Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566186

RESUMO

Optimum extraction conditions are vital in quality control methods to enable accurate quantification of the compounds of interest. An ultra-sonication method was developed for the extraction of seven major compounds found in Mondia whitei. Extraction temperature, time, power, frequency, percentage of ethanol in water and solvent to sample ratio were screened to access their significance on the percentage recovery of the compounds of interest. These parameters were screened using Descriptive screening design. Extraction temperature, solvent to sample ratio and the interaction between temperature and percentage ethanol in water were found to have a significant effect on the response. These parameters were then optimized using central composite design. The optimum conditions were found to be 66.1% ethanol in water, 70 °C temperature and 3 mL: 5 mg solvent to sample ratio. This method was successfully applied in the development of a quality control method for the seven compounds in Mondia whitei samples.


Assuntos
Apocynaceae , Sonicação , Etanol , Extratos Vegetais , Solventes , Sonicação/métodos , Água
2.
J Sci Food Agric ; 102(2): 732-739, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34173245

RESUMO

BACKGROUND: Ultrasound-assisted extraction of the intermediate product from the mechanical expression of hemp (Cannabis sativa L.) seed oil was investigated to improve the overall expression yield without compromising oil quality. Complementary ultrasound technology was used as an out-of-line treatment carried out at 20 kHz frequency and optimized with respect to amplitude (80 and 152 µm), sonication time (2, 10, 20 min) and to the hemp paste properties, in particular its particle size and hydration, which drive the compressibility of the press cake. RESULTS: Under the conditions evaluated, the optimal ultrasound treatment was found to be the one applied on the hydrated press cake for 2 min at 152 µm, which resulted in an oil yield of 13.4%, with an increase in extraction efficiency equal to 73% with respect to the control (untreated press cake). Sonication had a positive effect on the press cake texture and on the extracted oil antioxidant activity. Soaked samples treated for 2 min at 152 µm yielded the lowest hardness. Oil recovered from soaked samples treated at 80 µm and 152 µm ultrasound for 2 min had the highest antioxidant capacity. CONCLUSIONS: The technological results gathered in the present investigation are preliminary to the design and engineering of scaled-up equipment that combines the mechanical screw expression and the in-line ultrasound unit. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Cannabis/química , Manipulação de Alimentos/métodos , Óleos de Plantas/isolamento & purificação , Sonicação/métodos , Animais , Antioxidantes/análise , Antioxidantes/isolamento & purificação , Manipulação de Alimentos/instrumentação , Óleos de Plantas/análise , Ultrassom
3.
J Sci Food Agric ; 102(5): 2050-2060, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34562028

RESUMO

BACKGROUND: In the present study, an extraction method affected by sonication intensity (40%, 70% and 100%), sonication time (5, 10 and 15 min) and different solvents (ethanol, methanol and a combination of ethanol/methanol) was optimized to extract the white tea with the greatest polyphenolic compounds using a response surface methodology. To prepare the nano-liposomal vesicles, phospholipids and cholesterol in various proportions (60:0, 40:20, 30:30 and 20:40) were applied based on thin-film hydration and ultrasound method. The nano-capsules enriched in bioactive compounds were examined through particle characteristics, encapsulation efficiency, morphological analysis, thermal properties and Fourier transform infrared spectroscopy. RESULTS: The observations showed that the extraction yield highly depended on the type of solvent with varying permeability, sonication time and power. The highest total phenolic content (68.38 mg GA g-1 ) and free radical scavenging activity (77.65%) were observed for the following optimal conditions: 70% for sonication intensity, 15 min for sonication time and methanol as solvent. Characteristics of nanoliposomes within a compositional ratio of lecithin/cholesterol (40:20) and with a zeta potential of -56 ± 0.01 mV, as well as white tea extract (WTE) samples with an average particle diameter of 82.20 ± 0.08, microencapsulation efficiency of 76.5% ± 0.081, polydispersity index of 0.06 ± 0.02 and span value of 0.69 ± 0.03. are used as the optimal formulation for microencapsulation of antioxidant WTE. The results demonstrated an increment in thermal stability of liposomal WTE samples compared to other samples. CONCLUSION: The findings of the present study indicated that nano-liposomes comprise an effective technology for coating the WTE, as well as to increasing its stability and thermal properties. © 2021 Society of Chemical Industry.


Assuntos
Lipossomos , Sonicação , Antioxidantes/química , Lipossomos/química , Fenóis , Sonicação/métodos , Chá
4.
Molecules ; 26(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500590

RESUMO

Ultrasonically synthesized core-shell microcapsules can be made of synthetic polymers or natural biopolymers, such as proteins and polysaccharides, and have found applications in food, drug delivery and cosmetics. This study reports on the ultrasonic synthesis of microcapsules using unmodified (natural) and biodegradable glycogen nanoparticles derived from various sources, such as rabbit and bovine liver, oyster and sweet corn, for the encapsulation of soybean oil and vitamin D. Depending on their source, glycogen nanoparticles exhibited differences in size and 'bound' proteins. We optimized various synthetic parameters, such as ultrasonic power, time and concentration of glycogens and the oil phase to obtain stable core-shell microcapsules. Particularly, under ultrasound-induced emulsification conditions (sonication time 45 s and sonication power 160 W), native glycogens formed microcapsules with diameter between 0.3 µm and 8 µm. It was found that the size of glycogen as well as the protein component play an important role in stabilizing the Pickering emulsion and the microcapsules shell. This study highlights that native glycogen nanoparticles without any further tedious chemical modification steps can be successfully used for the encapsulation of nutrients.


Assuntos
Cápsulas/química , Glicogênio/química , Nanopartículas/química , Óleo de Soja/química , Vitamina D/química , Animais , Biopolímeros/química , Bovinos , Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Polímeros/química , Polissacarídeos/química , Coelhos , Sonicação/métodos , Ultrassom/métodos
5.
Molecules ; 26(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361607

RESUMO

The application of high-power ultrasounds (US) at 28 kHz to the crushed grapes and the use of different pomace contact times caused changes in the content and composition of monosaccharides and polysaccharides in the musts and wines. These differences were maintained from the moment of pressing (end of maceration) until the end of the alcoholic fermentation. The US increased the content of monosaccharides and polysaccharides in the musts by facilitating their extraction from the solid parts during maceration. The application of medium maceration time (3 days) to sonicated grapes led to an extraction of polysaccharides rich in arabinose and galactose, rhamnogalacturonan type II (RG-II) and mannoproteins (MP), similar to that observed in the control wines made with an extended maceration of 7 days (968.21 vs. 1029.45; 895.04 vs. 1700.50; 356.81 vs. 343.95, respectively). This fact was attributed to a higher extraction in the must during the sonication process and to an important release of pectic polysaccharides during the pressing of the sonicated pomace, which is reported here for the first time. Therefore, the US technology could be useful for increasing the polysaccharide content in the wines or for reducing the maceration time needed to achieve certain levels of wine polysaccharides.


Assuntos
Frutas/química , Polissacarídeos/análise , Sonicação/métodos , Vitis/química , Vinho/análise , Manipulação de Alimentos
6.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361727

RESUMO

Enzymatic pretreatment of seeds is a novel approach that enhances the health benefits of the extracted oil. The study investigated the influence of the enzymatic pretreatment of seeds on the quality of oil from different pomegranate cultivars. The quality of the ultrasound-assisted (and ethanol-extracted) oil was studied, with respect to the refractive index (RI), yellowness index (YI), conjugated dienes (K232), peroxide value (PV) ρ-anisidine value (AV), total oxidation value (TOTOX), total carotenoid content (TCC), total phenolic compounds (TPC), fatty acid composition, phytosterol composition, ferric reducing antioxidant power (FRAP), and 2.2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging capacity. The seeds of three different pomegranate cultivars ('Wonderful', 'Herskawitz', and 'Acco') were digested with an equal mixture of Pectinex Ultra SPL, Flavourzyme 100 L, and cellulase crude enzymes, at a concentration, pH, temperature, and time of 1.7%, 4.5, 40 °C, and 5 h, respectively. Enzymatic pretreatment of PS increased oil yield, PV, TPC, TCC, and DPPH radical scavenging capacity, but decreased the YI. The levels of K232, AV and TOTOX, fatty acids, phytosterols, RI, and FRAP, were not significantly affected by enzymatic pretreatment of PS. Principal component analysis (PCA) established that oil extracted from the 'Acco' seed after enzymatic pretreatment had higher yield, TPC, TCC, and DPPH radical scavenging capacity. Therefore, enzyme-pretreated 'Acco' pomegranate fruit seed is a source of quality seed oil with excellent antioxidant properties.


Assuntos
Antioxidantes/isolamento & purificação , Hidrolases/química , Extração Líquido-Líquido/métodos , Óleos de Plantas/isolamento & purificação , Punica granatum/química , Sementes/química , Antioxidantes/química , Antioxidantes/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Carotenoides/química , Carotenoides/isolamento & purificação , Carotenoides/farmacologia , Etanol/química , Ácidos Graxos/química , Ácidos Graxos/isolamento & purificação , Ácidos Graxos/farmacologia , Frutas/química , Alimento Funcional/provisão & distribuição , Humanos , Oxirredução , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Fitosteróis/química , Fitosteróis/isolamento & purificação , Fitosteróis/farmacologia , Picratos/antagonistas & inibidores , Óleos de Plantas/química , Análise de Componente Principal , Solventes/química , Sonicação/métodos
7.
Ultrason Sonochem ; 73: 105529, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33836372

RESUMO

Two-stage continuous production process for fatty acid methyl ester (FAME) from crude palm oil was performed using the rotor-stator hydrocavitation reactor. The novel ABS filament printed rotor having spherical holes on the surface of the rotor which is an efficient, fast and cost-effective procedure, was installed in the stainless steel stator of hydrosonic reactor. The 3D printed hydrosonic reactor was used to treat the FFA-rich in MCPO by esterification and followed by transesterification to produce the methyl ester. The optimum conditions of both esterification and transesterification processes were determined using the response surface methodology (RSM). For the 1st step esterification, the conditions of methanol 17.7 vol%, sulfuric acid 2.9 vol%, 3000 rpm rotor speed, hole's diameter and depth 4 and 6 mm, and 25 L/h MCPO, were used for decreasing the FFA from 11.456 to 1.028 wt%. For the 2nd step, transesterification was employed with the optimal condition of 28.6 vol% methanol, 6.2 g/L of potassium hydroxide, 3000 rpm rotor speed, the dimension of the spherical holes on the rotor's surface having diameter of 6.4 mm and 6.2 mm in depth, and esterified oil flow rate 25 L/h, for producing the methyl ester to over 99.163 wt%. Moreover, the purified biodiesel yields and the average energy consumption for the entire two-stage continuous process between hydrosonic and ultrasonic clamp reactors were compared. The results of purified methyl ester clearly indicate that the methyl esters of 99.163 wt% and 97.814 wt% were achieved from hydrosonic and ultrasonic clamp reactors, respectively, under the same optimized conditions. The maximum yields of purified biodiesel were 97.51 vol% and 88.69 vol% using hydrosonic and ultrasonic clamp reactors, respectively. The average energy consumption for the entire continuous two-stage process for both hydrosonic and ultrasonic clamp reactors were 0.049 and 0.056 kW h/L, respectively. For practical industrial processes, stainless steel rotors inside the stator was manufactured by CNC machine, which was also verified under the optimum conditions. The results showed that 1.07 wt% FFA and 99.221 wt% methyl ester of were obtained from first step and second step, respectively.


Assuntos
Ácidos Graxos não Esterificados/química , Óleo de Palmeira/química , Sonicação/métodos , Reatores Biológicos , Esterificação
8.
Ultrason Sonochem ; 73: 105539, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33813347

RESUMO

Recently, efficient extraction of natural products from traditional Chinese medicines (TCMs) by green solvents is deemed an essential area of green technology and attracts extensive attentions. In this work, a green protocol for simultaneous ultrasonic-extraction of the native compounds with different polarities of TCMs by using a hybrid ionic liquids (HILs)-water system was reported for the first time. As a case study, three superior ILs (1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]), and 1-allyl-3-methylimidazolium chloride ([AMIM]Cl)) were chosen as the compositions of the HILs system, and the TCMs Suhuang antitussive capsule (SH) containing different-polarity lignans was selected. Primarily, an ultra-performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UPLC-QqQ-MS/MS) method in the multiple reaction monitoring (MRM) mode was established for qualitative and quantitative analysis of 18 lignans. After majorization by uniform design experiment, the HILs prepared with [AMIM]Cl, [EMIM][BF4], and [EMIM][OAc] at a volume ratio of 1:5:5 could simultaneously extract multi-polarity lignans compared to single IL. Subsequently, the conditions of ultrasonic extraction employing with HILs and traditional organic solvent were optimized by the response surface methodology, respectively. The results indicated that the extract efficiency of the HILs system for target compounds was significantly improved compared with the traditional organic solvent-extraction, i.e. the content of total lignans in ethanol system was up to 47 mg/g, while that in the HILs system was up to 69 mg/g, with an increasing of 47%. Additionally, 1H-NMR and 13C-NMR spectra were used to characterize the hydrogen-bond interactions in the HILs-lignan mixtures. Extraction with the HILs in TCMs is a new application schema of ILs, which not only avoids the use of volatile toxic organic solvents, but also shows the potential to be comprehensively applied for the extraction of bioactive compounds from TCMs.


Assuntos
Antitussígenos/uso terapêutico , Líquidos Iônicos/química , Lignanas/isolamento & purificação , Medicina Tradicional Chinesa , Sonicação/métodos , Cápsulas , Limite de Detecção , Reprodutibilidade dos Testes
9.
Biomolecules ; 11(4)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917892

RESUMO

The industrial processing amazon fruits, like tucuma, generates a large amount of coproducts with large nutritional potential. Thus, this work obtained the oily extract of the tucuma almonds coproducts by green extraction using palm oil by the ultrasound method and then microencapsulated by atomization and verification of its antioxidant activity. Thermogravimetric techniques, infrared spectroscopy, scanning electron microscopy, moisture content, water activity were applied to characterize the microparticles. Total carotenoids were determined by UV spectroscopy and antioxidant activity was measured by 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid and co-oxidation in the system ß-carotene/linoleic acid. The oily extract and microparticle had total carotenoid contents of 3.305 mg/100 g ± 0.01 and 2.559 mg/100 g ± 0.01, respectively. The antioxidant activity assessed through the 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid value was 584.75 µM/trolox ± 0.01 (oily extract) and 537.12 µM/trolox ± 0.01 (microparticle) were determined. In the system ß-carotene/linoleic acid showed oxidation of 49.9% ± 1.8 lipophilic extract and 43.3% ± 2.3 microparticle. The results showed that the oily extract of the tucuma almond coproduct can be used as a carotenoid-rich source and microencapsuled with possible application for functional foods production.


Assuntos
Antioxidantes/química , Arecaceae/química , Extratos Vegetais/química , Sonicação/métodos , Arecaceae/metabolismo , Varredura Diferencial de Calorimetria , Carotenoides/análise , Frutas/química , Frutas/metabolismo , Ácido Linoleico/química , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Secagem por Atomização , Termogravimetria , beta Caroteno/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-33752055

RESUMO

Herein, ultrasound-assisted mixture extraction (UAME) and online extraction solution concentration (OESC) were conducted to extract products from crops and plants. These techniques were coupled with parallel countercurrent chromatography (PCCC) and applied for continuous extraction and online isolation of chemical constituents from Phellinus vaninii. The UAME instrument comprises extraction and solution separation chambers. It provides higher extraction efficiency and fewer impurities and is suitable for processing various sample matrices. The OESC device comprises a spray nozzle, concentrating cylinder, and hot-blast air nozzle. The mechanical parameters for UAME and OESC were optimized, and the operation of online UAME and OESC coupled with PCCC was described. Raw plant materials were extracted using a two-phase extractant comprising petroleum-ethyl acetate-ethanol-water (0.5:2.0:0.5:2.0, v/v/v/v). The aqueous and organic phases were then concentrated using the OESC technique. Two CCC runs were conducted for preparatory work. After extraction and online concentration, the concentrate was pumped into the CCC for separation. During PCCC separation, continuous automated extraction and concentration were still conducted. When the first cycle of the UAME/OESC/PCCC was completed, followed by the initiation of the second cycle, and the process was continued. Six target compounds with purities exceeding 97.22% were successfully separated using the CCC solvent systems comprising n-hexane-ethyl acetate-acetonitrile-water (5.5:2.5:5.0:0.4, v/v/v/v) and n-butanol-ethanol-water (4.5:1.3:6.5, v/v/v). Compared with conventional extraction methods, the proposed UAME/OESC/PCCC method has higher efficiency, facilitates high-purity separation of analytes, and offers opportunity for automation and systematic preparation of natural products.


Assuntos
Distribuição Contracorrente/métodos , Phellinus/química , Compostos Fitoquímicos/isolamento & purificação , Sonicação/métodos , Automação Laboratorial , Fracionamento Químico , Distribuição Contracorrente/instrumentação , Desenho de Equipamento , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Extratos Vegetais/química , Sonicação/instrumentação
11.
Artigo em Inglês | MEDLINE | ID: mdl-33743514

RESUMO

In the present study, a magnetic molecularly imprinted polymer (MMIP) was synthesized for the extraction of harmaline from Peganum harmala by dispersive solid-phase microextraction (DSPME). The MMIP for selective and intelligent extraction of harmaline with excellent functionality and high selectivity was synthesized using the sol-gel method with functionalized superparamagnetic core-shell nanoparticles, ethylene glycol dimethacrylate (EDMA) as a cross-linker, methacrylic acid (MAA) as a functional monomer, and 2,2-azobisisobutyronitrile (AIBN) as a porogen. To study the properties and morphology of the coated polymer, FT-IR spectroscopy, FESEM, TEM images, and VSM were used. The DSPME-HPLC-UV equipment was used to quantify and analyze the data obtained from harmaline extraction. In this research, the efficiency of the synthesized polymer in harmaline extraction was modeled and optimized using the response surface methodology based on central composite design (RSM-CCD). In addition, for modeling the isotherm of harmaline sorption by the MMIP, Langmuir and Freundlich isotherm equations were used. The obtained results showed that the extraction of harmaline with the MMIP was well described with Freundlich isotherm. The results of the validation of the method showed that the measurement of harmaline in the concentration range of 1.0-4000 ng mL-1 followed a linear relationship (R2 = 9986.0). Moreover, the accuracy or repeatability index (% RSD) was determined to be < 10, and the LOQ and LOD values were 0.526 and 0.158 ng mL-1, respectively. The results of this study showed that the DSPME technique by using the synthesized MMIP as an effective sorbent with high efficiency and capacity could be utilized for pre-concentration and extraction of harmaline from real and complex samples.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Harmalina , Nanopartículas de Magnetita/química , Polímeros Molecularmente Impressos/química , Peganum/química , Harmalina/análise , Harmalina/química , Harmalina/isolamento & purificação , Limite de Detecção , Modelos Lineares , Impressão Molecular/métodos , Extratos Vegetais/química , Reprodutibilidade dos Testes , Microextração em Fase Sólida/métodos , Sonicação/métodos
12.
Ultrason Sonochem ; 73: 105480, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33601279

RESUMO

Pectin is a valuable product (up to 30 $kg-1) that makes-up 20-30% of an orange's peel. The commercial extraction is lengthy (up to 6h) and energy intensive as it requires heating aqueous solutions (60-100 °C). Ultrasound speeds up the extraction process reducing processing time by macroscopic and microscopic mixing by acoustic cavitation. We adopted an ultrasonic horn to deliver a rated power of 500W at amplitudes of 20%, 40%, and 60% with and without pulsation to extract pectin from waste orange peels. These correspond to power densities of 0.08Wml-1, 0.16Wml-1 and 0.24Wml-1, respectively. The extractions operated at a pH of either 2 or 3. The experimental data agree with the fitted values from the statistical model (R2=95.5%). The model confirms our predictions that yield increases with amplitude/power density and decreasing pH. The highest yield was (11%) at a pH of 2 and with continuous ultrasonic irradiation at a power density of 0.24Wml-1. There is only a 1.3% difference between this datum and pulse ultrasound mode (1 s on/1 s off) at the same conditions - a Student's t test confirmed that there was no significant difference in yield between continuous and pulse mode. However, pulsing is more efficient in that it consumes less than half the energy of continuous operation (80kJ vs. 190kJ).


Assuntos
Citrus sinensis/química , Pectinas/isolamento & purificação , Sonicação/métodos , Concentração de Íons de Hidrogênio , Modelos Estatísticos
13.
Ultrason Sonochem ; 70: 105348, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32971393

RESUMO

The present work investigated the effects of sonication at different amplitudes and durations on the in vitro digestibility of buckwheat protein isolates (BPIs). The conformation, particle size and microstructures of the BPIs were also studied to explicate the possible mechanisms of the sonication-induced changes. The results showed that sonication conditions of 20 kHz, pulsed on-time 10 s, off-time 5 s, amplitude of 60% and duration of 10 min (SA6T10) improved the digestibility of BPIs from 41.4% (control) to 58.2%. The tertiary structure analysis showed that sonication exposed the hydrophobic core buried inside the protein molecules and broke the intramolecular crosslinks, based on the increase in the surface hydrophobicity and intrinsic fluorescence and the decrease in the disulphide content. The secondary structure analysis showed that SA6T10 decreased the content of ß-turn and ß-sheet by 40.9% and 22.4%, respectively, and increased the content of anti-parallel ß-sheet, random coil, and α-helix by 40.9%, 30.6%, and 25.5%, respectively. The particle size of the control BPIs (427.7 ± 76.7 nm) increased to 2130.8 ± 356.2 nm in the SA6T10 sonicated sample with a corresponding decrease in the polydispersity index from 0.97 ± 0.04 to 0.51 ± 0.13. Moreover, scanning electron microscopy indicated that sonication broke the macroparticles into smaller fragments and changed the surface state of the proteins. Taken together, sonication has proven to be a promising approach for improving the digestibility of buckwheat proteins, which can be explored as a source of plant-based alternative protein for food applications.


Assuntos
Fagopyrum/química , Proteínas de Plantas/química , Sonicação/métodos , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Conformação Proteica
14.
Ultrason Sonochem ; 70: 105322, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32906066

RESUMO

In this study, modified citrus pectin treated with a combination of microfluidization and ultrasonication was compared to the original and ultrasonication treated pectin on hydrodynamic diameter, molecular weight, polydispersity, zeta potential, apparent viscosity, Fourier-transform infrared spectroscopy (FTIR), 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging capacity, scanning electron microscope (SEM), atomic force microscopy (AFM), their emulsifying properties and encapsulation properties. Modified pectin treated with a combination of microfluidization and moderate ultrasonication (MUB) was found to have lowest hydrodynamic diameter (418 nm), molecular weight (237.69 kDa) and polydispersity (0.12), and relatively low apparent viscosity among all pectin samples. Furthermore, it showed significantly higher DPPH radical scavenging capacity than the original pectin although only slightly higher than that of ultrasonication treated one (UB). MUB showed a thin fibrous morphology and decreased degree of branching from SEM and AFM. Emulsion stabilized by MUB had highest centrifugal and thermal stability compared to emulsions stabilized by UB and the original pectin. This could be attributed to higher interfacial loading of MUB (17.90 mg/m2) forming more compact interfacial layer observed by confocal laser scanning microscopy (CLSM). Moreover, both MUB and UB exhibited improved encapsulation functionality to protect cholecalciferol (vitamin D3) from UV degradation compared to the original pectin.


Assuntos
Emulsões , Pectinas/química , Sonicação/métodos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Peso Molecular , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Ultrason Sonochem ; 70: 105316, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32889410

RESUMO

The use of thermosonication (TS) technique to preserve the qualities of fruit juice as an alternative to conventional pasteurization has attracted research interest in recent times. In the present study, freshly prepared hog plum juice (control), and the juice samples subjected to pasteurization (90 °C for 60 s) and thermosonication (40 kHz, 400 W at 40, 50 and 60 °C each for 5, 10, 20 and 30 min) were each analyzed for physicochemical, bioactive, microbial and sensory properties. After treatment, no significant changes in pH, total soluble solids and titratable acidity were observed. Notably, TS at 40 and 50 °C significantly (p < 0.05) improved color parameters, cloudiness and browning index. Furthermore, thermosonication increased ascorbic acid (11.40-18.55%), total phenolic content (17.98-18.35%), carotenoids (2.19-4.30%), flavonoids (10-16%) and antioxidant activity (32.52-48.5%) relative to the control. Both treatments significantly reduced the microbial count to non-detectable level after processing, while sensory attributes slightly improved. However, TS treatment at 60 °C decreased most of the quality parameters. Results showed that TS can improve quality, safety and economic potential of hog plum juice as a feasible alternative to pasteurization.


Assuntos
Sucos de Frutas e Vegetais/normas , Prunus domestica/química , Sonicação/métodos , Temperatura , Antioxidantes/análise , Carotenoides/análise , Contagem de Colônia Microbiana , Temperatura Alta , Fenóis/análise , Prunus domestica/microbiologia
16.
J Sci Food Agric ; 101(6): 2406-2413, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33012019

RESUMO

BACKGROUND: Starch degradation is an important process that can increase starch utilization in some industrial applications. In many polysaccharide compounds, the addition of salt is an alternative method to enhance the structural degradation of starch by sonication. This study aimed to investigate the effect of sonication in aqueous NaCl solution on the structural degradation of cassava starch. RESULTS: This method produces reducing sugar which its amount is relatively smaller than the amount of total dissolved solid product. The maximum total reducing sugar (TRS) was 0.365 ± 0.005 kg m-3 (or about 7.3 mg g-1 ) that resulted by S50 for 60 min reaction. The increase of sonication amplitude was in line with the increase of granule defect in SEM image. X-ray diffraction (XRD) showed that the degradation process was characterized by rupturing of the amorphous region. CONCLUSION: The structural alteration and the increase in NaCl weight suggest that this process may become a useful method for starch modification. © 2020 Society of Chemical Industry.


Assuntos
Manipulação de Alimentos/métodos , Manihot/química , Extratos Vegetais/química , Sonicação/métodos , Amido/química , Cinética , Cloreto de Sódio/análise
17.
Biomed Res Int ; 2020: 7102046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062693

RESUMO

We successfully extracted isoliquiritigenin from Glycyrrhiza uralensis through the utilization of an ionic liquid-based ultrasonic-assisted extraction (ILUAE) approach. Briefly, we utilized the solution of 1-butyl-3-methylimidazolium bromide ([BMIM]Br) as solvent and optimized key ILUAE parameters such as solid-liquid ratios, concentrations of ionic liquids, and the times of ultrasonication. Based on a single-factor experiment, we utilized the response surface method (RSM) approach to optimize the extraction procedure. The approach revealed that the optimal energy consumption time was 120 min, with the ultrasonic extraction temperature of 60°C. Using these optimized parameters together with the solid-liquid ratio (dried G. uralensis powder: [BMIM]Br of 0.3 mol/L) of 1 : 16.163 and the [BMIM]Br of 0.3 mol/L, we achieved a 0.665 mg/g extraction yield. Overall, these findings thus indicate that we were able to effectively use ILUAE as an efficient approach to reliably extract isoliquiritigenin in a reproducible and environmentally friendly manner.


Assuntos
Chalconas/isolamento & purificação , Glycyrrhiza uralensis/química , Líquidos Iônicos/química , Sonicação/métodos , Imidazóis/química , Preparações de Plantas/química
18.
Ultrason Sonochem ; 69: 105258, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32702637

RESUMO

O/W nanoemulsions are isotropic colloidal systems constituted of oil droplets dispersed in continuous aqueous media and stabilised by surfactant molecules. Nanoemulsions hold applications in more widespread technological domains, more crucially in the pharmaceutical industry. Innovative nanoemulsion-based drug delivery system has been suggested as a powerful alternative strategy through the useful means of encapsulating, protecting, and delivering the poorly water-soluble bioactive components. Consequently, there is a need to generate an emulsion with small and consistent droplets. Diverse studies acknowledged that ultrasonic cavitation is a feasible and energy-efficient method in making pharmaceutical-grade nanoemulsions. This method offers more notable improvements in terms of stability with a lower Ostwald ripening rate. Meanwhile, a microstructured reactor, for instance, microchannel, has further been realised as an innovative technology that facilitates combinatorial approaches with the acceleration of reaction, analysis, and measurement. The recent breakthrough that has been achieved is the controlled generation of fine and monodispersed multiple emulsions through microstructured reactors. The small inner dimensions of microchannel display properties such as short diffusion paths and high specific interfacial areas, which increase the mass and heat transfer rates. Hence, the combination of ultrasonic cavitation with microstructures (microchannel) provides process intensification of creating a smaller monodispersed nanoemulsion system. This investigation is vital as it will then facilitate the creation of new nanoemulsion based drug delivery system continuously. Following this, the fabrication of microchannel and setup of its combination with ultrasound was conducted in the generation of O/W nanoemulsion, as well as optimisation to analyse the effect of varied operating parameters on the mean droplet diameter and dispersity of the nanoemulsion generated, besides monitoring the stability of the nanoemulsion. Scanning transmission electron microscopy (STEM) images were also carried out for the droplet size measurements. In short, the outcomes of this study are encouraging, which necessitates further investigations to be carried out to advance a better understanding of coupling microchannel with ultrasound to produce pharmaceutical-grade nanoemulsions.


Assuntos
Emulsões/química , Microquímica/instrumentação , Nanoestruturas/química , Óleo de Palmeira/química , Ultrassom/métodos , Água/química , Hexoses/química , Microquímica/métodos , Sonicação/métodos , Tensoativos
19.
J Chemother ; 32(7): 385-393, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32530372

RESUMO

The combating of multidrug resistance (MDR) plays a crucial role in effective chemotherapy. However, current strategies for cancer of MDR remain unsatisfactory for their limited efficacy and severe side effects. In this study, we sought to determine the anti-MDR effects of a traditional chinese herb, Hypocrellin B (HB)-mediated sonodynamic therapy (HB-SDT) on human gastric multidrug resistance cancer SGC-7901cell/ADR cells and its underlying mechanisms. HB-SDT can synergistically increase the cytotoxicity of DOX on SGC-7901cell/ADR cells in which the mechanism is related to significant promotion of apoptosis, ROS level and drop of MMP in the resistant cells after combining treatment of DOX and HB-SDT. Meanwhile, western blotting assays display the expression of apoptosis related proteins Bax and Bcl-2 changed markedly after the combination treatment. In addition, the expression of P-gp was significantly down-regulated after treatment of HB-SDT and DOX. HB-SDT can increase DOX-induced mitochondrial-dependent apoptosis by inhibiting the expression of P-gp, thereby increasing the cytotoxic effect into SGC7901/ADR cells.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Perileno/análogos & derivados , Quinonas/farmacologia , Sonicação/métodos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Perileno/farmacologia
20.
Molecules ; 25(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120971

RESUMO

Saponins are an important group found in Chenopodium quinoa. They represent an obstacle for the use of quinoa as food for humans and animal feeds because of their bitter taste and toxic effects, which necessitates their elimination. Several saponins elimination methods have been examined to leach the saponins from the quinoa seeds; the wet technique remains the most used at both laboratory and industrial levels. Dry methods (heat treatment, extrusion, roasting, or mechanical abrasion) and genetic methods have also been evaluated. The extraction of quinoa saponins can be carried out by several methods; conventional technologies such as maceration and Soxhlet are the most utilized methods. However, recent research has focused on technologies to improve the efficiency of extraction. At least 40 saponin structures from quinoa have been isolated in the past 30 years, the derived molecular entities essentially being phytolaccagenic, oleanolic and serjanic acids, hederagenin, 3ß,23,30 trihydroxy olean-12-en-28-oic acid, 3ß-hydroxy-27-oxo-olean-12en-28-oic acid, and 3ß,23,30 trihydroxy olean-12-en-28-oic acid. These metabolites exhibit a wide range of biological activities, such as molluscicidal, antifungal, anti-inflammatory, hemolytic, and cytotoxic properties.


Assuntos
Chenopodium quinoa/química , Saponinas/química , Saponinas/isolamento & purificação , Sementes/química , Extração em Fase Sólida/métodos , Anti-Inflamatórios/análise , Chenopodium quinoa/genética , Cromatografia Líquida de Alta Pressão , Temperatura Alta , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/análise , Extratos Vegetais/farmacologia , Saponinas/análise , Saponinas/genética , Sementes/genética , Sonicação/métodos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA