Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 15(2): e0228383, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32017783

RESUMO

Biological nitrogen (N) fixation is an important process supporting primary production in ecosystems, especially in those where N availability is limiting growth, such as peatlands and boreal forests. In many peatlands, peat mosses (genus Sphagnum) are the prime ecosystem engineers, and like feather mosses in boreal forests, they are associated with a diverse community of diazotrophs (N2-fixing microorganisms) that live in and on their tissue. The large variation in N2 fixation rates reported in literature remains, however, to be explained. To assess the potential roles of habitat (including nutrient concentration) and species traits (in particular litter decomposability and photosynthetic capacity) on the variability in N2 fixation rates, we compared rates associated with various Sphagnum moss species in a bog, the surrounding forest and a fen in Sweden. We found appreciable variation in N2 fixation rates among moss species and habitats, and showed that both species and habitat conditions strongly influenced N2 fixation. We here show that higher decomposition rates, as explained by lower levels of decomposition-inhibiting compounds, and higher phosphorous (P) levels, are related with higher diazotrophic activity. Combining our findings with those of other studies, we propose a conceptual model in which both species-specific traits of mosses (as related to the trade-off between rapid photosynthesis and resistance to decomposition) and P availability, explain N2 fixation rates. This is expected to result in a tight coupling between P and N cycling in peatlands.


Assuntos
Nitrogênio/análise , Fósforo/análise , Sphagnopsida/crescimento & desenvolvimento , Ecossistema , Florestas , Modelos Teóricos , Fixação de Nitrogênio , Fotossíntese , Sphagnopsida/classificação , Sphagnopsida/metabolismo , Suécia , Simbiose
2.
Plant Biol (Stuttg) ; 22(3): 394-403, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31999043

RESUMO

Sphagnum biomass is a promising material that could be used as a substitute for peat in growing media and can be sustainably produced by converting existing drainage-based peatland agriculture into wet, climate-friendly agriculture (paludiculture). Our study focuses on yield maximization of Sphagnum as a crop. We tested the effects of three water level regimes and of phosphorus or potassium fertilization on the growth of four Sphagnum species (S. papillosum, S. palustre, S. fimbriatum, S. fallax). To simulate field conditions in Central and Western Europe we carried out a glasshouse experiment under nitrogen-saturated conditions. A constant high water table (remaining at 2 cm below capitulum during growth) led to highest productivity for all tested species. Water table fluctuations between 2 and 9 cm below capitulum during growth and a water level 2 cm below capitulum at the start but falling relatively during plant growth led to significantly lower productivity. Fertilization had no effect on Sphagnum growth under conditions with high atmospheric deposition such as in NW Germany (38 kg N, 0.3 kg P, 7.6 kg K·ha-1 ·year-1 ). Large-scale maximization of Sphagnum yields requires precise water management, with water tables just below the capitula and rising with Sphagnum growth. The nutrient load in large areas of Central and Western Europe from atmospheric deposition and irrigation water is high but, with an optimal water supply, does not hamper Sphagnum growth, at least not of regional provenances of Sphagnum.


Assuntos
Fertilizantes , Nitrogênio , Sphagnopsida , Água , Alemanha , Nitrogênio/metabolismo , Fósforo/farmacologia , Potássio/farmacologia , Sphagnopsida/efeitos dos fármacos , Sphagnopsida/crescimento & desenvolvimento , Água/metabolismo
3.
Plant Biol (Stuttg) ; 14(3): 491-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22221295

RESUMO

Sphagnum-bog ecosystems have a limited capability to retain carbon and nutrients when subjected to increased nitrogen (N) deposition. Although it has been proposed that phosphorus (P) can dilute negative effects of nitrogen by increasing biomass production of Sphagnum mosses, it is still unclear whether P-addition can alleviate physiological N-stress in Sphagnum plants. A 3-year fertilisation experiment was conducted in lawns of a pristine Sphagnum magellanicum bog in Patagonia, where competing vascular plants were practically absent. Background wet deposition of nitrogen was low (≈ 0.1-0.2 g · N · m(-2) · year(-1)). Nitrogen (4 g · N · m(-2) · year(-1)) and phosphorus (1 g · P · m(-2) · year(-1)) were applied, separately and in combination, six times during the growing season. P-addition substantially increased biomass production of Sphagnum. Nitrogen and phosphorus changed the morphology of Sphagnum mosses by enhancing height increment, but lowering moss stem density. In contrast to expectations, phosphorus failed to alleviate physiological stress imposed by excess nitrogen (e.g. amino acid accumulation, N-saturation and decline in photosynthetic rates). We conclude that despite improving growth conditions by P-addition, Sphagnum-bog ecosystems remain highly susceptible to nitrogen additions. Increased susceptibility to desiccation by nutrients may even worsen the negative effects of excess nitrogen especially in windy climates like in Patagonia.


Assuntos
Desidratação/fisiopatologia , Sphagnopsida/crescimento & desenvolvimento , Sphagnopsida/metabolismo , Adaptação Fisiológica/fisiologia , Argentina , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotossíntese/fisiologia , Áreas Alagadas
4.
Oecologia ; 157(1): 153-61, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18465147

RESUMO

Although numerous studies have addressed the effects of increased N deposition on nutrient-poor environments such as raised bogs, few studies have dealt with to what extent, and on what time-scale, reductions in atmospheric N supply would lead to recovery of the ecosystems in question. Since a considerable part of the negative effects of elevated N deposition on raised bogs can be related to an imbalance in tissue nutrient concentrations of the dominant peat-former Sphagnum, changes in Sphagnum nutrient concentration after excess N supply may be used as an early indicator of ecosystem response. This study focuses on the N and P concentrations of Sphagnum magellanicum and Sphagnum fallax before, during and after a factorial fertilization experiment with N and P in two small peatlands subject to a background bulk deposition of 2 g N m(-2) year(-1). Three years of adding N (4.0 g N m(-2) year(-1)) increased the N concentration, and adding P (0.3 g P m(-2) year(-1)) increased the P concentration in Sphagnum relative to the control treatment at both sites. Fifteen months after the nutrient additions had ceased, N concentrations were similar to the control whereas P concentrations, although strongly reduced, were still slightly elevated. The changes in the N and P concentrations were accompanied by changes in the distribution of nutrients over the capitulum and the stem and were congruent with changes in translocation. Adding N reduced the stem P concentration, whereas adding P reduced the stem N concentration in favor of the capitulum. Sphagnum nutrient concentrations quickly respond to reductions in excess nutrient supply, indicating that a management policy aimed at reducing atmospheric nutrient input to bogs can yield results within a few years.


Assuntos
Nitrogênio/metabolismo , Fósforo/metabolismo , Sphagnopsida/metabolismo , Ecossistema , Caules de Planta/metabolismo , Sphagnopsida/crescimento & desenvolvimento , Fatores de Tempo
5.
New Phytol ; 179(1): 142-154, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18373651

RESUMO

Nitrogen and phosphorus were added experimentally in a bog in the southern Alps. It was hypothesized that alleviating nutrient limitation will increase vascular plant cover. As a consequence, more carbon will be fixed through higher rates of net ecosystem CO(2) exchange (NEE). The vascular cover did increase at the expense of Sphagnum mosses. However, such vegetation changes were largely independent of the treatment and were probably triggered by an exceptional heatwave in summer 2003. Contrary to the tested hypothesis, NEE was unaffected by the nutrient treatments but was strongly influenced by temperature and water-table depth. In particular, ecosystem respiration in the hot summer of 2003 increased dramatically, presumably owing to enhanced heterotrophic respiration in an increased oxic peat layer. At the end of the experiment, the Sphagnum cover decreased significantly in the nitrogen-fertilized treatment at hummock microhabitats. In the long term, this will imply a proportionally greater accumulation of vascular litter, more easily decomposable than the recalcitrant Sphagnum litter. As a result, rates of carbon fixation may decrease because of stimulated respiration.


Assuntos
Dióxido de Carbono/metabolismo , Fertilizantes , Temperatura Alta , Fotossíntese , Sphagnopsida/crescimento & desenvolvimento , Áreas Alagadas , Nitrogênio/farmacologia , Fósforo/farmacologia , Chuva , Sphagnopsida/efeitos dos fármacos , Sphagnopsida/metabolismo
6.
Oecologia ; 156(1): 155-67, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18283501

RESUMO

Peat bogs play a large role in the global sequestration of C, and are often dominated by different Sphagnum species. Therefore, it is crucial to understand how Sphagnum vegetation in peat bogs will respond to global warming. We performed a greenhouse experiment to study the effect of four temperature treatments (11.2, 14.7, 18.0 and 21.4 degrees C) on the growth of four Sphagnum species: S. fuscum and S. balticum from a site in northern Sweden and S. magellanicum and S. cuspidatum from a site in southern Sweden. In addition, three combinations of these species were made to study the effect of temperature on competition. We found that all species increased their height increment and biomass production with an increase in temperature, while bulk densities were lower at higher temperatures. The hollow species S. cuspidatum was the least responsive species, whereas the hummock species S. fuscum increased biomass production 13-fold from the lowest to the highest temperature treatment in monocultures. Nutrient concentrations were higher at higher temperatures, especially N concentrations of S. fuscum and S. balticum increased compared to field values. Competition between S. cuspidatum and S. magellanicum was not influenced by temperature. The mixtures of S. balticum with S. fuscum and S. balticum with S. magellanicum showed that S. balticum was the stronger competitor, but it lost competitive advantage in the highest temperature treatment. These findings suggest that species abundances will shift in response to global warming, particularly at northern sites where hollow species will lose competitive strength relative to hummock species and southern species.


Assuntos
Efeito Estufa , Sphagnopsida/crescimento & desenvolvimento , Biomassa , Nitrogênio/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Sphagnopsida/metabolismo , Suécia , Temperatura , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA