Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 330: 118224, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38642623

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sophorae tonkinensis Radix et Rhizoma (STR) is an extensively applied traditional Chinese medicine (TCM) in southwest China. However, its clinical application is relatively limited due to its hepatotoxicity effects. AIM OF THE STUDY: To understand the material foundation and liver injury mechanism of STR. MATERIALS AND METHODS: Chemical compositions in STR and its prototypes in mice were profiled by ultra-performance liquid chromatography coupled quadrupole-time of flight mass spectrometry (UPLC-Q/TOF MS). STR-induced liver injury (SILI) was comprehensively evaluated by STR-treated mice mode. The histopathologic and biochemical analyses were performed to evaluate liver injury levels. Subsequently, network pharmacology and multi-omics were used to analyze the potential mechanism of SILI in vivo. And the target genes were further verified by Western blot. RESULTS: A total of 152 compounds were identified or tentatively characterized in STR, including 29 alkaloids, 21 organic acids, 75 flavonoids, 1 quinone, and 26 other types. Among them, 19 components were presented in STR-medicated serum. The histopathologic and biochemical analysis revealed that hepatic injury occurred after 4 weeks of intragastric administration of STR. Network pharmacology analysis revealed that IL6, TNF, STAT3, etc. were the main core targets, and the bile secretion might play a key role in SILI. The metabolic pathways such as taurine and hypotaurine metabolism, purine metabolism, and vitamin B6 metabolism were identified in the STR exposed groups. Among them, taurine, hypotaurine, hypoxanthine, pyridoxal, and 4-pyridoxate were selected based on their high impact value and potential biological function in the process of liver injury post STR treatment. CONCLUSIONS: The mechanism and material foundation of SILI were revealed and profiled by a multi-omics strategy combined with network pharmacology and chemical profiling. Meanwhile, new insights were taken into understand the pathological mechanism of SILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Rizoma , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Camundongos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Sophora/química , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Metabolômica , Cromatografia Líquida de Alta Pressão , Farmacologia em Rede , Multiômica , Animais não Endogâmicos
2.
Phytother Res ; 38(4): 1951-1970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358770

RESUMO

The herb Sophora flavescens displays anti-inflammatory activity and can provide a source of antipsoriatic medications. We aimed to evaluate whether S. flavescens extracts and compounds can relieve psoriasiform inflammation. The ability of flavonoids (maackiain, sophoraflavanone G, leachianone A) and alkaloids (matrine, oxymatrine) isolated from S. flavescens to inhibit production of cytokine/chemokines was examined in keratinocytes and macrophages. Physicochemical properties and skin absorption were determined by in silico molecular modeling and the in vitro permeation test (IVPT) to establish the structure-permeation relationship (SPR). The ethyl acetate extract exhibited higher inhibition of interleukin (IL)-6, IL-8, and CXCL1 production in tumor necrosis factor-α-stimulated keratinocytes compared to the ethanol and water extracts. The flavonoids demonstrated higher cytokine/chemokine inhibition than alkaloids, with the prenylated flavanones (sophoraflavanone G, leachianone A) led to the highest suppression. Flavonoids exerted anti-inflammatory effects via the extracellular signal-regulated kinase, p38, activator protein-1, and nuclear factor-κB signaling pathways. In the IVPT, prenylation of the flavanone skeleton significantly promoted skin absorption from 0.01 to 0.22 nmol/mg (sophoraflavanone G vs. eriodictyol). Further methoxylation of a prenylated flavanone (leachianone A) elevated skin absorption to 2.65 nmol/mg. Topical leachianone A reduced the epidermal thickness in IMQ-treated mice by 47%, and inhibited cutaneous scaling and cytokine/chemokine overexpression at comparable levels to a commercial betamethasone product. Thus, prenylation and methoxylation of S. flavescens flavanones may enable the design of novel antipsoriatic agents.


Assuntos
Alcaloides , Flavanonas , Sophora , Camundongos , Animais , Flavonoides/química , Sophora flavescens , Sophora/química , Flavanonas/farmacologia , Flavanonas/química , Prenilação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas , Quimiocinas
3.
Microbiol Spectr ; 12(2): e0307623, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38236025

RESUMO

Endophytic fungi of medicinal plants are symbiotic with the host and play an important role in determining metabolites. To understand the relationship between the accumulation of Sophora alopecuroides' medicinal bioactive compounds and the ecological succession of endophytic fungi, here we collected samples from S. alopecuroides at four developmental stages (adult, flowering, podding, and mature) and different organs (roots, stems, leaves, and seeds) at the mature stage. We then used high-performance liquid chromatography-mass spectrometry and high-throughput sequencing on the internal transcribed spacer region to identify the medicinal compounds and endophytic fungal communities in each sample. The endophytic fungal community characteristics and accumulation of medicinally bioactive compounds of S. alopecuroides varied with the host's developmental stages and organs, with the highest total alkaloids content of 111.9 mg/g at the mature stage. Membership analysis and network connection analysis showed a total of 15 core endophytic fungi in different developmental stages and 16 core endophytic fungi in different organs at the mature stage. The unclassified Ascomycota, Aspergillus, and Alternaria were significantly and positively correlated with the medicinal compounds of S. alopecuroides at the mature stage (r > 0.6 or r < -0.6; P < 0.05). In this study, we identified key endophytic fungal resources that affect the content of medicinally bioactive compounds in S. alopecuroides. This discovery could lay the foundation for enhancing the yield of medicinally bioactive compounds in S. alopecuroides and the development and application of functional endophytic fungi.IMPORTANCESophora alopecuroides is a traditional Chinese herbal medicine. The major medicinal chemicals are considered to be quinolizidine alkaloids. Quinolizidine alkaloids have been widely used for the treatment of tumors, dysentery, and enteritis. Previous studies have found that endophytic fungi in S. alopecuroides can promote the accumulation of host quinolizidine alkaloids. However, the relationship between the accumulation of S. alopecuroides' medicinal bioactive compounds and the ecological succession of endophytic fungi remains unclear. In this study, we screened the key endophytic fungal resources affecting the content of medicinally bioactive compounds and laid the foundation for subsequent research on the mechanism by which endophytic fungi promote the accumulation of medicinally bioactive compounds in S. alopecuroides.


Assuntos
Alcaloides , Sophora , Alcaloides Quinolizidínicos , Sophora/química , Fungos
4.
Fitoterapia ; 172: 105756, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007052

RESUMO

Ancient Chinese medicine literature and modern pharmacological studies show that Sophora tonkinensis Gagnep. (ST) has a protective effect on the heart. A biolabel research based on omics and bioinformatics and experimental validation were used to explore the application value of ST in the treatment of heart diseases. Therapeutic potential, mechanism of action, and material basis of ST in treating heart diseases were analyzed by proteomics, metabolomics, bioinformatics, and molecular docking. Cardioprotective effects and mechanisms of ST and active compounds were verified by echocardiography, HE and Masson staining, biochemical analysis, and ELISA in the isoproterenol hydrochloride-induced myocardial ischemia (MI) mice model. The biolabel research suggested that the therapeutic potential of ST for MI may be particularly significant among the heart diseases it may treat. In the isoprenaline hydrochloride-induced MI mice model, ST and its five active compounds (caffeic acid, gallic acid, betulinic acid, esculetin, and cinnamic acid) showed significant protective effects against echocardiographic changes and histopathological damages of the ischemic myocardial tissue. Meanwhile, they showed a tendency to correct mitochondrial structure and function damage and the abnormal expression of 12 biolables (DCTN1, DCTN3, and SCARB2, etc.) in the vesicle-mediated transport pathway, inflammatory cytokines (IL-1ß, IL-6, and IL-10, etc.), and low density lipoprotein receptor (LDLR). The biolabel research identifies a new application value of ST in the treatment of heart diseases. ST and its active compounds inhibit mitochondrial impairments, inflammation, and LDLR deficiency through regulating the vesicle-mediated transport pathway, thus achieving the purpose of treating MI.


Assuntos
Isquemia Miocárdica , Sophora , Camundongos , Animais , Sophora/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Isquemia Miocárdica/tratamento farmacológico , Inflamação/tratamento farmacológico , Isoproterenol/uso terapêutico , Receptores de LDL
5.
Plant Biol (Stuttg) ; 25(7): 1109-1120, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37815250

RESUMO

The medicinal plant Sophora tonkinensis is a characteristic Chinese shrub of karst areas. The arid climate in karst areas produces high-quality S. tonkinensis; however, the mechanisms of drought tolerance are not clear, which restricts sustainable plantings of S. tonkinensis. This study involved a 20-day drought stress experiment with potted S. tonkinensis and threee soil water regimes: control (CK), mild drought (MDT), and severe drought (SDT). Plant morphology, biomass, physiological indicators, alkaloid content, and other changes under drought stress were monitored. The content of soluble sugars and proteins, and activity of antioxidant enzymes in leaves and roots were higher under drought than CK, indicating that S. tonkinensis is tolerant to osmotic stress in early drought stages. Content of matrine and oxymatrine increased gradually with increasing drought duration in the short term. The epidermis of S. tonkinensis leaves have characteristics of desert plants, including upper epidermal waxy layer, lower epidermal villi, and relatively sunken stomata, suggesting that S. tonkinensis has strong drought tolerance. In conclusion, drought stress changed the cell structure of S. tonkinensis, induced antioxidant enzyme activity and increased its resistance to drought.


Assuntos
Alcaloides , Plantas Medicinais , Sophora , Sophora/química , Secas , Antioxidantes , Alcaloides/análise , Raízes de Plantas/química , Estresse Fisiológico , Adaptação Fisiológica
6.
Phytochemistry ; 216: 113889, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37813134

RESUMO

Six undescribed lavandulylated flavonoids (1-6) were isolated from the roots of Sophora flavescens. Remarkably, compounds 1 and 2, which were composed of a flavane unit and a phloroglucinol unit, were the first reported dimers. Compounds 3 and 4 were the first reported neoflavonoids with lavandulyl units. Compounds 5 and 6 were chalcone with oxidized lavandulyl units. Their structures were fully characterized by cumulative analyses of UV, IR, HRESIMS, NMR and ECD spectroscopic data, along with computational calculations through density functional theory. Compounds 1 and 2 showed significant protein tyrosine phosphatase-1B inhibitory activities with IC50 values of 2.669 and 3.596 µM, respectively.


Assuntos
Flavonoides , Sophora , Flavonoides/química , Sophora flavescens , Sophora/química , Extratos Vegetais/química , Raízes de Plantas/química
7.
Phytomedicine ; 116: 154909, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37269775

RESUMO

BACKGROUND: Novel compounds and more efficient treatment options are urgently needed for the treatment of non-small cell lung cancer (NSCLC). The decoction of Sophora flavescens has been used to treat NSCLC in the clinic, and matrine-type alkaloids are generally considered to be the key pharmacodynamic material basis. But the previous study showed that common matrine-type alkaloids exhibit significant cytotoxicity only when at concentrations close to the millimolar (mM) level. The key antitumor alkaloids in S. flavescens seem to have not yet been revealed. PURPOSE: The aim of this study was to screen water-soluble matrine alkaloid with novel skeleton and enhanced activity from S. flavescens, and to reveal the pharmacological mechanism of its therapeutic effect on NSCLC. METHODS: Alkaloid was obtained from S. flavescens by chromatographic separation methods. The structure of alkaloid was determined by spectroscopic methods, and single-crystal X-ray diffraction. The mechanism of anti-NSCLC in vitro with cellular models was evaluated by MTT assay, western blotting, cell migration and invasion assay, plate colony-formation assay, tube formation assay, immunohistochemistry assay, hematoxylin and eosin staining. The antitumor efficacy in vivo was test in NSCLC xenograft models. RESULTS: A novel water-soluble matrine-derived alkaloid incorporating 6/8/6/6 tetracyclic ring system, named sophflarine A (SFA), was isolated from the roots of S. flavescens. SFA had significantly enhanced cytotoxicity compared with the common matrine-type alkaloids, having an IC50 value of 11.3 µM in A549 and 11.5 µM in H820 cells at 48 h. Mechanistically, SFA promoted NSCLC cell death by inducing pyroptosis via activating the NLRP3/caspase-1/GSDMD signaling pathway, and inhibited cancer cell proliferation by increasing the ROS production to activate autophagy via blocking the PI3K/AKT/mTOR signaling pathway. Additionally, SFA also inhibited NSCLC cell migration and invasion by suppressing EMT pathway, and inhibited cancer cell colony formation and human umbilical vein endothelial cell angiogenesis. In concordance with the above results, SFA treatment blocked tumor growth in an A549 cell-bearing orthotopic mouse model. CONCLUSION: This study revealed a potential therapeutic mechanism of a novel matrine-derived alkaloid, which not only described a rational explanation for the clinical utilization of S. flavescens, but also provided a potential candidate compound for NSCLC treatment.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Sophora , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Sophora flavescens , Espécies Reativas de Oxigênio/metabolismo , Matrinas , Piroptose , Apoptose , Fosfatidilinositol 3-Quinases , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Autofagia , Quinolizinas/farmacologia , Quinolizinas/química , Sophora/química , Linhagem Celular Tumoral
8.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903293

RESUMO

The phytochemical investigation of the roots of the traditional Chinese medicinal plant Sophora flavescens led to the isolation of two novel prenylflavonoids with an unusual cyclohexyl substituent instead of the common aromatic ring B, named 4',4'-dimethoxy-sophvein (17) and sophvein-4'-one (18), and 34 known compounds (1-16, 19-36). The structures of these chemical compounds were determined by spectroscopic techniques, including 1D-, 2D-NMR, and HRESIMS data. Furthermore, evaluations of nitric oxide (NO) production inhibitory activity against lipopolysaccharide (LPS)-treated RAW264.7 cells indicated that some compounds exhibited obvious inhibition effects, with IC50 ranged from 4.6 ± 1.1 to 14.4 ± 0.4 µM. Moreover, additional research demonstrated that some compounds inhibited the growth of HepG2 cells, with an IC50 ranging from 0.46 ± 0.1 to 48.6 ± 0.8 µM. These results suggest that flavonoid derivatives from the roots of S. flavescens can be used as a latent source of antiproliferative or anti-inflammatory agents.


Assuntos
Flavonoides , Sophora , Flavonoides/química , Sophora flavescens , Sophora/química , Anti-Inflamatórios/farmacologia , Raízes de Plantas/química , Extratos Vegetais/farmacologia , Espectroscopia de Ressonância Magnética
9.
Fitoterapia ; 165: 105388, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36496050

RESUMO

Two previously undescribed amino acid-type alkaloids with unusual N-pyridinium cation (1-2) and six known alkaloids (3-8), were isolated from the roots and rhizomes of Sophora tonkinensis Gapnea. Their structures were characterized by UV, IR, NMR, and HRESIMS spectroscopic data. The absolute configurations of compounds 1 and 2 were established through comparison of their experimental ECD spectra to the theoretical spectra of 2 calculated by TDDFT method. The plausible biosynthetic pathway of pyridinium was also proposed. Moreover, compound 4 exhibited weak XOD inhibitory activity with the inhibition rate of 65.8% at concentration of 10 µM.


Assuntos
Alcaloides , Sophora , Rizoma/química , Sophora/química , Aminoácidos , Estrutura Molecular , Raízes de Plantas/química , Alcaloides/farmacologia
10.
Molecules ; 27(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36557783

RESUMO

Sophorae tonkinensis Radix et Rhizoma (STR) is a traditional Chinese herbal medicine. STR can reduce aminotransferase activity; however, the specific mechanism remains unclear. Here, we explored the potential therapeutic effects and hepatoprotective mechanism of STR on liver damage in mice. The chemical characteristics of the extract were characterized using ultra-high-performance liquid chromatography-tandem mass spectrometry fingerprinting, and its antioxidant capacity was verified using free radical scavenging tests. Forty-eight Kunming mice were randomly assigned into six groups. The model was made after the corresponding drug was given. The results showed that the STR water extract pretreatment significantly reduced serum aminotransferase and related liver function indicators compared with that in the model group. Furthermore, the STR water extract pretreatment significantly inhibited the apoptosis of liver cells, the level of liver high-mobility group box 1 (HMGB1), and inflammatory factors in hepatic tissue compared with that in the model group, and significantly downregulated the levels of toll-like receptor 4 (TLR4), Myeloid differentiation factor 88 (MyD88), and nuclear factor kappa B (NF-κB) compared with those in the model group. Overall, the STR water extract exerted a significant protective effect on CCL4-induced acute liver injury in this study, and the accurate active ingredients of the STR water extract will be explored in the near future.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Sophora , Camundongos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Tetracloreto de Carbono/toxicidade , Sophora/química , Fígado , Transaminases , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
11.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558062

RESUMO

Sophora japonica L. (SJL) and Robinia pseudoacacia L. (RPL) are widely cultivated in China. However, the utilization of their main by-products are limited due to a lack of comprehensive nutritional attributes. Herein, the proximate composition, mineral elements, fatty acids, amino acids, monosaccharides, and phenolics were analyzed to investigate the nutritional attributes of SJL and RPL. Dietary fiber was the main ingredient in SJL and RPL, followed by protein and lipids. The content of Fe in SJL and RPL was highest, especially in flowers of SJL, reaching about 1179.51 mg/kg. The total unsaturated fatty acids accounted for 89.67% of the bud of SJL. Meanwhile, the essential amino acids contents of the flower and bud of SJL and RPL accounted for 35.95-40.59% of total amino acids. The flower of SJL (373.75 mg/g) exhibited the most abundant monosaccharides. Meanwhile, the total phenolics and flavonoid contents in the buds of SJL and RPL were significantly higher than that of the flower, implying the buds possessed better biological activity. Moreover, the bud of SJL possessed the most abundant phenolics. The results provided a reference for the development of functional food derived from SJL and RPL.


Assuntos
Robinia , Sophora , Sophora japonica , Fenóis/análise , Flavonoides/análise , Flores/química , Sophora/química
12.
Molecules ; 27(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080327

RESUMO

The roots of Sophora tonkinensis Gagnep., a traditional Chinese medicine, is known as Shan Dou Gen in the Miao ethnopharmacy. A large number of previous studies have suggested the usage of S. tonkinensis in the folk treatment of lung, stomach, and throat diseases, and the roots of S. tonkinensis have been produced as Chinese patent medicines to treat related diseases. Existing phytochemical works reported more than 300 compounds from different parts and the endophytic fungi of S. tonkinensis. Some of the isolated extracts and monomer compounds from S. tonkinensis have been proved to exhibit diverse biological activities, including anti-tumor, anti-inflammatory, antibacterial, antiviral, and so on. The research progress on the phytochemistry and pharmacological activities of S. tonkinensis have been systematically summarized, which may be useful for its further research.


Assuntos
Sophora , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Fungos , Medicina Tradicional Chinesa , Compostos Fitoquímicos/análise , Raízes de Plantas/química , Sophora/química
13.
J Am Chem Soc ; 144(35): 15938-15943, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36006400

RESUMO

(+)-Matrine and (+)-isomatrine are tetracyclic alkaloids isolated from the plant Sophora flavescens, the roots of which are used in traditional Chinese medicine. Biosynthetically, these alkaloids are proposed to derive from three molecules of (-)-lysine via the intermediacy of the unstable cyclic imine Δ1-piperidine. Inspired by the biosynthesis, a new dearomative annulation reaction has been developed that leverages pyridine as a stable surrogate for Δ1-piperidine. In this key transformation, two molecules of pyridine are joined with a molecule of glutaryl chloride to give the complete tetracyclic framework of the matrine alkaloids in a single step. Using this dearomative annulation, isomatrine is synthesized in four steps from inexpensive commercially available chemicals. Isomatrine then serves as the precursor to additional lupin alkaloids, including matrine, allomatrine, isosophoridine, and sophoridine.


Assuntos
Alcaloides , Sophora , Alcaloides/química , Piperidinas , Piridinas , Quinolizinas/química , Sophora/química , Matrinas
14.
Food Chem ; 393: 133395, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35691061

RESUMO

Sophora japonica flower, rich in rutin, is a homology of medicine and food that can be used as an anti-inflammatory agent. Its effects and mechanisms against intestinal inflammation are unknown. In this study, S. japonica flower extracts (SFE) or rutin were administrated to chemically induced-colitic mice. The results showed that SFE or rutin regulated inflammation and oxidative stress in colitic mice. The colonic permeability was significantly improved by SFE or rutin, which was characterized by the higher levels of tight junction proteins and serum lower levels of FITC-Dextran and endotoxins. The inactivation of the NF-κB pathway by SFE or rutin may contribute to the anti-colitis effects. In colitic mice, SFE or rutin partially restored gut microbiota dysbiosis, as seen by increases in potential probiotics (e.g., Faecalibaculum rodentium) and decreases in potentially disease-related bacteria (e.g., Romboutsia ilealis and Eubacterium fissicatena group).


Assuntos
Colite , Microbioma Gastrointestinal , Sophora , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Sulfato de Dextrana , Modelos Animais de Doenças , Flores/química , Inflamação/tratamento farmacológico , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Compostos Fitoquímicos/análise , Rutina/análise , Rutina/farmacologia , Transdução de Sinais , Sophora/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-35395445

RESUMO

Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and a leading cause of vision impairment and blindness, which lacks effective diagnostic measures and therapeutic options. Sophora flavescens Aiton or "Kushen" is a traditional Chinese medicine used since ancient times, either alone or in combination, to clear heat, dampness, and tearing, and to treat ocular diseases and improve eyesight. Additionally, the flavonoids of Sophora flavescens Aiton extracted using ethyl acetate (EtOAc) (SFE) is effective in managing diabetes and diabetic vascular complications. In this study, we explored the pharmacodynamic effects and material basis of action of SFE on DR for the first time and elucidated the mechanism based on untargeted retinal metabolomics. Results from the pharmacodynamic studies showed that SFE could reduce blood glucose levels in rats, regulate serum lipopolysaccharide, tauroursodeoxycholic acid, and trimethylamine oxide levels, and significantly improve the structure of retina in rats with DR. Moreover, SFE could protect the blood-retinal barrier, reduce angiogenesis and capillary formation, and inhibit retinal nerve cell apoptosis. A total of 13 compounds were identified in the aqueous humor and retina, which were dihydroflavonoid, isoflavonoid, pterostane flavonoid, chalcone, and dihydroflavonol derivatives. In addition, 39 differential metabolites were screened based on retinal metabolomics data and 23 were found to be affected by SFE, indicating its anti-DR effect by regulating the synthetic metabolic pathways, including lactose, bile acid, glycerophospholipid, arginine, purine, and pyrimidine metabolism pathways. Collectively, our findings elucidated the effects, material basis, and treatment mechanism of SFE on DR systematically and could lay the foundation for promoting the clinical application of Sophora flavescens Aiton.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Sophora , Acetatos , Animais , Retinopatia Diabética/tratamento farmacológico , Flavonoides/química , Flavonoides/farmacologia , Metabolômica/métodos , Extratos Vegetais/química , Ratos , Retina , Sophora/química
16.
Phytother Res ; 36(5): 2061-2071, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35307893

RESUMO

The dried flower and flower bud of Styphnolobium japonicum (L.) Schott (Japanese Sophora flower and Japanese Sophora flower bud, respectively) have long been used as herbal medicines in Asia. Today, they are marketed as dietary supplements in the United States for their anti-oxidative properties and as a source of flavonoids, including rutin and quercetin. This review focused on the safety of S. japonicum flower and flower bud as dietary supplement ingredients. No serious adverse events or toxicity were reported in the clinical or experimental animal studies we reviewed. Although some studies indicated that rutin or quercetin may have potential for drug interactions, none were identified for S. japonicum flower or flower bud. S. japonicum flower and flower bud are not known to have been associated with serious health risks when appropriately consumed in dietary supplements and have been admitted to the U.S. Pharmacopeial Convention monograph development process. However, pregnant and breastfeeding women should seek the advice of a healthcare professional because no data are available on their use by these special populations.


Assuntos
Quercetina , Sophora , Feminino , Flores/química , Humanos , Extratos Vegetais/química , Quercetina/análise , Rutina , Sophora/química
17.
Phytomedicine ; 100: 154054, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35358931

RESUMO

BACKGROUND: Sophora flavescens Aiton (SF), also known as Kushen (Chinese:), has been an important species in Chinese medicine since the Qin and Han dynasties. It is also recognized as a plant resource suitable for the globalization of Chinese medicine. Traditionally, it has been used in various ethnic medical systems in East Asia, especially in China, to kill insects and dispel dampness. Sophora flavescens is commonly used for clearing heat-clearing, killing worms, and diuretic. Nowdays, accumulating studies demonstrated its anticancer and cardioprotection. OBJECTIVE OF THE REVIEW: This paper aims to systematically review information on the genus, pharmacological and toxicological significance, chemical composition and biological activity of Sophora flavescens. To promoting its development and application. To summarize recent findings regarding to the metabolism, pharmacological/toxicological effects of Sophora flavescens. MATERIAL AND METHODS: Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Sophora flavescens Aiton", "Ku shen", "Pharmacology", "Active ingredient", "Toxicology" and combinations to include published studies of Sophora flavescens Aiton primarily from 1970-2021. Several critical previous studies beyond this period were also included and other related terms. CONCLUSION: Sophora flavescens has a broad spectrum of biological activities associated with Sophora flavescens has been considered a valuable resource in both traditional and modern medicine. However, there is a lack of in-depth studies on the medicinal uses of Sophora flavescens. Moreover, further studies on single chemical components should be conducted based on the diversity of chemical structures, significant biological activities and clinical applications. The discovery of its bioactive molecules and multi-component interactions would be of great importance for the clinical application of Sophora flavescens spp. Detailed pharmacological and toxicological studies on the classic prescriptions of Sophora flavescens are also needed. It is more beneficial to the wide application of SF plant and facilitates the worldwide promotion of modern Chinese medicine. However, an increasing number of reports indicate that the administration of Sophora flavescens has serious adverse effects. Its main toxic effects are neurotoxicity and acute toxicity, which have caused widespread concern worldwide. In addition, the alkaloids of Sophora flavescens are distributed in the heart, liver, stomach and large intestine. They are excreted from the body through gluconeogenesis, which is the mode of action of certain therapeutic mechanisms of action such as anticancer. The detailed metabolic study of alkaloids and other components of Sophora flavescens in vivo needs to be further investigated. It is important to improve the pharmacological effects and reduce the toxicity of Sophora flavescens. For this purpose, structural modification of active components of Sophora flavescens or combination with other drugs is very essential.


Assuntos
Alcaloides , Antineoplásicos , Sophora , Alcaloides/farmacologia , Biodiversidade , China , Etnofarmacologia , Medicina Tradicional Chinesa , Compostos Fitoquímicos/farmacologia , Sophora/química
18.
Biomed Chromatogr ; 36(6): e5357, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35191054

RESUMO

Sophorae tonkinensis Radix et Rhizoma (S. tonkinensis) has been recorded as a 'poisonous' Chinese herbal medicine in Chinese Pharmacopoeia 2020. The clinical reaction reports of S. tonkinensis indicated its neurotoxicity; however, there still exists dispute about its toxic substances. At present, no report is available on the blood and brain prototype research of S. tonkinensis. Most studies focused on alkaloids and less on other compounds. Moreover, the constituents absorbed into the blood and brain have been rarely investigated so far. This study established a rapid and efficient qualitative analysis method using UPLC-Q-TOF-MSE to characterize the ingredients of S. tonkinensis and those entering into the rat's body after oral administration. A total of 91 compounds were identified in S. tonkinensis, of which 28 were confirmed by the standards. In addition, 30 and 19 prototypes were also first identified in the rat's blood and brain, respectively. It was found that most flavonoids, except alkaloids, were detected in the rat's body and distributed in the cerebrospinal fluid, suggesting that flavonoids may be one of the important toxic or effective substances of S. tonkinensis. This finding provides new clues and data for clarifying the toxicity or efficacy of this medicinal plant.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Sophora , Alcaloides/química , Animais , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Flavonoides/análise , Ratos , Rizoma/química , Sophora/química
19.
Artigo em Inglês | MEDLINE | ID: mdl-35066245

RESUMO

In this study, a temperature-sensitive molecularly imprinted polymer was prepared by using the bifunctional monomer with the critical phase transition characteristics. Infrared spectrometry, scanning electron microscopy, and specific surface area testing were used to characterize the polymers. Then, the recognizing properties of the polymers were studied. Based on the prepared smart polymers, an SPE-HPLC analytical method for the determination of quinolizidine alkaloids in the extracts of Sophora flavescens was established and verified. Finally, the smart polymers were applied to the enrichment of quinolizidine alkaloids in plant extracts. By changing the temperature and solvents of the solid phase extraction conditions, the extraction process can increase the concentration of quinolizidine alkaloids by 4.3 to 5.2 folds. The extraction process has mild conditions and less time consumption, avoiding the use of a large number of toxic reagents, which indicate that the extraction process are more efficient and environmentally friendly.


Assuntos
Alcaloides/análise , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Polímeros Molecularmente Impressos/química , Quinolizinas/análise , Extração em Fase Sólida/métodos , Alcaloides/isolamento & purificação , Medicamentos de Ervas Chinesas/isolamento & purificação , Polímeros Molecularmente Impressos/síntese química , Quinolizinas/isolamento & purificação , Extração em Fase Sólida/instrumentação , Sophora/química , Matrinas
20.
Drug Des Devel Ther ; 16: 191-212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35082485

RESUMO

Sophoridine is a natural quinolizidine alkaloid and a bioactive ingredient that can be isolated and identified from certain herbs, including Sophora flavescens Alt, Sophora alopecuroides L, and Sophora viciifolia Hance. In recent years, this quinolizidine alkaloid has gained widespread attention because of its unique structure and minimal side effects. Modern pharmacological investigations have uncovered sophoridine's multiple wide range biological activities, such as anti-cancer, anti-inflammatory, anti-viral, anti-arrhythmia, and analgesic functions, among others. These pharmacological activities and beneficial effects point to sophoridine as a strong potential therapeutic candidate for the treatment of various diseases, including several cancer types, hepatitis B virus, enterovirus 71, coxsackievirus B3, cerebral edema, cancer pain, heart failure, acute myocardial ischemia, arrhythmia, inflammation, acute lung injury, and osteoporosis. The data showed that sophoridine had adverse reactions, including hepatotoxicity and neurotoxicity. Additionally, analyses of sophoridine's safety, bioavailability, and pharmacokinetic parameters in animal models of research have been limited, especially in the clinic, as have been investigations on its structure-activity relationship. In this article, we comprehensively summarize the biological activities, toxicity, and pharmacokinetic characteristics of sophoridine and its derivatives, as currently reported in publications, as we attempt to provide an overall perspective on sophoridine analogs and the prospects of its application clinically.


Assuntos
Compostos Fitoquímicos/farmacologia , Fitoterapia/métodos , Preparações de Plantas/farmacologia , Sophora/química , Analgésicos , Animais , Antiarrítmicos , Anti-Inflamatórios , Antineoplásicos , Antivirais , Etnobotânica , Etnofarmacologia , Humanos , Compostos Fitoquímicos/farmacocinética , Compostos Fitoquímicos/toxicidade , Preparações de Plantas/farmacocinética , Preparações de Plantas/toxicidade , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA