Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37000168

RESUMO

A novel Gram-stain-negative, aerobic, rod-shaped, non-motile, cream-coloured strain (G124T) was isolated from ginseng soil collected in Yeongju, Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain G124T belongs to a distinct lineage within the genus Sphingomonas (family Sphingomonadaceae, order Sphingomonadales and class Alphaproteobacteria). Strain G124T was closely related to Sphingomonas rhizophila THG-T61T (98.5 % 16S rRNA gene sequence similarity), Sphingomonas mesophila SYSUP0001T (98.3 %), Sphingomonas edaphi DAC4T (97.6 %) and Sphingomonas jaspsi TDMA-16T (97.6 %). The strain contained ubiquinone 10 as the major respiratory quinone. The major polar lipid profile of strain G124T comprised phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and sphingoglycolipids. The predominant cellular fatty acids of strain G124T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c; 33.4 %), summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c; 27.2 %) and C16 : 0 (18.3 %). The genome size of strain G124T was 2 549 305 bp. The genomic DNA G+C content is 62.0 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain G124T and other Sphingomonas species were in the range of 71.2-75.9 % and 18.7-19.9 %, respectively. Based on the polyphasic analysis such as biochemical, phylogenetic and chemotaxonomic characteristics, strain G124T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas cremea sp. nov. is proposed. The type strain is G124T (=KACC 21691T=LMG 31729T).


Assuntos
Panax , Sphingomonas , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Espermidina/química , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA
2.
Sci Rep ; 12(1): 12653, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879323

RESUMO

Gram-negative Sphingomonas sp. strain A1 exhibits positive chemotaxis toward acidic polysaccharide pectin. SPH1118 has been identified as a pectin-binding protein involved in both pectin chemotaxis and assimilation. Here we show tertiary structures of SPH1118 with six different conformations as determined by X-ray crystallography. SPH1118 consisted of two domains with a large cleft between the domains and substrates bound to positively charged and aromatic residues in the cleft through hydrogen bond and stacking interactions. Substrate-free SPH1118 adopted three different conformations in the open form. On the other hand, the two domains were closed in substrate-bound form and the domain closure ratio was changed in response to the substrate size, suggesting that the conformational change upon binding to the substrate triggered the expression of pectin chemotaxis and assimilation. This study first clarified that the solute-binding protein with dual functions recognized the substrate through flexible conformational changes in response to the substrate size.


Assuntos
Quimiotaxia , Sphingomonas , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Pectinas/metabolismo , Conformação Proteica , Sphingomonas/metabolismo , Especificidade por Substrato
3.
Mar Drugs ; 19(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068940

RESUMO

Carotenoids are used commercially for dietary supplements, cosmetics, and pharmaceuticals because of their antioxidant activity. In this study, colored microorganisms were isolated from deep sea sediment that had been collected from Suruga Bay, Shizuoka, Japan. One strain was found to be a pure yellow carotenoid producer, and the strain was identified as Sphingomonas sp. (Proteobacteria) by 16S rRNA gene sequence analysis; members of this genus are commonly isolated from air, the human body, and marine environments. The carotenoid was identified as nostoxanthin ((2,3,2',3')-ß,ß-carotene-2,3,2',3'-tetrol) by mass spectrometry (MS), MS/MS, and ultraviolet-visible absorption spectroscopy (UV-Vis). Nostoxanthin is a poly-hydroxy yellow carotenoid isolated from some photosynthetic bacteria, including some species of Cyanobacteria. The strain Sphingomonas sp. SG73 produced highly pure nostoxanthin of approximately 97% (area%) of the total carotenoid production, and the strain was halophilic and tolerant to 1.5-fold higher salt concentration as compared with seawater. When grown in 1.8% artificial sea salt, nostoxanthin production increased by 2.5-fold as compared with production without artificial sea salt. These results indicate that Sphingomonas sp. SG73 is an efficient producer of nostoxanthin, and the strain is ideal for carotenoid production using marine water because of its compatibility with sea salt.


Assuntos
Sedimentos Geológicos/microbiologia , Sphingomonas/isolamento & purificação , Sphingomonas/metabolismo , Xantofilas/isolamento & purificação , Xantofilas/metabolismo , Japão , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Sais/farmacologia , Água do Mar , Sphingomonas/genética , Espectrometria de Massas em Tandem , Xantofilas/análise , Xantofilas/química
4.
Genes Genomics ; 42(9): 1087-1096, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32737807

RESUMO

BACKGROUND: Spingobium sp. PAMC 28499 is isolated from the glaciers of Uganda. Uganda is a unique region where hot areas and glaciers coexist, with a variety of living creatures surviving, but the survey on them is very poor. The genetic character and complete genome information of Sphingobium strains help with environmental studies and the development of better to enzyme industry. OBJECTIVE: In this study, complete genome sequence of Spingobium sp. PAMC 28499 and comparative analysis of Spingobium species strains isolated from variety of the region. METHODS: Genome sequencing was performed using PacBio sequel single-molecule real-time (SMRT) sequencing technology. The predicted gene sequences were functionally annotated and gene prediction was carried out using the program NCBI non-redundant database. And using dbCAN2 and KEGG data base were degradation pathway predicted and protein prediction about carbohydrate active enzymes (CAZymes). RESULTS: The genome sequence has 64.5% GC content, 4432 coding protein coding genes, 61 tRNAs, and 12 rRNA operons. Its genome encodes a simple set of metabolic pathways relevant to pectin and its predicted degradation protein an unusual distribution of CAZymes with extracellular esterases and pectate lyases. CAZyme annotation analyses revealed 165 genes related to carbohydrate active, and especially we have found GH1, GH2, GH3, GH38, GH35, GH51, GH51, GH53, GH106, GH146, CE12, PL1 and PL11 such as known pectin degradation genes from Sphingobium yanoikuiae. These results confirmed that this Sphingobium sp. strain PAMC 28499 have similar patterns to RG I pectin-degrading pathway. CONCLUSION: In this study, isolated and sequenced the complete genome of Spingobium sp. PAMC 28499. Also, this strain has comparative genome analysis. Through the complete genome we can predict how this strain can store and produce energy in extreme environment. It can also provide bioengineered data by finding new genes that degradation the pectin.


Assuntos
Polissacarídeo-Liases/genética , Sphingomonadaceae/genética , Sphingomonas/genética , Composição de Bases/genética , Sequência de Bases/genética , Mapeamento Cromossômico/métodos , Genoma Bacteriano/genética , Genômica/métodos , Pectinas/metabolismo , Filogenia , Sphingomonadaceae/enzimologia , Sphingomonadaceae/metabolismo , Sphingomonas/metabolismo , Uganda , Sequenciamento Completo do Genoma/métodos
5.
Sci Total Environ ; 719: 137456, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32112951

RESUMO

Bioremediation is considered a cost-effective and environmentally sound method for degradation of petroleum hydrocarbons in contaminated soils. This study investigated the effects of biosurfactant alkyl polyglycosides (APG) on enhanced biodegradation of petroleum hydrocarbon-contaminated soils using Sphingomonas changbaiensis and Pseudomonas stutzeri and explored the mechanism responsible for the enhanced petroleum hydrocarbon degradation. To accomplish this, the following treatments were evaluated: (1) bioaugmentation with Sphingomonas changbaiensis; (2) bioaugmentation with Pseudomonas stutzeri; (3) a combination of Sphingomonas changbaiensis and APG; and (4) a combination of Pseudomonas stutzeri and APG. The results showed that the degradation rates of total petroleum hydrocarbons (TPH) in contaminated soil samples bioaugmented with S. changbaiensis and P. stutzeri for 30 days were 39.2 ± 1.9% and 47.2 ± 1.2%, respectively. The addition of biosurfactant APG enhanced the bioremediation processes and improved the biodegradation rates. The biodegradation rate at 1.5 g/kg APG in soil samples bioaugmented with S. changbaiensis was 52.1 ± 2.0%, while the rate at 1.5 g/kg APG in soil samples bioaugmented with P. stutzeri was 59.0 ± 1.8%. The half-life decreased from 39.7 d to 24.5 d and from 29.6 to 20.1 d when the dosage of APG was 1.5 g/kg in contaminated soil samples bioaugmented with S. changbaiensis and P. stutzeri, respectively. Mechanism studies showed that the addition of APG can increase the TPH solubility, promote the sorption of TPH onto microbial cells and subsequent trans-membrane transport by APG-induced structural changes, stimulate microbial activities and participate in the co-metabolism. Therefore, the combination of bioaugmentation and APG is an effective method for remediation of petroleum hydrocarbon-contaminated soil.


Assuntos
Pseudomonas stutzeri , Sphingomonas , Biodegradação Ambiental , Hidrocarbonetos , Petróleo , Solo , Microbiologia do Solo , Poluentes do Solo
6.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188055

RESUMO

Plant growth-promoting rhizobacteria play vital roles not only in plant growth, but also in reducing biotic/abiotic stress. Sphingomonas panacis DCY99T is isolated from soil and root of Panax ginseng with rusty root disease, characterized by raised reddish-brown root and this is seriously affects ginseng cultivation. To investigate the relationship between 159 sequenced Sphingomonas strains, pan-genome analysis was carried out, which suggested genomic diversity of the Sphingomonas genus. Comparative analysis of S. panacis DCY99T with Sphingomonas sp. LK11 revealed plant growth-promoting potential of S. panacis DCY99T through indole acetic acid production, phosphate solubilizing, and antifungal abilities. Detailed genomic analysis has shown that S. panacis DCY99T contain various heavy metals resistance genes in its genome and the plasmid. Functional analysis with Sphingomonas paucimobilis EPA505 predicted that S. panacis DCY99T possess genes for degradation of polyaromatic hydrocarbon and phenolic compounds in rusty-ginseng root. Interestingly, when primed ginseng with S. panacis DCY99T during high concentration of iron exposure, iron stress of ginseng was suppressed. In order to detect S. panacis DCY99T in soil, biomarker was designed using spt gene. This study brings new insights into the role of S. panacis DCY99T as a microbial inoculant to protect ginseng plants against rusty root disease.


Assuntos
Tolerância a Medicamentos/genética , Genoma Bacteriano , Ferro/metabolismo , Panax/microbiologia , Sphingomonas/genética , Sphingomonas/fisiologia , DNA Bacteriano , Genes Bacterianos/genética , Tamanho do Genoma , Hidroxibenzoatos , Ferro/toxicidade , Metais Pesados , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Microbiologia do Solo , Sphingomonas/efeitos dos fármacos , Sphingomonas/isolamento & purificação , Estresse Fisiológico
7.
Sci Rep ; 10(1): 3977, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132546

RESUMO

As opposed to typical bacteria exhibiting chemotaxis towards low-molecular-weight substances, such as amino acids and mono/oligosaccharides, gram-negative Sphingomonas sp. strain A1 shows chemotaxis towards alginate and pectin polysaccharides. To identify the mechanism of chemotaxis towards macromolecules, a genomic fragment was isolated from the wild-type strain A1 through complementation with the mutant strain A1-M5 lacking chemotaxis towards pectin. This fragment contained several genes including sph1118. Through whole-genome sequencing of strain A1-M5, sph1118 was found to harbour a mutation. In fact, sph1118 disruptant lost chemotaxis towards pectin, and this deficiency was recovered by complementation with wild-type sph1118. Interestingly, the gene disruptant also exhibited decreased pectin assimilation. Furthermore, the gene product SPH1118 was expressed in recombinant E. coli cells, purified and characterised. Differential scanning fluorimetry and UV absorption spectroscopy revealed that SPH1118 specifically binds to pectin with a dissociation constant of 8.5 µM. Using binding assay and primary structure analysis, SPH1118 was predicted to be a periplasmic pectin-binding protein associated with an ATP-binding cassette transporter. This is the first report on the identification and characterisation of a protein triggering chemotaxis towards the macromolecule pectin as well as its assimilation.


Assuntos
Quimiotaxia , Pectinas/metabolismo , Receptores de Superfície Celular/metabolismo , Sphingomonas/citologia , Sphingomonas/metabolismo , Alginatos/metabolismo , Especificidade por Substrato
8.
Food Chem ; 295: 563-568, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174796

RESUMO

Enzyme specificity and particularity is needed not only in enzymatic separation methods, but also in enzymatic determination methods for plant compound extraction. Stevioside, rubusoside, and rebaudioside A are natural sweet compounds from plants. These compounds have the same skeleton and only contain different side-chain glucosyl groups, making them difficult to separate. However, enzymes that target diterpenoid compounds and show specific activity for side-chain glucosyl groups are rare. Herein, we report the identification and characterization of an enzyme that can target both diterpenoid compounds and sophorose, namely, ß-glucosidase SPBGL1 from Sphingomonas elodea ATCC 31461. SPBGL1 displayed high specificity toward sophorose, and activity toward stevioside, but not rebaudioside A. The stevioside conversion rate was 98%. SPBGL1 also operated at high substrate concentrations, such as in 50% crude steviol glycoside extract. Glucose liberated from stevioside was easy to quantify using the glucose oxidase method, allowing the stevioside content to be determined.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Glucosídeos/metabolismo , Sphingomonas/enzimologia , beta-Glucosidase/metabolismo , Hidrólise , Extratos Vegetais/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , beta-Glucosidase/genética
9.
J Am Chem Soc ; 141(25): 9980-9988, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31199639

RESUMO

Single layered two-dimensional (2D) materials such as transition metal dichalcogenides (TMDs) show great potential in many microelectronic or nanoelectronic applications. For example, because of extremely high sensitivity, TMD-based biosensors have become promising candidates for next-generation label-free detection. However, very few studies have been conducted on understanding the fundamental interactions between TMDs and other molecules including biological molecules, making the rational design of TMD-based sensors (including biosensors) difficult. This study focuses on the investigations of the fundamental interactions between proteins and two widely researched single-layered TMDs, MoS2, and WS2 using a combined study with linear vibrational spectroscopy attenuated total reflectance FTIR and nonlinear vibrational spectroscopy sum frequency generation vibrational spectroscopy, supplemented by molecular dynamics simulations. It was concluded that a large surface hydrophobic region in a relatively flat location on the protein surface is required for the protein to adsorb onto a monolayered MoS2 or WS2 surface with preferred orientation. No disulfide bond formation between cysteine groups on the protein and MoS2 or WS2 was found. The conclusions are general and can be used as guiding principles to engineer proteins to attach to TMDs. The approach adopted here is also applicable to study interactions between other 2D materials and biomolecules.


Assuntos
Proteínas de Bactérias/química , Dissulfetos/química , Glucosidases/química , Hidrolases/química , Molibdênio/química , Tungstênio/química , beta-Glucosidase/química , Adsorção , Clostridium cellulovorans/enzimologia , Interações Hidrofóbicas e Hidrofílicas , Lactococcus lactis/enzimologia , Simulação de Dinâmica Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Sphingomonas/enzimologia , Propriedades de Superfície , Vibração
10.
Int J Syst Evol Microbiol ; 68(2): 681-686, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29388549

RESUMO

A Gram-stain-negative, aerobic, non-motile, rod-shaped, catalase-positive and oxidase-positive bacteria (THG-T61T), was isolated from rhizosphere of Hibiscus syriacus. Growth occurred at 10-37 °C (optimum 25-30 °C), at pH 5.0-9.0 (optimum 7.0) and in the presence of 0-2.0 % NaCl (optimum without NaCl supplement). Based on 16S rRNA gene sequence analysis, the nearest phylogenetic neighbours of strain THG-T61T were identified as Sphingomonas ginsengisoli KCTC 12630T (97.9 %), Sphingomonas jaspsi DSM 18422T (97.8 %), Sphingomonas astaxanthinifaciens NBRC 102146T (97.4 %), Sphingomonassediminicola KCTC 12629T (97.2 %), 'Sphingomonas swuensis' KCTC 12336 (97.1 %) and Sphingomonas daechungensis KCTC 23718T (96.9 %). The isoprenoid quinone was ubiquinone-10 (Q-10). The major fatty acids were C16 : 0, C17 : 1ω6c, summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) and summed feature 7 (C18 : 1ω7c, C18 : 1ω9t and/or C18 : 1ω12t). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid, one unidentified lipid, one unidentified phospholipid, one unidentified glycolipid and one unidentified phosphoglycolipid. The polyamine was homospermidine. The DNA G+C content of strain THG-T61T was 65.6 mol%. The DNA-DNA relatedness values between strain THG-T61T and its closest reference strains were less than 49.2 %, which is lower than the threshold value of 70 %. Therefore, strain THG-T61T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas rhizophila sp. nov. is proposed. The type strain is THG-T61T (=KACC 19189T=CCTCC AB 2016245T).


Assuntos
Hibiscus/microbiologia , Filogenia , Rizosfera , Microbiologia do Solo , Sphingomonas/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Espermidina/química , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Ubiquinona/química
11.
Environ Sci Process Impacts ; 19(4): 622-634, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28352865

RESUMO

In this research, bacterial cell attachments to hematite, goethite and aluminium hydroxide were investigated. The aim was to study the effects of these minerals' hydrophobicity and pH-dependent surface charge on the extent of biofilm formation using six genetically diverse bacterial strains: Rhodococcus spp. (RC92 & RC291), Pseudomonas spp. (Pse1 & Pse2) and Sphingomonas spp. (Sph1 & Sph2), which had been previously isolated from contaminated environments. The surfaces were prepared in a way that was compatible with the naturally occurring coating process in aquifers: deposition of colloidal particles from the aqueous phase. The biofilms were evaluated using a novel, in situ and non-invasive technique developed for this purpose. A manufactured polystyrene 12-well plate was used as the reference surface to be coated with synthesized minerals by deposition of their suspended particles through evaporation. Planktonic phase growth indicates that it is independent of the surface charge and hydrophobicity of the studied surfaces. The hydrophobic similarities failed to predict biofilm proliferation. Two of the three hydrophilic strains formed extensive biofilms on the minerals. The third one, Sph2, showed anomalies in contrast to the expected electrostatic attraction between the minerals and the cell surface. Further research showed how the solution's ionic strength affects Sph2 surface potential and shapes the extent of its biofilm formation; reducing the ionic strength from ≈200 mM to ≈20 mM led to a tenfold increase in the number of cells attached to hematite. This study provides a technique to evaluate biofilm formation on metal-oxide surfaces, under well-controlled conditions, using a simple yet reliable method. The findings also highlight that cell numbers in the planktonic phase do not necessarily show the extent of cell attachment, and thorough physicochemical characterization of bacterial strains, substrata and the aquifer medium is fundamental to successfully implementing any bioremediation projects.


Assuntos
Óxido de Alumínio/química , Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Adesão Celular , Interações Hidrofóbicas e Hidrofílicas , Ferro/química , Inglaterra , Pseudomonas/crescimento & desenvolvimento , Rhodococcus/crescimento & desenvolvimento , Sphingomonas/crescimento & desenvolvimento
12.
Microbes Environ ; 32(1): 14-23, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28163278

RESUMO

The compatibility of strains is crucial for formulating bioinoculants that promote plant growth. We herein assessed the compatibility of four potential bioinoculants isolated from potato roots and tubers (Sphingomonas sp. T168, Streptomyces sp. R170, Streptomyces sp. R181, and Methylibium sp. R182) that were co-inoculated in order to improve plant growth. We screened these strains using biochemical tests, and the results obtained showed that R170 had the highest potential as a bioinoculant, as indicated by its significant ability to produce plant growth-promoting substances, its higher tolerance against NaCl (2%) and AlCl3 (0.01%), and growth in a wider range of pH values (5.0-10.0) than the other three strains. Therefore, the compatibility of R170 with other strains was tested in combined inoculations, and the results showed that the co-inoculation of R170 with T168 or R182 synergistically increased plant weight over un-inoculated controls, indicating the compatibility of strains based on the increased production of plant growth promoters such as indole-3-acetic acid (IAA) and siderophores as well as co-localization on roots. However, a parallel test using strain R181, which is the same Streptomyces genus as R170, showed incompatibility with T168 and R182, as revealed by weaker plant growth promotion and a lack of co-localization. Collectively, our results suggest that compatibility among bacterial inoculants is important for efficient plant growth promotion, and that R170 has potential as a useful bioinoculant, particularly in combined inoculations that contain compatible bacteria.


Assuntos
Betaproteobacteria/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/microbiologia , Sphingomonas/crescimento & desenvolvimento , Streptomyces/crescimento & desenvolvimento , Cloreto de Alumínio , Compostos de Alumínio/toxicidade , Betaproteobacteria/metabolismo , Cloretos/toxicidade , Concentração de Íons de Hidrogênio , Interações Microbianas , Reguladores de Crescimento de Plantas/metabolismo , Sideróforos/metabolismo , Cloreto de Sódio/metabolismo , Sphingomonas/metabolismo , Streptomyces/metabolismo
13.
Environ Pollut ; 220(Pt A): 95-104, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27638455

RESUMO

Nonylphenol (NP), ubiquitously detected as the degradation product of nonionic surfactants nonylphenol polyethoxylates, has been reported as an endocrine disrupter. However, most pure microorganisms can degrade only limited species of NP with low degradation efficiencies. To establish a microbial consortium that can effectively degrade different forms of NP, in this study, we isolated a facultative microbial consortium NP-M2 and characterized the biodegradation of NP by it. NP-M2 could degrade 75.61% and 89.75% of 1000 mg/L NP within 48 h and 8 days, respectively; an efficiency higher than that of any other consortium or pure microorganism reported so far. The addition of yeast extract promoted the biodegradation more significantly than that of glucose. Moreover, surface-active compounds secreted into the extracellular environment were hypothesized to promote high-efficiency metabolism of NP. The detoxification of NP by this consortium was determined. The degradation pathway was hypothesized to be initiated by oxidization of the benzene ring, followed by step-wise side-chain biodegradation. The bacterial composition of NP-M2 was determined using 16S rDNA library, and the consortium was found to mainly comprise members of the Sphingomonas, Pseudomonas, Alicycliphilus, and Acidovorax genera, with the former two accounting for 86.86% of the consortium. The high degradation efficiency of NP-M2 indicated that it could be a promising candidate for NP bioremediation in situ.


Assuntos
Biodegradação Ambiental , Comamonadaceae/metabolismo , Consórcios Microbianos , Fenóis/metabolismo , Pseudomonas/metabolismo , Sphingomonas/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Comamonadaceae/genética , Glucose/farmacologia , Consórcios Microbianos/genética , Extratos Vegetais/farmacologia , Pseudomonas/genética , Sphingomonas/genética , Leveduras/química
14.
Mol Cell Proteomics ; 15(10): 3256-3269, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27457762

RESUMO

Plants are colonized by a diverse community of microorganisms, the plant microbiota, exhibiting a defined and conserved taxonomic structure. Niche separation based on spatial segregation and complementary adaptation strategies likely forms the basis for coexistence of the various microorganisms in the plant environment. To gain insights into organism-specific adaptations on a molecular level, we selected two exemplary community members of the core leaf microbiota and profiled their proteomes upon Arabidopsis phyllosphere colonization. The highly quantitative mass spectrometric technique SWATH MS was used and allowed for the analysis of over two thousand proteins spanning more than three orders of magnitude in abundance for each of the model strains. The data suggest that Sphingomonas melonis utilizes amino acids and hydrocarbon compounds during colonization of leaves whereas Methylobacterium extorquens relies on methanol metabolism in addition to oxalate metabolism, aerobic anoxygenic photosynthesis and alkanesulfonate utilization. Comparative genomic analyses indicates that utilization of oxalate and alkanesulfonates is widespread among leaf microbiota members whereas, aerobic anoxygenic photosynthesis is almost exclusively found in Methylobacteria. Despite the apparent niche separation between these two strains we also found a relatively small subset of proteins to be coregulated, indicating common mechanisms, underlying successful leaf colonization. Overall, our results reveal for two ubiquitous phyllosphere commensals species-specific adaptations to the host environment and provide evidence for niche separation within the plant microbiota.


Assuntos
Arabidopsis/microbiologia , Proteínas de Bactérias/análise , Methylobacterium/crescimento & desenvolvimento , Proteômica/métodos , Sphingomonas/crescimento & desenvolvimento , Adaptação Fisiológica , Aminoácidos/metabolismo , Hidrocarbonetos/metabolismo , Espectrometria de Massas , Methylobacterium/metabolismo , Fotossíntese , Folhas de Planta/microbiologia , Especificidade da Espécie , Sphingomonas/metabolismo , Simbiose
15.
Sci Rep ; 6: 30277, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27452116

RESUMO

Non-fermenting Gram-negative bacilli, such as Sphingomonas paucimobilis (S.paucimobilis), are among the most widespread causes of nosocomial infections. Up to now, no definitive guidelines exist for antimicrobial therapy for S. paucimobilis infections. As we have shown that some dietary fibers exhibit pronounced immune-regulatory properties, we hypothesized that specific immune active dietary fibers might modulate the responses against S. paucimobilis. We studied the immunomodulatory effects of dietary fibers against S. paucimobilis on cytokine release and maturation of human dendritic cells (DCs) in co-cultures of DCs and intestinal epithelial cells (IECs). S. paucimobilis infection resulted in increased release of pro-inflammatory cytokines and chemokines by DCs/IECs; these effects were strongly attenuated by specific dietary fibers. Chicory inulin, sugar beet pectin, and both starches had the strongest regulatory effects. IL-12 and TNF-α were drastically diminished upon exposure to chicory inulin and sugar beet pectin, or both starches. High-maize 260, was more effective in the reduction of chemokine release than the others fibers tested. In summary, chicory inulin, sugar beet pectin, High-maize 260, and Novelose 330 attenuate S. paucimobilis-induced cytokines. These results demonstrate that dietary fibers with a specific chemical composition can be used to manage immune responses against pathogens such as S. paucimobilis.


Assuntos
Infecção Hospitalar/dietoterapia , Células Dendríticas/efeitos dos fármacos , Fibras na Dieta/farmacologia , Células Epiteliais/efeitos dos fármacos , Técnicas de Cocultura , Infecção Hospitalar/imunologia , Infecção Hospitalar/microbiologia , Células Dendríticas/imunologia , Células Epiteliais/imunologia , Humanos , Imunomodulação/efeitos dos fármacos , Interleucina-12/genética , Inulina/química , Inulina/farmacologia , Pectinas/química , Pectinas/farmacologia , Sphingomonas/efeitos dos fármacos , Sphingomonas/imunologia , Sphingomonas/patogenicidade , Amido/química , Amido/farmacologia , Fator de Necrose Tumoral alfa/genética
16.
Braz. j. microbiol ; 47(2): 271-278, Apr.-June 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-780845

RESUMO

Abstract Members of the Sphingomonas genus are often isolated from petroleum-contaminated soils due to their unique abilities to degrade polycyclic aromatic hydrocarbons (PAHs), which are important for in situ bioremediation. In this study, a combined phenotypic and genotypic approach using streptomycin-containing medium and Sphingomonas -specific PCR was developed to isolate and identify culturable Sphingomonas strains present in petroleum-contaminated soils in the Shenfu wastewater irrigation zone. Of the 15 soil samples examined, 12 soils yielded yellow streptomycin-resistant colonies. The largest number of yellow colony-forming units (CFUs) could reach 105 CFUs g-1 soil. The number of yellow CFUs had a significant positive correlation (p < 0.05) with the ratio of PAHs to total petroleum hydrocarbons (TPH), indicating that Sphingomonas may play a key role in degrading the PAH fraction of the petroleum contaminants at this site. Sixty yellow colonies were selected randomly and analyzed by colony PCR using Sphingomonas -specific primers, out of which 48 isolates had PCR-positive signals. The 48 positive amplicons generated 8 distinct restriction fragment length polymorphism (RFLP) patterns, and 7 out of 8 phylotypes were identified as Sphingomonas by 16S rRNA gene sequencing of the representative strains. Within these 7 Sphingomonas strains, 6 strains were capable of using fluorene as the sole carbon source, while 2 strains were phenanthrene-degrading Sphingomonas. To the best of our knowledge, this is the first report to evaluate the relationship between PAHs contamination levels and culturable Sphingomonas in environmental samples.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Sphingomonas/isolamento & purificação , Sphingomonas/metabolismo , Filogenia , Biodegradação Ambiental , Petróleo/análise , China , Sphingomonas/classificação , Sphingomonas/genética
17.
Braz J Microbiol ; 47(2): 271-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26991271

RESUMO

Members of the Sphingomonas genus are often isolated from petroleum-contaminated soils due to their unique abilities to degrade polycyclic aromatic hydrocarbons (PAHs), which are important for in situ bioremediation. In this study, a combined phenotypic and genotypic approach using streptomycin-containing medium and Sphingomonas-specific PCR was developed to isolate and identify culturable Sphingomonas strains present in petroleum-contaminated soils in the Shenfu wastewater irrigation zone. Of the 15 soil samples examined, 12 soils yielded yellow streptomycin-resistant colonies. The largest number of yellow colony-forming units (CFUs) could reach 10(5)CFUsg(-1)soil. The number of yellow CFUs had a significant positive correlation (p<0.05) with the ratio of PAHs to total petroleum hydrocarbons (TPH), indicating that Sphingomonas may play a key role in degrading the PAH fraction of the petroleum contaminants at this site. Sixty yellow colonies were selected randomly and analyzed by colony PCR using Sphingomonas-specific primers, out of which 48 isolates had PCR-positive signals. The 48 positive amplicons generated 8 distinct restriction fragment length polymorphism (RFLP) patterns, and 7 out of 8 phylotypes were identified as Sphingomonas by 16S rRNA gene sequencing of the representative strains. Within these 7 Sphingomonas strains, 6 strains were capable of using fluorene as the sole carbon source, while 2 strains were phenanthrene-degrading Sphingomonas. To the best of our knowledge, this is the first report to evaluate the relationship between PAHs contamination levels and culturable Sphingomonas in environmental samples.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Sphingomonas/isolamento & purificação , Sphingomonas/metabolismo , Biodegradação Ambiental , China , Petróleo/análise , Filogenia , Sphingomonas/classificação , Sphingomonas/genética
18.
Biotechnol J ; 11(2): 228-37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26580858

RESUMO

As a highly valued keto-carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the α-Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole-genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio-Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high-efficiency targeted engineering carotenoid synthesis platform was constructed in E. coli for identifying the functional roles of candidate genes. All genes involved in astaxanthin biosynthesis showed discrete distributions on the chromosome. Moreover, the overexpression of exogenous E. coli idi in Sphingomonas sp. ATCC 55669 increased astaxanthin production by 5.4-fold. This study described a new astaxanthin producer and provided more biosynthesis components for bioengineering of astaxanthin in the future.


Assuntos
Proteínas de Bactérias/genética , Vias Biossintéticas , Análise de Sequência de DNA/métodos , Sphingomonas/genética , Proteínas de Bactérias/biossíntese , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Genoma Bacteriano , Engenharia Metabólica , Sphingomonas/metabolismo , Xantofilas/biossíntese , Xantofilas/genética
19.
J Microbiol ; 53(10): 673-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26428917

RESUMO

Strain GP20-2(T) was isolated from a soil cultivated with ginseng in Korea. The 16S rRNA gene sequence of this strain showed the highest sequence similarity with Sphingomonas daechungensis CH15-11(T) (96.7%) and Sphingomonas sediminicola Dae 20(T) (96.2%) among the type strains. The strain GP20-2(T) was a strictly aerobic, Gram-negative, non-motile, rod-shaped bacterium that formed very tiny colonies, less than 0.3 mm in diameter after 10 days on R2A agar. The strain grew at 10-35-C (optimum, 35-C), at a pH of 5.0-8.0 (optimum, pH 6.0), and in the absence of NaCl. The DNA G+C content of strain GP20-2(T) was 67.2 mol%. It contained ubiquinone Q-10 as the major isoprenoid quinone, and summed feature 8 (C18:1ω6c and/or C18:1ω7c, 49.8%) and C16:0 (17.0%) as the major fatty acids. On the basis of evidence from our polyphasic taxonomic study, we concluded that strain GP20-2(T) should be classified as a novel species of the genus Sphingomonas, for which the name Sphingomonas parvus sp. nov. is proposed. The type strain is GP20-2(T) (=KACC 12865(T) =DSM 100456(T)).


Assuntos
Panax/microbiologia , Microbiologia do Solo , Sphingomonas/classificação , Sphingomonas/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/análise , DNA Bacteriano/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , República da Coreia , Sphingomonas/química , Sphingomonas/genética , Ubiquinona/análogos & derivados , Ubiquinona/análise
20.
J Ind Microbiol Biotechnol ; 42(9): 1283-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26186907

RESUMO

Coenzyme Q10 (CoQ10) is an important antioxidant used in medicine, dietary supplements, and cosmetic applications. In the present work, the production of CoQ10 using a recombinant Escherichia coli strain containing the decaprenyl diphosphate synthase from Sphingomonas baekryungensis was investigated, wherein the effects of culture medium, temperature, and agitation rate on the production process were assessed. It was found that Luria-Bertani (LB) medium was superior to M9 with glucose medium. Higher temperature (37 °C) and higher agitation rate (900 rpm) improved the specific CoQ10 content significantly in LB medium; on the contrary, the use of M9 medium with glucose showed similar values. Specifically, in LB medium, an increase from 300 to 900 rpm in the agitation rate resulted in increases of 55 and 197 % in the specific CoQ10 content and COQ10 productivity, respectively. Therefore, the results obtained in the present work are a valuable contribution for the optimization of CoQ10 production processes using recombinant E. coli strains.


Assuntos
Alquil e Aril Transferases/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Sphingomonas/enzimologia , Ubiquinona/análogos & derivados , Alquil e Aril Transferases/biossíntese , Proteínas de Bactérias/biossíntese , Reatores Biológicos , Meios de Cultura , Escherichia coli/metabolismo , Engenharia Genética , Sphingomonas/genética , Ubiquinona/biossíntese , Ubiquinona/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA