RESUMO
Three new prenylated furoquinoline alkaloids named lecomtequinoline A (1), B (2), and C (3), together with the known compounds anhydroevoxine (4), evoxine (5), dictamnine (6), N-methylflindersine (7), evoxanthine (8), hesperidin, lupeol, ß-sitosterol, stigmasterol, ß-sitosterol-3-O-ß-d-glucopyranoside, stearic acid, and myristyl alcohol, were isolated by bioassay-guided fractionation of the methanolic extracts of leaves and stem of Vepris lecomteana. The structures of compounds were determined by spectroscopic methods (NMR, MS, UV, and IR) and by comparison with previously reported data. Crude extracts of leaves and stem displayed high antimicrobial activity, with Minimum Inhibitory Concentration (MIC) (values of 10.1-16.5 and 10.2-20.5 µg/mL, respectively, against Escherichia coli, Bacillus subtilis, Pseudomonas agarici, Micrococcus luteus, and Staphylococcus warneri, while compounds 1-6 showed values ranging from 11.1 to 18.7 µg/mL or were inactive, suggesting synergistic effect. The extracts may find application in crude drug preparations in Western Africa where Vepris lecomteana is endemic, subject to negative toxicity results in vivo.
Assuntos
Alcaloides/isolamento & purificação , Antibacterianos/isolamento & purificação , Quinolinas/isolamento & purificação , Rutaceae/química , Alcaloides/química , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana/métodos , Micrococcus luteus/efeitos dos fármacos , Estrutura Molecular , Extratos Vegetais/química , Folhas de Planta/química , Caules de Planta/química , Quinolinas/química , Staphylococcaceae/efeitos dos fármacosRESUMO
Hospital-acquired infections and antibiotic-resistant bacteria continue to be major health concerns worldwide. Particularly problematic is methicillin-resistant Staphylococcus aureus (MRSA) and its ability to cause severe soft tissue, bone or implant infections. First used by the Australian Aborigines, Tea tree oil and Eucalyptus oil (and several other essential oils) have each demonstrated promising efficacy against several bacteria and have been used clinically against multi-resistant strains. Several common and hospital-acquired bacterial and yeast isolates (6 Staphylococcus strains including MRSA, 4 Streptococcus strains and 3 Candida strains including Candida krusei) were tested for their susceptibility for Eucalyptus, Tea tree, Thyme white, Lavender, Lemon, Lemongrass, Cinnamon, Grapefruit, Clove Bud, Sandalwood, Peppermint, Kunzea and Sage oil with the agar diffusion test. Olive oil, Paraffin oil, Ethanol (70%), Povidone iodine, Chlorhexidine and hydrogen peroxide (H(2)O(2)) served as controls. Large prevailing effective zones of inhibition were observed for Thyme white, Lemon, Lemongrass and Cinnamon oil. The other oils also showed considerable efficacy. Remarkably, almost all tested oils demonstrated efficacy against hospital-acquired isolates and reference strains, whereas Olive and Paraffin oil from the control group produced no inhibition. As proven in vitro, essential oils represent a cheap and effective antiseptic topical treatment option even for antibiotic-resistant strains as MRSA and antimycotic-resistant Candida species.