway. Art2 uses a basic patch to recognize C-terminal acidic sorting motifs in AATs and thereby instructs Rsp5 to ubiquitinate proximal lysine residues. When amino acids are in excess, Rsp5 instead uses TORC1-activated Art1 to detect N-terminal acidic sorting motifs within the same AATs, which initiates exclusive substrate-induced endocytosis. Thus, amino acid excess or starvation activate complementary α-arrestin-Rsp5-complexes to control selective endocytosis and adapt nutrient acquisition.


Assuntos
Aminoácidos/metabolismo , Arrestina/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Arrestina/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitinação
19.
Biomolecules ; 10(9)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846873

RESUMO

Although structurally related, mitochondrial carrier family (MCF) proteins catalyze the specific transport of a range of diverse substrates including nucleotides, amino acids, dicarboxylates, tricarboxylates, cofactors, vitamins, phosphate and H+. Despite their name, they do not, however, always localize to the mitochondria, with plasma membrane, peroxisomal, chloroplast and thylakoid and endoplasmic reticulum localizations also being reported. The existence of plastid-specific MCF proteins is suggestive that the evolution of these proteins occurred after the separation of the green lineage. That said, plant-specific MCF proteins are not all plastid-localized, with members also situated at the endoplasmic reticulum and plasma membrane. While by no means yet comprehensive, the in vivo function of a wide range of these transporters is carried out here, and we discuss the employment of genetic variants of the MCF as a means to provide insight into their in vivo function complementary to that obtained from studies following their reconstitution into liposomes.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Coenzima A/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Desacoplamento Mitocondrial/genética , Proteínas de Desacoplamento Mitocondrial/metabolismo , Modelos Biológicos , NAD/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/genética
20.
Fish Physiol Biochem ; 46(5): 1795-1807, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32514852

RESUMO

This study was conducted to evaluate the effects of different dipeptides (lysine-leucine, lysine-glycine, and leucine-glycine) and free amino acids (lysine and leucine) on the growth, gene expression of intestinal peptide and amino acid transporters, and serum free amino acid concentrations in turbot. Fish (11.98 ± 0.03 g) were fed four experimental diets supplementing with crystalline amino acids (CAA), lysine-leucine (Lys-Leu), lysine-glycine (Lys-Gly), and leucine-glycine (Gly-Leu). Fish protein hydrolysate (FPH) containing a mixture of free amino acids and small peptides was designed as a positive control diet. There was no significant difference in the growth and feed utilization among three dipeptide diets (Lys-Leu, Lys-Gly, and Gly-Leu). Compared with the CAA group, feed efficiency ratio was significantly higher in the Lys-Leu and Lys-Gly groups, and protein efficiency ratio was significantly higher in the Lys-Leu group. For peptide transporter, oligopeptide transporter 1 (PepT1) mRNA level was not affected by dietary treatments. For amino acid transporters, lower expression of B0 neutral amino acid transporter 1 (B0AT1) and proton-coupled amino acid transporter 1 (PAT1) were observed in fish fed the dipeptide and FPH diets compared with the CAA diet. In conclusion, juvenile turbot fed Lys-Leu, Gly-Leu, and Lys-Gly had a similar growth performance, whereas lysine and leucine in the Lys-Leu form can be utilized more efficiently for feed utilization than those in free amino acid from. In addition, compared to free amino acids, dipeptides and fish protein hydrolysate in diets may down-regulate the expression of amino acid transporters but did not affect the expression of PepT1.


Assuntos
Sistemas de Transporte de Aminoácidos , Peixes , Leucina , Lisina , Animais , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Suplementos Nutricionais , Peixes/crescimento & desenvolvimento , Regulação da Expressão Gênica/efeitos dos fármacos , Leucina/administração & dosagem , Leucina/farmacologia , Lisina/administração & dosagem , Lisina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA