Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0297041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38206916

RESUMO

Pneumococcal conjugate vaccines (PCVs) prevent nasopharyngeal colonization with vaccine serotypes of Streptococcus pneumoniae, leading to reduced transmission of pneumococci and stronger population-level impact of PCVs. In 2017 we conducted a cross-sectional pneumococcal carriage study in Indonesia among children aged <5 years before 13-valent PCV (PCV13) introduction. Nasopharyngeal swabs were collected during visits to community integrated health service posts at one peri-urban and one rural study site. Specimens were analyzed by culture, and isolates were serotyped using sequential multiplex polymerase chain and Quellung reaction. Antibiotic susceptibility was performed by broth microdilution method. We enrolled 1,007 children in Gunungkidul District, Yogyakarta (peri-urban) and 815 in Southwest Sumba, East Nusa Tenggara (rural). Pneumococcal carriage prevalence was 30.9% in Gunungkidul and 87.6% in Southwest Sumba (combined: 56.3%). PCV13 serotypes (VT) carriage was 15.0% in Gunungkidul and 52.6% in Southwest Sumba (combined: 31.8%). Among pneumococcal isolates identified, the most common VT were 6B (16.4%), 19F (15.8%), and 3 (4.6%) in Gunungkidul (N = 323) and 6B (17.6%), 19F (11.0%), and 23F (9.3%) in Southwest Sumba (N = 784). Factors associated with pneumococcal carriage were age (1-2 years adjusted odds ratio (aOR) 1.9, 95% CI 1.4-2.5; 3-4 years aOR 1.5, 95% CI 1.1-2.1; reference <1 year), other children <5 years old in the household (aOR 1.5, 95% CI 1.1-2.0), and presence of ≥1 respiratory illness symptom (aOR 1.8, 95% CI 1.4-2.2). Overall, 61.5% of the pneumococcal isolates were non-susceptible to ≥1 antibiotic class and 13.2% were multi-drug non-susceptible (MDNS) (non-susceptible to ≥3 classes of antibiotics). Among 602 VT isolates, 73.9% were non-susceptible and 19.9% were MDNS. These findings are critical to establish a pre-PCV13 carriage prevalence and demonstrate the complexity in evaluating the impact of PCV13 introduction in Indonesia given the wide variability in the carriage prevalence as shown by the two study sites.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Criança , Humanos , Lactente , Pré-Escolar , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Conjugadas , Estudos Transversais , Indonésia/epidemiologia , Portador Sadio/epidemiologia , Sorogrupo , Vacinas Pneumocócicas , Nasofaringe , Antibacterianos
2.
J Toxicol Environ Health A ; 87(5): 185-198, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38073488

RESUMO

Tellimagrandin-I (TL) and camptothin A (CA) are ellagitannins widely found in diverse plant species. Numerous studies demonstrated their significant biological activities, which include antitumor, antioxidant, and hepatoprotective properties. Despite this protective profile, the effects of TL and CA on DNA have not been comprehensively investigated. Thus, the aim of this study was to determine the mutagenic and antimutagenic effects attributed to TL and CA exposure on Salmonella enterica serovar Typhimurium strains using the Ames test. In addition, the cytotoxic and genotoxic effects were examined on human lymphocytes, employing both trypan blue exclusion and CometChip assay. The antigenotoxic effect was determined following TL and CA exposure in the presence of co-treatment with doxorubicin (DXR). Our results from the Ames test indicated that TL or CA did not display marked mutagenic activity. However, TL or CA demonstrated an ability to protect DNA against the damaging effects of the mutagens 4-nitroquinoline-1-oxide and sodium azide, thereby exhibiting antimutagenic properties. In relation to human lymphocytes, TL or CA did not induce significant cytotoxic or genotoxic actions on these cells. Further, these ellagitannins exhibited an ability to protect DNA from damage induced by DOX during co-treatment, indicating their potential beneficial usefulness as antigenotoxic agents. In conclusion, the protective effects of TL or CA against mutagens, coupled with their absence of genotoxic and cytotoxic effects on human lymphocytes, emphasize their potential therapeutic value in chemopreventive strategies.


Assuntos
Antimutagênicos , Salmonella enterica , Humanos , Salmonella typhimurium/genética , Salmonella enterica/genética , Taninos Hidrolisáveis/farmacologia , Sorogrupo , Testes de Mutagenicidade , Mutagênicos/toxicidade , Antimutagênicos/farmacologia , Extratos Vegetais/farmacologia , Carcinógenos/farmacologia , DNA/farmacologia , Linfócitos
3.
J Gene Med ; 26(1): e3576, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37580111

RESUMO

BACKGROUND: Adenoviral vectors are among the most frequently used vectors for gene therapy and cancer treatment. Most vectors are derived from human adenovirus (Ad) serotype 5 despite limited applicability caused by pre-existing immunity and unfavorable liver tropism, whereas the other more than 100 known human serotypes remain largely unused. Here, we screened a library of human Ad types and identified Ad4 as a promising candidate vector. METHODS: Reporter-gene-expressing viruses representative of the natural human Ad diversity were used to transduce an array of muscle cell lines and two- or three-dimensional tumor cultures. The time-course of transgene expression was monitored by fluorescence or luminescence measurements. To generate replication-deficient Ad4 vector genomes, successive homologous recombination was applied. RESULTS: Ad4, 17 and 50 transduced human cardiomyocytes more efficiently than Ad5, whereas Ad37 was found to be superior in rhabdomyocytes. Despite its moderate transduction efficiency, Ad4 showed efficient and long-lasting gene expression in papillomavirus (HPV) positive tumor organoids. Therefore, we aimed to harness the potential of Ad4 for improved muscle transduction or oncolytic virotherapy of HPV-positive tumors. We deleted the E1 and E3 transcription units to produce first generation Ad vectors for gene therapy. The E1- and E1/E3-deleted vectors were replication-competent in HEK293 cells stably expressing E1 but not in the other cell lines tested. Furthermore, we show that the Ad5 E1 transcription unit can complement the replication of E1-deleted Ad4 vectors. CONCLUSIONS: Our Ad4-based gene therapy vector platform contributes to the development of improved Ad vectors based on non-canonical serotypes for a broad range of applications.


Assuntos
Adenovírus Humanos , Neoplasias , Infecções por Papillomavirus , Humanos , Sorogrupo , Células HEK293 , Adenoviridae/genética , Adenovírus Humanos/genética , Vetores Genéticos/genética , Terapia Genética , Neoplasias/genética , Neoplasias/terapia
4.
J Biosci ; 482023.
Artigo em Inglês | MEDLINE | ID: mdl-38018543

RESUMO

Dengue fever cases are spiking over the last two decades. Incessant efforts are still being made to gain deeper insights on this arboviral disease and to identify bioactive antivirals. In this study, bioinformatics analysis was conducted to identify the differentially expressed genes (DEGs) in the expression profiling datasets of dengue virus serotype 2 (DENV2) patients. We found overexpressed genes in dengue patients that can interrupt cell cycle progression and phase transitions of mitosis inside the host to favour the viral replication process. These DEGs were associated with the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways such as cell cycle and DNA replication. A protein interaction network consisting of these significant pathways was also constructed using STRING. Futher, the traditional Chinese medicine (TCM) compounds from Ganoderma lucidum were screened to target DENV2 envelope protein, which was crucial for viral fusion activity. Docking, orbital energy, and toxicity prediction analysis revealed that naringenin was the best antiviral candidate. Following molecular dynamics simulations, the predicted binding energy of the protein-naringenin system using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach was slightly greater than the control system. It is recommended to perform in vitro inhibition of naringenin against DENV2 and use our findings to complement the experimental data obtained.


Assuntos
Vírus da Dengue , Reishi , Humanos , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Reishi/genética , Sorogrupo
5.
Biomolecules ; 13(9)2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37759753

RESUMO

Salmonella is a foodborne pathogen that poses a serious threat to both human and animal health and food safety. Flaxseed is rich in unsaturated fatty acids; has anti-metabolic syndrome, anti-inflammatory, and neuroprotective properties; and may be a potential source of feed additives. To investigate the impact of flaxseed on Salmonella-infected laying hens, we administered Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) after adding flaxseed to the feed of laying hens (15% [750 mg/kg]). S. Enteritidis colonization was reduced and its clearance was accelerated from the laying hens. Furthermore, flaxseed supplementation mitigated the damage to the ileum caused by S. Enteritidis. We analyzed alterations in intestinal flora through 16S rRNA amplicon sequencing. S. Enteritidis infection increased the abundance of Akkermansia and triggered the host inflammatory response. Conversely, the addition of flaxseed to the feed increased the abundance of beneficial intestinal bacteria, such as Lactobacilli and Bacteroides. Ovarian health is important for egg production performance in laying hens and our findings indicate that S. Enteritidis can persist in the ovaries for an extended period. Therefore, we further performed transcriptome sequencing analysis of ovarian tissues on day seven after S. Enteritidis infection. S. Enteritidis infection leads to altered ovarian gene expression, including the downregulation of lipid metabolism and growth and development genes and the upregulation of host immune response genes in laying hens. The upregulation of genes associated with growth and development may have stimulated ovarian growth and development.


Assuntos
Linho , Microbiota , Humanos , Animais , Feminino , Galinhas/genética , Ovário , RNA Ribossômico 16S , Sorogrupo , Ceco , Expressão Gênica , Suplementos Nutricionais
6.
Phytomedicine ; 119: 154977, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37506573

RESUMO

BACKGROUND: Dengue virus (DENV) is a major public health threat. However, there are no specific therapeutic drugs for DENV. Many Chinese heat-cleaning formulas, such as Liang-Ge-San (LGS), have been frequently used in the virus-induced diseases. The antiviral effect of LGS has not been reported yet. PURPOSE: In this study, the effect of LGS on the inhibition of dengue virus serotype 2 (DENV-2) was investigated and the relevant mechanism was explored. METHODS: High-performance liquid chromatography was applied to analyze the chemical characterization of LGS. The in vitro antiviral activities of LGS against DENV-2 were evaluated by time-of-drug-addition assay. The binding of heat shock protein 70 (Hsp70) and envelope (E) protein or caveolin1 (Cav1) were analyzed by immunofluorescence and immunoprecipitation assays. Then the role of Cav1 in the anti-DENV-2 effects of LGS was further examined. DENV-2 infected Institute of Cancer Research suckling mice (n = 10) and AG129 mice (n = 8) were used to examine the protective effects of LGS. RESULTS: It was found that geniposide, liquiritin, forsythenside A, forsythin, baicalin, baicalein, rhein, and emodin maybe the characteristic components of LGS. LGS inhibited the early stage of DENV-2 infection, decreased the expression levels of viral E and non-structural protein 1 (NS1) proteins. LGS also reduced E protein and Hsp70 binding and attenuated the translocation of Hsp70 from cytoplasm to the cell membrane. Moreover, LGS decreased the binding of Hsp70 to Cav1. Further study showed that the overexpression of Cav1 reversed LGS-mediated E protein and Hsp70 inhibition in the plasma membrane. In the in vivo study, LGS was highly effective in prolonging the survival time, reducing viral loads. CONCLUSION: This work demonstrates for the first time that LGS exerts anti-DENV-2 activity in vitro and in vivo. LGS decreases DENV-2-stimulated cytoplasmic Hsp70 translocation into the plasma membrane by Cav1 inhibition, thereby inhibiting the early stage of virus infection. These findings indicate that LGS may be a candidate for the treatment of DENV.


Assuntos
Vírus da Dengue , Dengue , Animais , Camundongos , Dengue/tratamento farmacológico , Proteínas de Choque Térmico HSP70 , Sorogrupo , Membrana Celular , Antivirais/farmacologia , Antivirais/uso terapêutico , Citoplasma/metabolismo
7.
Lett Appl Microbiol ; 76(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37055371

RESUMO

This research aimed to evaluate the antimicrobial activity of essential oils (EOs) against clinically and environmentally isolated Salmonella serotypes. Oregano, thyme, and grapefruit EO compounds were identified, and the antimicrobial activity was evaluated against the S. Saintpaul, Oranienburg, and Infantis serotypes. In addition, molecular docking was performed to explore the possible mechanisms between compounds of EOs with microbial enzymes. Thymol was the main compound identified in oregano (44.0%) and thyme (31%) EOs, while d-limonene was present in a greater proportion in grapefruit EO. Oregano EO had the highest antimicrobial activity, followed by thyme and grapefruit EOs. Oregano and thyme EOs illustrated a greater inhibitory capacity to all serotypes, particularly with the environmental S. Saintpaul. Oregano EO presented values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration of 0.1 µL/mL for all serotypes, while thyme and grapefruit EOs presented MIC values of 0.1 µL/mL for the clinical serotypes S. Infantis and S. Oranienburg, respectively. Molecular docking analysis showed the optimal binding free energies for thymol and carvacrol with glucokinase, ATP-dependent-6-fructokinase, outer membrane porin C, and topoisomerase IV. Our results indicate that these EOs can inhibit clinically and environmentally isolated Salmonella serotypes and can be used as alternatives for developing natural food preservatives.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Salmonella enterica , Thymus (Planta) , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos de Plantas/farmacologia , Timol/farmacologia , Simulação de Acoplamento Molecular , Sorogrupo , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Thymus (Planta)/química
8.
BMC Genomics ; 24(1): 165, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016310

RESUMO

BACKGROUND: The Salmonella enterica serovar Newport red onion outbreak of 2020 was the largest foodborne outbreak of Salmonella in over a decade. The epidemiological investigation suggested two farms as the likely source of contamination. However, single nucleotide polymorphism (SNP) analysis of the whole genome sequencing data showed that none of the Salmonella isolates collected from the farm regions were linked to the clinical isolates-preventing the use of phylogenetics in source identification. Here, we explored an alternative method for analyzing the whole genome sequencing data driven by the hypothesis that if the outbreak strain had come from the farm regions, then the clinical isolates would disproportionately contain plasmids found in isolates from the farm regions due to horizontal transfer. RESULTS: SNP analysis confirmed that the clinical isolates formed a single, nearly-clonal clade with evidence for ancestry in California going back a decade. The clinical clade had a large core genome (4,399 genes) and a large and sparsely distributed accessory genome (2,577 genes, at least 64% on plasmids). At least 20 plasmid types occurred in the clinical clade, more than were found in the literature for Salmonella Newport. A small number of plasmids, 14 from 13 clinical isolates and 17 from 8 farm isolates, were found to be highly similar (> 95% identical)-indicating they might be related by horizontal transfer. Phylogenetic analysis was unable to determine the geographic origin, isolation source, or time of transfer of the plasmids, likely due to their promiscuous and transient nature. However, our resampling analysis suggested that observing a similar number and combination of highly similar plasmids in random samples of environmental Salmonella enterica within the NCBI Pathogen Detection database was unlikely, supporting a connection between the outbreak strain and the farms implicated by the epidemiological investigation. CONCLUSION: Horizontally transferred plasmids provided evidence for a connection between clinical isolates and the farms implicated as the source of the outbreak. Our case study suggests that such analyses might add a new dimension to source tracking investigations, but highlights the need for detailed and accurate metadata, more extensive environmental sampling, and a better understanding of plasmid molecular evolution.


Assuntos
Salmonella enterica , Sorogrupo , Cebolas/genética , Fazendas , Filogenia , Plasmídeos/genética , Surtos de Doenças
9.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688773

RESUMO

The purpose of this study was to determine the effect of the culture method on the resistance of Salmonella Typhimurium in low water activity foods to storage, plasma, and dry heat. Whole black peppers were used as the model food. S. Typhimurium cultured in liquid broth (tryptic soy broth) or solid agar (tryptic soy agar) and inoculated on whole black pepper was stored or treated with cold plasma or dry heat. Inactivation of S. Typhimurium cultured in liquid medium was higher in all the treatments. Liquid-cultured S. Typhimurium showed higher DPPP = O (diphenyl-1-pyrenylphosphine oxide) values compared to the solid-cultured S. Typhimurium after plasma or dry heat treatment. Furthermore, the unsaturated fatty acid and saturated fatty acid ratio (USFA/SFA) was significantly (P < 0.05) reduced from 0.41 to 0.29 when S. Typhimurium was cultured on solid agar. These results suggested that the use of food-borne pathogens cultured on solid agar is more suitable for low water activity food pasteurization studies.


Assuntos
Piper nigrum , Salmonella enterica , Salmonella typhimurium/fisiologia , Ágar , Temperatura Alta , Sorogrupo , Microbiologia de Alimentos , Água , Contagem de Colônia Microbiana , Salmonella enterica/fisiologia
10.
J Integr Med ; 21(1): 106-115, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36333178

RESUMO

OBJECTIVE: Melittin, a cell-penetrating peptide, improves the efficiency of many non-viral gene delivery vectors, yet its application in viral vectors has not been well studied. The non-pathogenic recombinant adeno-associated virus (rAAV) vector is an ideal in vivo gene delivery vector. However, its full potential will only be achieved after improvement of its transduction efficiency. To improve the transduction efficiency of rAAV2 vectors, we attempted to develop a melittin-based rAAV2 vector delivery strategy. METHODS: The melittin peptide was inserted into the rAAV2 capsid either in the loop VIII of all viral proteins (VPs) or at the N terminus of VP2. Various rAAV2-gfp or -fluc vectors were subjected to quantitative real-time polymerase chain reaction and Western blot assays to determine their titers and integrity of capsid proteins, respectively. Alternatively, the vectors based on wild-type capsid were pre-incubated with melittin, followed by transduction of cultured cells or tail vein administration of the mixture to C57BL/6 and BALB/c nude mice. In vivo bioluminescence imaging was performed to evaluate the transgene expression. RESULTS: rAAV2 vectors with melittin peptide inserted in the loop VIII of VPs had low transduction efficiency, probably due to dramatically reduced ability to bind to the target cells. Fusing the melittin peptide at the N-terminus of VP2 produced vectors without the VP2 subunit. Interestingly, among the commonly used rAAV vectors, pre-incubation of rAAV2 and rAAV6 vectors with melittin significantly enhanced their transduction efficiency in HEK293 and Huh7 cells in vitro. Melittin also had the ability to increase the rAAV2-mediated transgene expression in mouse liver in vivo. Mechanistically, melittin did not change the vector-receptor interaction. Moreover, cell counting kit-8 assays of cultured cells and serum transaminase levels indicated melittin had little cytotoxicity. CONCLUSION: Pre-incubation with melittin, but not insertion of melittin into the rAAV2 capsid, significantly enhanced rAAV2-mediated transgene expression. Although further in vivo evaluations are required, this research not only expands the pharmacological potential of melittin, but also provides a new strategy to improve gene therapy mediated by rAAV vectors.


Assuntos
Dependovirus , Meliteno , Camundongos , Animais , Humanos , Meliteno/farmacologia , Meliteno/genética , Dependovirus/genética , Sorogrupo , Células HEK293 , Camundongos Nus , Camundongos Endogâmicos C57BL , Transgenes , Vetores Genéticos/genética
11.
Microbiol Spectr ; 10(6): e0294922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36377917

RESUMO

The increasingly serious problem of bacterial drug resistance has led to the development of antivirulence agents. The Salmonella enterica serovar Typhimurium Salmonella pathogenicity island (SPI)-encoded type III secretion system (T3SS) and its effector proteins are important virulence factors for S. Typhimurium invasion and replication in host cells and for antivirulence drug screening. Fraxetin is isolated from Fraxinus spp. Extensive studies have reported its multiple pharmacological activities. However, it remains to be elucidated whether fraxetin affects the function of the S. Typhimurium T3SS. In this study, the anti-infection mechanism of fraxetin on S. Typhimurium and its T3SS was investigated. Fraxetin inhibited the S. Typhimurium invasion of HeLa cells without affecting the growth of bacteria in vitro. Further findings on the mechanism showed that fraxetin had an inhibitory effect on the S. Typhimurium T3SS by inhibiting the transcription of the pathogenesis-related SPI-1 transcriptional activator genes hilD, hilC, and rtsA. Animal experiments showed that fraxetin treatment protected mice against S. Typhimurium infection. Collectively, we provide the first demonstration that fraxetin may serve as an effective T3SS inhibitor for the development of treatments for Salmonella infection. IMPORTANCE The increasingly serious problem of bacterial antibiotic resistance limits the clinical application of antibiotics, which increases the need for the development of antivirulence agents. The type III secretion system (T3SS) plays a critical role in host cell invasion and pathogenesis of Salmonella and becomes a popular target for antivirulence agents screening. Our study found, for the first time, that fraxetin inhibited S. Typhimurium invasion by inhibiting the transcription of genes in a feed-forward regulatory loop. Further in vivo testing showed that fraxetin decreased bacterial burdens in the spleen and liver of S. Typhimurium-infected mice and improved survival outcomes in an in vivo mouse model of S. Typhimurium infection. Collectively, these results demonstrate that fraxetin inhibits S. Typhimurium infection by targeting the T3SS and may serve as a potential agent for the treatment of S. Typhimurium infection.


Assuntos
Salmonella typhimurium , Sistemas de Secreção Tipo III , Humanos , Animais , Camundongos , Sistemas de Secreção Tipo III/metabolismo , Células HeLa , Sorogrupo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
12.
Front Immunol ; 13: 956833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211337

RESUMO

The appearance of bacteria resistant to most or even all known antibiotics has become a serious medical problem. One such promising and effective alternative form of therapy may be the use of phages, the administration of which is considered to be safe and highly effective, especially in animals with drug-resistant infections. Although there have been no reports to date suggesting that bacteriophages can cause any severe complications or adverse effects, we still know little about their interactions with animal organisms, especially in the context of the functioning of the immune system. Therefore, the aim of the present study was to compare the impact of the application of selected bacteriophages and antibiotics (enrofloxacin and colistin), commonly used in veterinary medicine, on immune functions in Salmonella enterica serovar Typhimurium-infected chickens. The birds were infected with S. Typhimurium and then treated with a phage cocktail (14 days), enrofloxacin (5 days), or colistin (5 days). The concentrations of a panel of pro-inflammatory cytokines (IL-1ß, IL-6, IFN-γ, IL-8, and IL-12) and cytokines that reveal anti-inflammatory effects (IL-10 and IL-4), the percentage of lymphocytes, and the level of stress hormones (corticosterone and cortisol), which significantly modulate the immune responses, were determined in different variants of the experiment. The phage cocktail revealed anti-inflammatory effects when administered either 1 day after infection or 2 days after S. Typhimurium detection in feces, as measured by inhibition of the increase in levels of inflammatory response markers (IL-1ß, IL-6, IFN-γ, IL-8, and IL-12). This was also confirmed by increased levels of cytokines that exert an anti-inflammatory action (IL-10 and IL-4) following phage therapy. Moreover, phages did not cause a negative effect on the number and activity of lymphocytes' subpopulations crucial for normal immune system function. These results indicate for the first time that phage therapy not only is effective but also can be used in veterinary medicine without disturbing immune homeostasis, expressed as cytokine imbalance, disturbed percentage of key immune cell subpopulations, and stress axis hyperactivity, which were observed in our experiments as adverse effects accompanying the antibiotic therapy.


Assuntos
Bacteriófagos , Terapia por Fagos , Animais , Antibacterianos/uso terapêutico , Galinhas , Colistina , Corticosterona , Citocinas , Enrofloxacina/uso terapêutico , Hidrocortisona , Interleucina-10 , Interleucina-12 , Interleucina-4 , Interleucina-6 , Interleucina-8 , Salmonella typhimurium , Sorogrupo
13.
Res Vet Sci ; 152: 579-581, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36201904

RESUMO

Leptospirosis in ruminants presents as a chronic disease that causes several reproductive disorders leading to severe economic losses. The current recommended treatment can be efficient to eliminate the renal carrier state, however little is known about the effect of this drug in removing the genital carrier state and the hormonal influence on it. A total of 12 primiparous sheep experimentally infected with a strain of Leptospira santarosai serogroup Sejroe, FV52 strain, were used and distributed as group A (estrus; n = 5), group B (metaestrus; n = 4) and group C (control; n = 3). At D0, groups A and B were treated with streptomycin (25 mg/kg) single dose. Samples of cervicovaginal mucus (CVM) were collected on days 0, 3, and 35 post-treatment, while uterine fragment (UF) samples were collected on days 3 and 35, for PCR. Even after antibiotic treatment, all groups presented infected animals, at D3 and D35, with no significant difference between the treated and control groups. Based on these results, it was conducted a second protocol of treatment with streptomycin, IM (25 mg/kg) for three consecutive days, which was 100% effective to eliminate the genital carrier state; therefore, that protocol should be recommended.


Assuntos
Leptospira , Leptospirose , Doenças dos Ovinos , Feminino , Ovinos , Animais , Estreptomicina/uso terapêutico , Leptospirose/tratamento farmacológico , Leptospirose/veterinária , Sorogrupo , Estro , Útero , Doenças dos Ovinos/tratamento farmacológico
14.
Phytomedicine ; 106: 154424, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126544

RESUMO

BACKGROUND: Dengue virus (DENV) is considered one of the most important pathogens in the world causing 390 million infections each year. Currently, the development of vaccines against DENV presents some shortcomings and there is no antiviral therapy available for its infection. An important challenge is that both treatments and vaccines must be effective against all four DENV serotypes. Nordihydroguaiaretic acid (NDGA), isolated from Larrea divaricata Cav. (Zygophyllaceae) has shown a significant inhibitory effect on a broad spectrum of viruses, including DENV serotypes 2 and 4. PURPOSE: We evaluated the in vitro virucidal and antiviral activity of NDGA on DENV serotype 1 (DENV1), including the study of its mechanism of action, to provide more evidence on its antiviral activity. METHODS: The viability of viral particles was quantified by the plaque-forming unit reduction method. NDGA effects on DENV1 genome and viral proteins were evaluated by qPCR and immunofluorescence, respectively. Lysosomotropic activity was assayed using acridine orange and neutral red dyes. RESULTS: NDGA showed in vitro virucidal and antiviral activity against DENV1. The antiviral effect would be effective within the first 2 h after viral internalization, when the uncoating process takes place. In addition, we determined by qPCR that NDGA decreases the amount of intracellular RNA of DENV1 and, by immunofluorescence, the number of cells infected. These results indicate that the antiviral effect of NDGA would have an intracellular mechanism of action, which is consistent with its ability to be incorporated into host cells. Considering the inhibitory activity of NDGA on the cellular lipid metabolism, we compared the antiviral effect of two inhibitors acting on two different pathways of this type of metabolism: 1) resveratrol that inhibits the sterol regulatory element of binding proteins, and 2) caffeic acid that inhibits the 5-lipoxygenase (5-LOX) enzyme. Only caffeic acid produced an inhibitory effect on DENV1 infection. We studied the lysosomotropic activity of NDGA on host cells and found, for the first time, that this compound inhibited the acidification of cell vesicles which would prevent DENV1 uncoating process. CONCLUSION: The present work contributes to the knowledge of NDGA activity on DENV. We describe its activity on DENV1, a serotype different to those that have been already reported. Moreover, we provide evidence on which stage/s of the viral replication cycle NDGA exerts its effects. We suggest that the mechanism of action of NDGA on DENV1 is related to its lysosomotropic effect, which inhibits the viral uncoating process.


Assuntos
Vírus da Dengue , Laranja de Acridina/farmacologia , Antivirais/farmacologia , Araquidonato 5-Lipoxigenase/genética , Ácidos Cafeicos , Corantes/farmacologia , Vírus da Dengue/fisiologia , Masoprocol/farmacologia , Vermelho Neutro/farmacologia , RNA , Resveratrol/farmacologia , Sorogrupo , Esteróis/farmacologia , Proteínas Virais , Replicação Viral
15.
Front Cell Infect Microbiol ; 12: 941867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992162

RESUMO

Phage therapy is a promising alternative treatment of bacterial infections in human and animals. Nevertheless, despite the appearance of many bacterial strains resistant to antibiotics, these drugs still remain important therapeutics used in human and veterinary medicine. Although experimental phage therapy of infections caused by Salmonella enterica was described previously by many groups, those studies focused solely on effects caused by bacteriophages. Here, we compared the use of phage therapy (employing a cocktail composed of two previously isolated and characterized bacteriophages, vB_SenM-2 and vB_Sen-TO17) and antibiotics (enrofloxacin and colistin) in chickens infected experimentally with S. enterica serovar Typhimurium. We found that the efficacies of both types of therapies (i.e. the use of antibiotics and phage cocktail) were high and very similar to one another when the treatment was applied shortly (one day) after the infection. Under these conditions, S. Typhimurium was quickly eliminated from the gastrointestinal tract (GIT), to the amount not detectable by the used methods. However, later treatment (2 or 4 days after detection of S. Typhimurium in chicken feces) with the phage cocktail was significantly less effective. Bacteriophages remained in the GIT for up to 2-3 weeks, and then were absent in feces and cloaca swabs. Interestingly, both phages could be found in various organs of chickens though with a relatively low abundance. No development of resistance of S. Typhimurium to phages or antibiotics was detected during the experiment. Importantly, although antibiotics significantly changed the GIT microbiome of chickens in a long-term manner, analogous changes caused by phages were transient, and the microbiome normalized a few weeks after the treatment. In conclusion, phage therapy against S. Typhimurium infection in chickens appeared as effective as antibiotic therapy (with either enrofloxacin or colistin), and less invasive than the use the antibiotics as fewer changes in the microbiome were observed.


Assuntos
Bacteriófagos , Terapia por Fagos , Salmonelose Animal , Salmonella enterica , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Galinhas , Colistina/farmacologia , Enrofloxacina/farmacologia , Salmonelose Animal/microbiologia , Salmonelose Animal/terapia , Salmonella typhimurium , Sorogrupo
16.
Food Res Int ; 157: 111241, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761553

RESUMO

Essential oils (EOs), such as thyme (Thy) and cinnamon (Cin) oils, present promising antibacterial properties against foodborne pathogens (e.g., Salmonella enterica serovar Typhimurium). However, the food matrix might result in sublethal EO stress, and little information about direct and/or cross-resistance development after sublethal EO exposure is available. This study revealed that S. Typhimurium under sublethal Thy and Cin (50% minimum inhibitory concentration, MIC50) treatments exhibited a lower growth rate and an extended lag phase. EO adapted cells showed direct-resistance to subsequent lethal EO treatment, and cross-resistance to thermal (58 °C) and oxidative (hydrogen peroxide, 50 mmol/L) stresses. Metabolomics analysis revealed changes of 47 significant metabolites (variable importance in projection > 1, false discovery rate (FDR) < 0.05), including lipids, oligopeptides, amino acids, nucleotide related compounds, and organic acids. Metabolic pathways, such as aminoacyl-tRNA biosynthesis, were shown to be involved in EO adaptation. Furthermore, a transcriptomics study identified 161 differentially expressed genes (DEGs, fold change > 2, FDR < 0.05) in MIC50 Thy treated cells, while more DEGs (324) were screened from the MIC50 Cin group. The integrated omics analysis allowed us to speculate on the molecular mechanisms. Under harsher Thy stress, S. Typhimurium cells adopted a conservative strategy to survive. By contrast, more radical responses were observed during Cin adaptation. In conclusion, the food industry should be more cautious in the use of EOs because sublethal EO stress might result in the development of resistance.


Assuntos
Óleos Voláteis , Thymus (Planta) , Cinnamomum zeylanicum/química , Metabolômica , Óleos Voláteis/farmacologia , Óleos de Plantas , Salmonella typhimurium/genética , Sorogrupo , Thymus (Planta)/química , Transcriptoma
17.
Microbiol Spectr ; 10(3): e0220221, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35532355

RESUMO

Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen of concern because many isolates are multidrug-resistant (resistant to ≥3 antimicrobial classes) and metal tolerant. In this study, three in-feed additives were individually tested for their ability to reduce Salmonella I 4,[5],12:i:- shedding in swine: resistant potato starch (RPS), high amylose corn starch, and a fatty acid blend, compared with a standard control diet over 21 days. Only RPS-fed pigs exhibited a reduction in Salmonella fecal shedding, different bacterial community compositions, and different cecal short chain fatty acid (SCFA) profiles relative to control animals. Within the RPS treatment group, pigs shedding the least Salmonella tended to have greater cecal concentrations of butyrate, valerate, caproate, and succinate. Additionally, among RPS-fed pigs, several bacterial taxa (Prevotella_7, Olsenella, and Bifidobacterium, and others) exhibited negative relationships between their abundances of and the amount of Salmonella in the feces of their hosts. Many of these same taxa also had significant positive associations with cecal concentrations of butyrate, valerate, caproate, even though they are not known to produce these SCFAs. Together, these data suggest the RPS-associated reduction in Salmonella shedding may be dependent on the establishment of bacterial cross feeding interactions that result in the production of certain SCFAs. However, directly feeding a fatty acid mix did not replicate the effect. RPS supplementation could be an effective means to reduce multidrug-resistant (MDR) S. enterica serovar I 4,[5],12:i:- in swine, provided appropriate bacterial communities are present in the gut. IMPORTANCE Prebiotics, such as resistant potato starch (RPS), are types of food that help to support beneficial bacteria and their activities in the intestines. Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen that commonly resides in the intestines of pigs without disease, but can make humans sick if unintentionally consumed. Here we show that in Salmonella inoculated pigs, feeding them a diet containing RPS altered the colonization and activity of certain beneficial bacteria in a way that reduced the amount of Salmonella in their feces. Additionally, within those fed RPS, swine with higher abundance of these types of beneficial bacteria had less Salmonella I 4,[5],12:i:- in their feces. This work illustrates likely synergy between the prebiotic RPS and the presence of certain gut microorganisms to reduce the amount of Salmonella in the feces of pigs and therefore reduce the risk that humans will become ill with MDR Salmonella serovar I 4,[5],12:i:-.


Assuntos
Salmonelose Animal , Salmonella enterica , Solanum tuberosum , Doenças dos Suínos , Animais , Butiratos , Caproatos , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos Voláteis , Fezes/microbiologia , Prebióticos , Amido Resistente , Salmonella , Salmonelose Animal/microbiologia , Salmonelose Animal/prevenção & controle , Sorogrupo , Amido , Suínos , Doenças dos Suínos/microbiologia , Valeratos
18.
Viruses ; 14(5)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35632682

RESUMO

Dengue is an arthropod-borne acute febrile illness caused by Dengue Virus (DENV), a member of Flaviviridae. Severity of the infection ranges from mild self-limiting illness to severe life-threatening hemorrhagic fever (DHF) and dengue shock syndrome (DSS). To date, there is no specific antiviral therapy established to treat the infection. The current study reports the epidemiology of DENV infections and potential inhibitors of DENV 'E' protein. Among the various serotypes, DENV-2 serotype was observed more frequently, followed by DENV-4, DENV-1, and DENV-3. New variants of existing genotypes were observed in DENV-1, 2, and 4 serotypes. Predominantly, the severe form of dengue was attributable to DENV-2 infections, and the incidence was more common in males and pediatric populations. Both the incidence and the disease severity were more common among the residents of non-urban environments. Due to the predominantly self-limiting nature of primary dengue infection and folk medicine practices of non-urban populations, we observed a greater number of secondary dengue cases than primary dengue cases. Hemorrhagic manifestations were more in secondary dengue in particularly in the pediatric group. Through different computational methods, ligands RGBLD1, RGBLD2, RGBLD3, and RGBLD4 are proposed as potential inhibitors in silico against DENV-1, -2, -3, and -4 serotypes.


Assuntos
Antivirais , Vírus da Dengue , Dengue , Dengue Grave , Proteínas do Envelope Viral , Antivirais/química , Antivirais/farmacologia , Dengue/epidemiologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Humanos , Incidência , Sorogrupo , Dengue Grave/epidemiologia , Proteínas do Envelope Viral/antagonistas & inibidores
19.
Poult Sci ; 101(6): 101822, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35427858

RESUMO

The reduction in antibiotic growth promoter use in poultry, due to antibiotic resistance concerns, has created a need for natural solutions that control enteric pathogens like Salmonella. One of these natural feed additives, a select blend of essential oils, fatty acids, and an enterosorbent mineral (NeutraPath), was assessed for its effects on the intestinal colonization of Salmonella enterica serovar Typhimurium PHL2020 isolate (ST-PHL2020) in broiler chickens and ST-PHL2020 virulence gene expression. An in vitro digestion model simulating the pH and enzymatic conditions of 3 gastrointestinal compartments (crop, proventriculus, and intestine) was first used to evaluate the antibacterial effects of NeutraPath on ST-PHL2020. For the in vivo study, day-old male broilers (n = 90) were randomly allocated to 1 of 3 groups: control or NeutraPath supplemented at 0.25 or 0.5%. The dose rates were chosen to enable observable statistical effects during high Salmonella challenge. All groups were challenged with ST-PHL2020 (106 cfu/bird) via oral gavage on day 9. Bacterial load and prevalence of ST-PHL2020 were examined in ceca-cecal tonsils, and intestinal permeability was assessed via serum recovery of fluorescein isothiocyanate dextran (FITC-d) 24 h postchallenge. NeutraPath inhibited (P < 0.05) ST-PHL2020 growth in the in vitro digestion model compared to the control at all concentrations and in all compartments other than NeutraPath 0.25% in the crop. In vivo, NeutraPath 0.25 and 0.5% reduced (P < 0.05) the total cfu recovered and total prevalence of ST-PHL2020 in the ceca. The serum FITC-d levels were also reduced (P < 0.05) by NeutraPath. Further, NeutraPath's effects on ST-PHL2020's Salmonella pathogenicity island-1 virulence network development were explored via treating ST-PHL2020 at subinhibitory concentration (1 mg/mL) of NeutraPath in vitro. Compared to the control, NeutraPath downregulated ST-PHL2020 hilA and invF mRNA expression, which further blocked expression of key downstream effectors involved in ST-PHL2020 invasion. Collectively, NeutraPath has the potential to reduce ST-PHL2020 intestinal colonization in broilers and preserve intestinal barrier integrity.


Assuntos
Anti-Infecciosos , Doenças das Aves Domésticas , Salmonelose Animal , Salmonella enterica , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Galinhas/microbiologia , Regulação para Baixo , Fluoresceína-5-Isotiocianato , Intestinos , Masculino , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Sorogrupo , Virulência
20.
PLoS One ; 17(3): e0265511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358211

RESUMO

In many Gram-negative bacteria, the stress sigma factor of RNA polymerase, σS/RpoS, remodels global gene expression to reshape the physiology of quiescent cells and ensure their survival under non-optimal growth conditions. In the foodborne pathogen Salmonella enterica serovar Typhimurium, σS is also required for biofilm formation and virulence. We have previously identified sRNAs genes positively controlled by σS in Salmonella, including the two paralogous sRNA genes, ryhB1 and ryhB2/isrE. Expression of ryhB1 and ryhB2 is repressed by the ferric uptake regulator Fur when iron is available. In this study, we show that σS alleviates Fur-mediated repression of the ryhB genes and of additional Fur target genes. Moreover, σS induces transcription of the manganese transporter genes mntH and sitABCD and prevents their repression, not only by Fur, but also by the manganese-responsive regulator MntR. These findings prompted us to evaluate the impact of a ΔrpoS mutation on the Salmonella ionome. Inductively coupled plasma mass spectrometry analyses revealed a significant effect of the ΔrpoS mutation on the cellular concentration of manganese, magnesium, cobalt and potassium. In addition, transcriptional fusions in several genes involved in the transport of these ions were regulated by σS. This study suggests that σS controls fluxes of ions that might be important for the fitness of quiescent cells. Consistent with this hypothesis, the ΔrpoS mutation extended the lag phase of Salmonella grown in rich medium supplemented with the metal ion chelator EDTA, and this effect was abolished when magnesium, but not manganese or iron, was added back. These findings unravel the importance of σS and magnesium in the regrowth potential of quiescent cells.


Assuntos
Salmonella typhimurium , Fator sigma , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Íons/metabolismo , Ferro/metabolismo , Magnésio/metabolismo , Manganês/metabolismo , Sorogrupo , Fator sigma/genética , Fator sigma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA