Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611808

RESUMO

An investigation was carried out on humic substances (HSs) isolated from the coal of the Kansk-Achinsk basin (Krasnoyarsk Territory, Russia). The coal HSs demonstrate the main parameters of molecular structure inherent to this class of natural compounds. An assessment was performed for the chemical, microbiological, and pharmacological safety parameters, as well as the biological efficacy. The HS sample meets the safety requirements in microbiological purity, toxic metals content (lead, cadmium, mercury, arsenic), and radionuclides. The presence of 11 essential elements was determined. The absence of general, systemic toxicity, cytotoxicity, and allergenic properties was demonstrated. The coal HS sample was classified as a Class V hazard (low danger substances). High antioxidant and antiradical activities and immunotropic and cytoprotective properties were identified. The ability of the HS to inhibit hydroxyl radicals and superoxide anion radicals was revealed. Pronounced actoprotective and nootropic activities were also demonstrated in vivo. Intragastric administration of the HS sample resulted in the improvement of physical parameters in mice as assessed by the "swim exhaustion" test. Furthermore, intragastric administration in mice with cholinergic dysfunction led to a higher ability of animals with scopolamine-induced amnesia to form conditioned reflexes. These findings suggest that the studied HS sample is a safe and effective natural substance, making it suitable for use as a dietary bioactive supplement.


Assuntos
Arsênio , Substâncias Húmicas , Animais , Camundongos , Amnésia , Antioxidantes/farmacologia , Carvão Mineral
2.
Sci Total Environ ; 930: 172515, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642759

RESUMO

The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.


Assuntos
Carvão Vegetal , Compostagem , Substâncias Húmicas , Nitrogênio , Fósforo , Fósforo/análise , Carvão Vegetal/química , Nitrogênio/análise , Compostagem/métodos , Microbiologia do Solo , Medicamentos de Ervas Chinesas/química , Solo/química
3.
Sci Rep ; 14(1): 9508, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664476

RESUMO

Foxtail millet is a highly nutritious crop, which is widely cultivated in arid and semi-arid areas worldwide. Humic acid (HA), as a common plant growth regulator, is used as an organic fertilizer and feed additive in agricultural production. However, the impact of potassium humate KH on the photosynthetic rate and yield of foxtail millet has not yet been studied. We explored the effects of KH application on the morphology, photosynthetic ability, carbon and nitrogen metabolism, and yield of foxtail millet. A field experiment was performed using six concentrations of KH (0, 20, 40, 80, 160, and 320 kg ha-1) supplied foliarly at the booting stage in Zhangza 10 cultivar (a widely grown high-yield variety). The results showed that KH treatment increased growth, chlorophyll content (SPAD), photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs). In addition, soluble protein content, sugar content, and nitrate reductase activity increased in KH-treated plants. With increased KH concentration, the effects became more evident and the peak values of each factor were achieved at 80 kg ha-1. Photosynthetic rate showed significant correlation with SPAD, Tr, Gs, and soluble protein content, but was negatively correlated with intercellular CO2 concentration. Compared to that of the control, the yield of foxtail millet under the T2, T3, T4, and T5 (40, 80, 160, and 320 kg ha-1 of KH) treatments significantly increased by 6.0%, 12.7%, 10.5%, and 8.6%, respectively. Yield exhibited a significant positive correlation with Tr, Pn, and Gs. Overall, KH enhances photosynthetic rate and yield of foxtail millet, therefore it may be conducive to stable millet production. These findings may provide a theoretical basis for the green and efficient production of millet fields.


Assuntos
Clorofila , Fertilizantes , Substâncias Húmicas , Fotossíntese , Setaria (Planta) , Fotossíntese/efeitos dos fármacos , Setaria (Planta)/metabolismo , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/crescimento & desenvolvimento , Clorofila/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo
4.
BMC Plant Biol ; 24(1): 191, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486134

RESUMO

BACKGROUND: Enriching the soil with organic matter such as humic and fulvic acid to increase its content available nutrients, improves the chemical properties of the soil and increases plant growth as well as grain yield. In this study, we conducted a field experiment using humic acid (HA), fulvic acid (FA) and recommended dose (RDP) of phosphorus fertilizer to treat Hordeum vulgare seedling, in which four concentrations from HA, FA and RDP (0.0 %, 50 %, 75 % and 100%) under saline soil conditions . Moreover, some agronomic traits (e.g. grain yield, straw yield, spikes weight, plant height, spike length and spike weight) in barley seedling after treated with different concentrations from HA, FA and RDP were determined. As such the beneficial effects of these combinations to improve plant growth, N, P, and K uptake, grain yield, and its components under salinity stress were assessed. RESULTS: The findings showed that the treatments HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6), improved number of spikes/plant, 1000-grain weight, grain yield/ha, harvest index, the amount of uptake of nitrogen (N), phosphorous (P) and potassium (K) in straw and grain. The increase for grain yield over the control was 64.69, 56.77, 49.83, 49.17, and 44.22% in the first season, and 64.08, 56.63, 49.19, 48.87, and 43.69% in the second season,. Meanwhile, the increase for grain yield when compared to the recommended dose was 22.30, 16.42, 11.27, 10.78, and 7.11% in the first season, and 22.17, 16.63, 11.08, 10.84, and 6.99% in the second season. Therefore, under salinity conditions the best results were obtained when, in addition to phosphate fertilizer, the soil was treated with humic acid or foliar application the plants with fulvic acid under one of the following treatments: HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6). CONCLUSIONS: The result of the use of organic amendments was an increase in the tolerance of barley plant to salinity stress, which was evident from the improvement in the different traits that occurred after the treatment using treatments that included organic amendments (humic acid or fulvic acid).


Assuntos
Benzopiranos , Hordeum , Solo , Solo/química , Substâncias Húmicas/análise , Fertilizantes/análise , Fósforo
5.
Bioresour Technol ; 398: 130503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442847

RESUMO

Targeted regulation of composting to convert organic matter into humic acid (HA) holds significant importance in compost quality. Owing to its low carbon content, chicken manure compost often requires carbon supplements to promote the humification progress. The addition of lignite can increase HA content through biotic pathways, however, its structure was not explored. The Parallel factor analysis revealed that lignite can significantly increase the complexity of highly humified components. The lignite addition improved phenol oxidase activity, particularly laccase, during the thermophilic and cooling phases. The abundance and transformation functions of core bacteria also indicated that lignite addition can influence the activity of microbial transformation of HA components. The structural equation model further confirmed that lignite addition had a direct and indirect impact on enhancing the complexity of HA components through core bacteria and phenol oxidase. Therefore, lignite addition can improve HA structure complexity during composting through biotic pathways.


Assuntos
Compostagem , Substâncias Húmicas , Animais , Substâncias Húmicas/análise , Solo , Esterco , Galinhas , Carvão Mineral , Monofenol Mono-Oxigenase , Carbono
6.
J Hazard Mater ; 470: 134131, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552390

RESUMO

Arsenic (As) in sewage sludge poses a significant threat to environmental and human health, which has attracted widespread attention. This study investigated the value of adding sodium percarbonate (SP) on phosphorus (P) availability and As efflux detoxification through HS-P-As interactions. Due to the unique structure of humus (HS) and the similar chemical properties of P and As, the conditions for HS-P-As interaction are provided. This study discussed the content, morphology and microbial communities of HS, P and As by using metagenomic and correlation analysis. The results showed that the humification index in the experiment group (SPC) was 2.34 times higher than that in the control group (CK). The available phosphorus (AP) content of SPC increased from 71.09 mg/kg to 126.14 mg/kg, and SPC was 1.11 times that of CK. The relative abundance of ACR3/ArsB increased. Pst, Actinomyces and Bacillus commonly participated in P and As conversion. The correlation analysis revealed that the humification process was enhanced, the AP was strengthened, and the As was efflux detoxified after SP amendment. All in all, this study elucidated the key mechanism of HS-P-As interaction and put forward a new strategy for sewage sludge resource utilization and detoxification.


Assuntos
Arsênio , Compostagem , Substâncias Húmicas , Fósforo , Esgotos , Fósforo/metabolismo , Fósforo/química , Esgotos/microbiologia , Arsênio/metabolismo , Arsênio/química , Microbiologia do Solo
7.
Toxins (Basel) ; 16(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535788

RESUMO

A recent study published data on the growth performance, relative weights of the organs of the gastrointestinal tract, liver histology, serum biochemistry, and hematological parameters for turkey poults fed an experimental diet contaminated with aflatoxin B1 (AFB1) and humic acids (HA) extracted from vermicompost. The negative effects of AFB1 (250 ng AFB1/g of feed) were significantly reduced by HA supplementation (0.25% w/w), suggesting that HA might be utilized to ameliorate the negative impact of AFB1 from contaminated diets. The present study shows the results of the remaining variables, as an extension of a previously published work which aimed to evaluate the impact of HA on the intestinal microbiota, gut integrity, ileum morphometry, and cellular immunity of turkey poults fed an AFB1-contaminated diet. For this objective, five equal groups of 1-day-old female Nicholas-700 turkey poults were randomly assigned to the following treatments: negative control (basal diet), positive control (basal diet + 250 ng AFB1/g), HA (basal diet + 0.25% HA), HA + AFB1 (basal diet + 0.25% HA + 250 ng AFB1/g), and Zeolite (basal diet + 0.25% zeolite + 250 ng AFB1/g). In the experiment, seven replicates of ten poults each were used per treatment (n = 70). In general, HA supplementation with or without the presence of AFB1 showed a significant increase (p < 0.05) in the number of beneficial butyric acid producers, ileum villi height, and ileum total area, and a significant reduction in serum levels of fluorescein isothiocyanate-dextran (FITC-d), a marker of intestinal integrity. In contrast, poults fed with AFB1 showed a significant increase in Proteobacteria and lower numbers of beneficial bacteria, clearly suggesting gut dysbacteriosis. Moreover, poults supplemented with AFB1 displayed the lowest morphometric parameters and the highest intestinal permeability. Furthermore, poults in the negative and positive control treatments had the lowest cutaneous basophil hypersensitivity response. These findings suggest that HA supplementation enhanced intestinal integrity (shape and permeability), cellular immune response, and healthier gut microbiota composition, even in the presence of dietary exposure to AFB1. These results complement those of the previously published study, suggesting that HA may be a viable dietary intervention to improve gut health and immunity in turkey poults during aflatoxicosis.


Assuntos
Microbioma Gastrointestinal , Zeolitas , Animais , Feminino , Aflatoxina B1 , Ácido Butírico , Dieta , Substâncias Húmicas , Imunidade Celular , Perus
8.
Poult Sci ; 103(5): 103541, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471228

RESUMO

The objective of this study was to investigate the protective effects and mechanisms of dietary administration of sodium humate (HNa) and its zinc and selenium chelate (Zn/Se-HNa) in mitigating Salmonella Typhimurium (S. Typhi) induced intestinal injury in broiler chickens. Following the gavage of 109 CFU S. Typhi to 240 broilers from 21-d to 23-d aged, various growth performance parameters such as body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), and feed ratio (FCR) were measured before and after infection. Intestinal morphology was assessed to determine the villus height, crypt depth, and chorionic cryptologic ratio. To evaluate intestinal barrier integrity, levels of serum diamine oxidase (DAO), D-lactic acid, tight junction proteins, and the related genes were measured in each group of broilers. An analysis was conducted on inflammatory-related cytokines, oxidase activity, and Nuclear Factor Kappa B (NF-κB) and Nuclear factor erythroid2-related factor 2 (Nrf2) pathway-related proteins and mRNA expression. The results revealed a significant decrease in BW, ADG, and FCR in S. typhi-infected broilers. HNa tended to increase FCR (P = 0.056) while the supplementation of Zn/Se-HNa significantly restored BW and ADG (P < 0.05). HNa and Zn/Se-HNa exhibit favorable and comparable effects in enhancing the levels of serum DAO, D-lactate, and mRNA and protein expression of jejunum and ileal tight junction. In comparison to HNa, Zn/Se-HNa demonstrates a greater reduction in S. Typhi shedding in feces, as well as superior efficacy in enhancing the intestinal morphology, increasing serum catalase (CAT) activity, inhibiting pro-inflammatory cytokines, and suppressing the activation of the NF-κB pathway. Collectively, Zn/Se-HNa was a more effective treatment than HNa to alleviate adverse impact of S. Typhi infection in broiler chickens.


Assuntos
Suplementos Nutricionais , Substâncias Húmicas , Doenças das Aves Domésticas , Salmonelose Animal , Compostos de Selênio , Compostos de Zinco , Compostos de Selênio/farmacologia , Compostos de Selênio/uso terapêutico , Compostos de Zinco/farmacologia , Compostos de Zinco/uso terapêutico , Galinhas/microbiologia , Salmonella typhimurium , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/prevenção & controle , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Crescimento/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Gastroenterite/tratamento farmacológico , Fezes/microbiologia , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Glob Chang Biol ; 30(1): e17013, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994377

RESUMO

Lakes worldwide are affected by multiple stressors, including climate change. This includes massive loading of both nutrients and humic substances to lakes during extreme weather events, which also may disrupt thermal stratification. Since multi-stressor effects vary widely in space and time, their combined ecological impacts remain difficult to predict. Therefore, we combined two consecutive large enclosure experiments with a comprehensive time-series and a broad-scale field survey to unravel the combined effects of storm-induced lake browning, nutrient enrichment and deep mixing on phytoplankton communities, focusing particularly on potentially toxic cyanobacterial blooms. The experimental results revealed that browning counteracted the stimulating effect of nutrients on phytoplankton and caused a shift from phototrophic cyanobacteria and chlorophytes to mixotrophic cryptophytes. Light limitation by browning was identified as the likely mechanism underlying this response. Deep-mixing increased microcystin concentrations in clear nutrient-enriched enclosures, caused by upwelling of a metalimnetic Planktothrix rubescens population. Monitoring data from a 25-year time-series of a eutrophic lake and from 588 northern European lakes corroborate the experimental results: Browning suppresses cyanobacteria in terms of both biovolume and proportion of the total phytoplankton biovolume. Both the experimental and observational results indicated a lower total phosphorus threshold for cyanobacterial bloom development in clearwater lakes (10-20 µg P L-1 ) than in humic lakes (20-30 µg P L-1 ). This finding provides management guidance for lakes receiving more nutrients and humic substances due to more frequent extreme weather events.


Assuntos
Cianobactérias , Fitoplâncton , Lagos/microbiologia , Substâncias Húmicas , Eutrofização , Nutrientes , Fósforo/análise , China
10.
Water Res ; 250: 121074, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160648

RESUMO

Release of phosphorus (P) from the sediments plays a critical role in the eutrophication of aquatic environments. Humic acids (HA), as the main form of carbon storage in the sediments, has essential impacts on the biogeochemical cycle of phosphorus in aquatic systems. Nevertheless, previous studies mainly concentrated on the competitive adsorption of HA solution and P on metal oxides and soils, with little attention paid to the effects of insoluble humic acids (IHA) on P sorption by and release from the sediments. Herein, an investigation on the rivers and lakes in Sichuan Province, China, found that there was a significantly positive correlation between the maximum P adsorption capacity (Qmax) of sediments and IHA contents (p < 0.01), but a significantly negative correlation between the zero equilibrium P concentration (EPC0) and IHA concentrations (p < 0.01). This indicated that IHA might have an inhibitory effect on the release of P from the sediments, which was verified by batch adsorption experiments and static incubation experiments. Adsorption experiments indicated that IHA can promote P adsorption by sediments. With the increase of IHA addition (from 0 to 20 mg/g) in the sediments, Qmax of sediments increased (from 0.516 to 0.911 mg/g), while EPC0 decreased greatly (from 0.264 to 0.005 mg/L). Increases in Fe (Ⅲ) bound-P, Al bound-P and humic bound-P caused by IHA were responsible for this promoting effect. Incubation experiments illustrated that IHA addition can efficiently inhibit P release from the sediments. After 32 days incubation, P concentration in the overlying water of control group (without IHA addition) was 0.651 mg/L, which was 13.29-40.69 times higher than those (0.016-0.049 mg/L) in the test groups (with 5 %-20 % IHA addition). The analysis of P species in sediments showed that transformation from loosely adsorbed-P and Fe (Ⅲ) bound-P to Al bound-P and humic bound-P was responsible for this inhibition of P release by IHA. This study demonstrated that IHA, differing from readily degradable or dissolved organic matter, have great inhibitory effects on internal P release, which provided a novel insight into the association between carbon burial and internal P release and even the management of water eutrophication.


Assuntos
Substâncias Húmicas , Poluentes Químicos da Água , Substâncias Húmicas/análise , Monitoramento Ambiental , Fósforo/análise , Poluentes Químicos da Água/química , Sedimentos Geológicos/química , Lagos/análise , Adsorção , China , Eutrofização , Água/análise , Carbono/análise
11.
Environ Sci Technol ; 57(42): 16006-16015, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37819156

RESUMO

Anthropogenic and biogenic ligands may mobilize uranium (U) from tetravalent U (U(IV)) phases in the subsurface, especially from labile noncrystalline U(IV). The rate and extent of U(IV) mobilization are affected by geochemical processes. Competing metals and humic substances may play a decisive role in U mobilization by anthropogenic and biogenic ligands. A structurally diverse set of anthropogenic and biogenic ligands was selected for assessing the effect of the aforementioned processes on U mobilization from noncrystalline U(IV), including 2,6-pyridinedicarboxylic acid (DPA), citrate, N,N'-di(2-hydroxybenzyl)ethylene-diamine-N,N'-diacetic acid (HBED), and desferrioxamine B (DFOB). All experiments were performed under anoxic conditions at pH 7.0. The effect of competing metals (Ca, Fe(III), and Zn) on ligand-induced U mobilization depended on the particular metal-ligand combination ranging from nearly complete U mobilization inhibition (e.g., Ca-citrate) to no apparent inhibitory effects or acceleration of U mobilization (e.g., Fe(III)-citrate). Humic substances (Suwannee River humic acid and fulvic acid) were tested across a range of concentrations either separately or combined with the aforementioned ligands. Humic substances alone mobilized appreciable U and also enhanced U mobilization in the presence of anthropogenic or biogenic ligands. These findings illustrate the complex influence of competing metals and humic substances on U mobilization by anthropogenic and biogenic ligands in the environment.


Assuntos
Substâncias Húmicas , Urânio , Urânio/química , Compostos Férricos , Ligantes , Citratos
12.
PLoS One ; 18(10): e0292705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37819935

RESUMO

The South-to-North Water Diversion East Project (SNWDP-E) is an effective way to realize the optimal allocation of water resources in China. The North Dasha River (NDR) is the reverse recharge section that receives water from the Yufu River to the Wohushan Reservoir transfer project line in the SNWDP. However, the dissolved organic matter (DOM) evolution mechanism of seasonal water transfer projects on tributary waters has not been fully elucidated. In this paper, the NDR is the main object, and the changes in the composition and distribution of spectral characteristics during the winter water transfer period (WT) as well as during the summer non-water transfer period (NWT) are investigated by parallel factor analysis (PARAFAC). The results showed that the water connectivity caused by water transfer reduces the environmental heterogeneity of waters in the basin, as evidenced by the ammonia nitrogen (NH4+-N) and total phosphorus (TP) in the water body were significantly lower (p<0.05, p<0.01) during the water transfer period than the non-water transfer period. In addition, the fluorescence intensity of DOM was significantly lower in the WT than the NWT (p<0.05) and was mainly composed of humic substances generated from endogenous sources with high stability. While the NWT was disturbed by anthropogenic activities leading to significant differences in DOM composition in different functional areas. Based on the redundancy analysis (RDA) and multiple regression analysis, it was found that the evolution of the protein-like components is dominated by chemical oxygen demand (COD) and NH4+-N factors during the WT. While the NWT is mainly dominated by total nitrogen (TN) and TP factors for the evolution of the humic-like components. This study helps to elucidate the impact of water transfer projects on the trunk basin and contribute to the regulation and management of inter-basin water transfer projects.


Assuntos
Matéria Orgânica Dissolvida , Rios , Humanos , Rios/química , Água/análise , Substâncias Húmicas/análise , China , Nitrogênio/análise , Fósforo/análise , Atividades Humanas , Espectrometria de Fluorescência
13.
Sci Total Environ ; 905: 167140, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722424

RESUMO

Alkalinity regulation and nutrient accumulation are critical factors in the construction of plant and microbial communities and soil formation in bauxite residue, and are extremely important for sustainable vegetation restoration in bauxite residue disposal areas. However, the establishment and succession of microbial communities driven by plant colonization-mediated improvements in the physicochemical properties of bauxite residues remain poorly understood. Thus, in this study, we determined the saline-alkali properties and dissolved organic matter (DOM) components under plant growth conditions and explored the microbial community diversity and structure using Illumina high-throughput sequencing. The planting of Elymus dahuricus (E. dahuricus) in the bauxite residue resulted in a significant decrease in total alkalinity (TA), exchangeable Na, and electrical conductivity (EC) as well as the release of more tryptophan-like protein compounds and low-molecular-weight humic substances associated with biological activities into the bauxite residue substrate. Taxonomical analysis revealed an initial-stage bacterial and fungal community dominated by alkaline-tolerant Actinobacteriota, Firmicutes, and Ascomycota, and an increase in the relative abundances of the phyla Bacteroidota, Cyanobacteria, Chloroflexi, and Gemmatimonadota. The biological activities of phylum Actinobacteriota, Bacteroidota, and Gemmatimonadota were significantly associated with protein-like and UVA-like humic substances. As eutrophic bacteria, Proteobacteria participate in the transformation of humic substances and can not only utilize small molecules of organic matter and convert them into humic substances but also promote the gradual conversion of humic acids into simple molecular compounds. Our results suggest that plant roots secrete organic matter and microbial metabolites as the main biogenic organic matter that participates in the establishment and succession of the microbial community in bauxite residues. Root length affects bacterial and fungal diversity by mediating the production of protein-like substances.


Assuntos
Elymus , Microbiota , Poluentes do Solo , Plantas Tolerantes a Sal/metabolismo , Substâncias Húmicas/análise , Óxido de Alumínio/química , Poluentes do Solo/análise , Solo/química , Bactérias/metabolismo , Bacteroidetes
14.
J Environ Radioact ; 270: 107286, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37633243

RESUMO

The sorption behavior of U(VI) on Tamusu clay sampled from a pre-selected high-level radioactive waste (HLW) disposal site in Inner Mongolia (China) was studied systematically in the U(VI)-CO3 solution at pH 7.8 by batch experiments. The results demonstrated that the distribution coefficients (Kd) decreased with the increasing values of pHinitial, [U(VI)]initial, and ionic strength, but increased with the extended time and the rising temperature. The sorption was a pH-dependent, heterogeneous, spontaneous, and endothermic chemical process, which could be better described by Freundlich isothermal model and pseudo-second-order kinetic model. The presence of humic acid (HA) or fulvic acid (FA) significantly inhibited the U(VI) sorption, due to the enhanced electrostatic repulsion between the negatively charged HA/FA adsorbed on the clay surface and the negative U(VI) species, as well as the well dispersed HA/FA aggregates in solution wrapping the U(VI) species. The FTIR and XPS spectra indicated that the HCO3- groups on the surface of Tamusu clay after hydroxylation and the ‒OH groups in HA/FA were involved in the U(VI) sorption. The results reported here provide valuable insights into the further understanding of U(VI) migration in geological media.


Assuntos
Monitoramento de Radiação , Urânio , Argila , Adsorção , Concentração de Íons de Hidrogênio , Urânio/química , Substâncias Húmicas
15.
J Hazard Mater ; 459: 132056, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37467614

RESUMO

Vacuum ultraviolet-ozone (VUV-O3) treatment was found to be superior to ultraviolet-ozone (UV-O3) treatment in terms of ozone utilization and hydroxyl radicals (·OH) generation when used to treat the secondary effluent (SE) from a naproxen pharmaceutical plant. VUV-O3 treatment was beneficial in terms of decolorization (100%), chemical oxygen demand removal (43.29%), and total organic carbon removal (54.81%). The VUV-O3 process was applicable over a wide pH range, and the presence of various anions had no significant influence on the oxidation efficiency. After treatment, the genotoxicity, unsaturation degree, and polarity of the SE decreased. In addition, the oxidation sensitivities of the fluorescent organic compounds were ranked as follows: humic acid-like > tyrosine-like > fulvic acid-like > tryptophan-like Moreover, the VUV-O3 process effectively converted refractory organic matter (molecular weights, MW > 2000 Da) into short-chain molecules with low MWs. The removal efficiency of dissolved organic matter (DOM) was 63.27%, and 77.27% of the DOM was found to be reactive to VUV-O3 oxidation. The unsaturation, polarity, and compositional complexity of the DOM decreased after VUV-O3 treatment. Finally, it was deduced that the direct O3 oxidation,·OH, O2·- and 1O2 played a role in the VUV-O3 oxidation process.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Naproxeno , Ozônio/química , Vácuo , Substâncias Húmicas , Oxirredução , Preparações Farmacêuticas , Poluentes Químicos da Água/química , Raios Ultravioleta
16.
Trop Anim Health Prod ; 55(4): 265, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433975

RESUMO

In vitro and in vivo experiments were carried out to investigate the effects of the supplementation of different levels of humic and fulvic acids alone or their combination (2:1 ratio) on ruminal fermentation constituents, and nutrients digestibility in goats. The treatments in Exp. 1 were the following: (1) basal substrate (50% concentrate: 50% forage) was incubated humic at 0, 2, 4, and 6 g/kg DM; (2) fulvic at 0, 1, 2, and 3 g/kg DM; and (3) a combination of humic and fulvic (in a 2:1 ratio) at 0, 3, 6, and 9 g/kg DM" of treatments. The results of Exp. 1 revealed that methane (CH4) production was linearly decreased (P < 0.001) upon increasing humic doses. Whereas, the combination of fulvic acid with humic acid resulted in a quadratic decrease (P < 0.001) in net CH4 production. Supplementing humic and fulvic acids, either separately or in combination, resulted in reduced (P < 0.05) ammonia nitrogen (NH3-N) and total volatile fatty acid (VFA) concentrations. In Exp. 2 to further examine the findings obtained in Exp. 1, forty Damascus non-lactating goats (2-3 years of age and body weight 29 ± 1.5 kg) were fed the same basal diet as in Exp. 1, plus one of four treatments. Treatments were the following: (1) control (no supplement); (2) basal diet plus 5 g humic alone; (3) basal diet plus 2.5 g fulvic alone, and (4) basal diet plus 7.5 g their combination. Goats fed diets supplemented with humic acid, fulvic acid, either alone or in combination, increased concentrations of butyrate (P = 0.003), total VFA (P < 0.001), and improved (P < 0.001) digestibility of nutrients, but reduced (P < 0.001) ruminal NH3-N concentrations. In conclusion, applying humic and fulvic acids alone or in combination attenuated in vitro CH4 production, while improved intake and diet digestibility without adverse effect on rumen fermentation profiles in Damascus goats.


Assuntos
Cabras , Substâncias Húmicas , Animais , Fermentação , Ingestão de Alimentos , Nutrientes
17.
Environ Sci Technol ; 57(28): 10348-10360, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37417589

RESUMO

In this article, the speciation and behavior of anthropogenic metallic uranium deposited on natural soil are approached by combining EXAFS (extended X-ray absorption fine structure) and TRLFS (time-resolved laser-induced fluorescence spectroscopy). First, uranium (uranyl) speciation was determined along the vertical profile of the soil and bedrock by linear combination fitting of the EXAFS spectra. It shows that uranium migration is strongly limited by the sorption reaction onto soil and rock constituents, mainly mineral carbonates and organic matter. Second, uranium sorption isotherms were established for calcite, chalk, and chalky soil materials along with EXAFS and TRLFS analysis. The presence of at least two adsorption complexes of uranyl onto carbonate materials (calcite) could be inferred from TRLFS. The first uranyl tricarbonate complex has a liebigite-type structure and is dominant for low loads on the carbonate surface (<10 mgU/kg(rock)). The second uranyl complex is incorporated into the calcite for intermediate (∼10 to 100 mgU/kg(rock)) to high (high: >100 mgU/kg(rock)) loads. Finally, the presence of a uranium-humic substance complex in subsurface soil materials was underlined in the EXAFS analysis by the occurrence of both monodentate and bidentate carboxylate (or/and carbonate) functions and confirmed by sorption isotherms in the presence of humic acid. This observation is of particular interest since humic substances may be mobilized from soil, potentially enhancing uranium migration under colloidal form.


Assuntos
Urânio , Urânio/química , Solo , Carbonato de Cálcio/química , Carbonatos/química , Espectrometria de Fluorescência/métodos , Substâncias Húmicas
18.
Environ Geochem Health ; 45(8): 6693-6711, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37355494

RESUMO

The direct discharge of wastewater can cause severe damage to the water environment of the surface water. However, the influence of dissolved organic matter (DOM) present in wastewater on the allocation of DOM, nitrogen (N), and phosphorus (P) in rivers remains largely unexplored. Addressing the urgent need to monitor areas affected by direct wastewater discharge in a long-term and systematic manner is crucial. In this paper, the DOM of overlying water and sediment in the WWTPs-river-integrated area was characterized by ultraviolet-visible absorption spectroscopy (UV-vis), three-dimensional excitation-emission matrix combined with parallel factor (PARAFAC) method. The effects of WWTPs on receiving waters were investigated, and the potential link between DOM and N, P pollution was explored. The pollution risk was fitted and predicted using a spectral index. The results indicate that the improved water quality index (IWQI) is more suitable for the WWTPs-river integration zone. The DOM fraction in this region is dominated by humic-like matter, which is mainly influenced by WWTPs drainage as well as microbial activities. The DOM fractions in sediment and overlying water were extremely similar, but fluorescence intensity possessed more significant spatial differences. The increase in humic-like matter facilitates the production and preservation of P and also inhibits nitrification, thus affecting the N cycle. There is a significant correlation between DOM fraction, fluorescence index, and N, P. Fluorescence index (FI) fitting of overlying water DOM predicted IWQI and trophic level index, and a(254) fitting of sediment DOM predicted nitrogen and phosphorus pollution risk (FF) with good results. These results contribute to a better understanding of the impact of WWTPs on receiving waters and the potential link between DOM and N and P pollution and provide new ideas for monitoring the water environment in highly polluted areas.


Assuntos
Rios , Águas Residuárias , Rios/química , Matéria Orgânica Dissolvida , Espectrometria de Fluorescência , Nitrogênio/análise , Fósforo , Substâncias Húmicas/análise
19.
Environ Res ; 232: 115927, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37088320

RESUMO

Activated zinc biochar (ZnBC) and humic acid (HA) were used as coating agents in a soluble monoammonium phosphate (MAP) to modify phosphorus (P) use efficiency by altering adsorption/desorption kinetics between the granule region and the soil. The coated treatments MAPZnBC and MAPHA were compared with MAP through P diffusivity, kinetics, and agronomic evaluation. Eucalyptus sawdust was used as biomass for biochar synthesis, and a pre-pyrolysis treatment with zinc chloride (ZnCl2) was applied. The P diffusivity was evaluated in the fertosphere zone. Adsorption and desorption potential of the ZnBC compared with control biochar (BC) was evaluated separately. Desorption kinetics of P from soil was assessed after incubation with MAPZnBC and MAPHA. The shoot dry matter yield (SDM), P uptake, and P use efficiency (PUE) were evaluated with a pot experiment in a clay Oxisol sown with maize and soybeans as successive plant trials, under glasshouse conditions. Surface area values of 940 and 305 m2 g-1 combined with adsorption capacities of 106 and 53 mg P g-1 for ZnBC and BC, respectively, confirm the increased capacity of activated biochar to adsorb P. Both MAPZnBC and MAPHA decreased P diffusivity compared to MAP after 20 days of incubation. Moreover, MAPZnBC and MAPHA presented 20% and 34% more water-soluble phosphorus recovery. MAPZnBC expressed an increase in SDM while MAPHA highlighted P uptake and PUE compared with MAP. Both kinetic studies and agronomic evaluations showed that ZnBC and HA are suitable as coatings for phosphate fertilizers in terms of increasing P efficiency in the fertosphere on high P-fixing soils.


Assuntos
Fertilizantes , Substâncias Húmicas , Fertilizantes/análise , Cinética , Solo/química , Fósforo , Zinco
20.
J Sci Food Agric ; 103(10): 4887-4898, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36942518

RESUMO

BACKGROUND: Selenium rich bread is a good carrier of selenium, but the inorganic selenium used in the actual production process is toxic. It is necessary to develop a new green bread production technology. The extraction and utilization of humic acid chelated selenium from selenium-rich soil is beneficial for reducing resource waste and pollution without destroying the soil ecosystem in selenium-deficient areas. Sodium selenite and nanoselenium were selected as controls because they are commonly used as selenium agronomic enhancers in production. RESULTS: Humic acid chelated selenium can be absorbed and accumulated by wheat leaves, and humic acid chelated selenium had no significant effect on wheat yield, which was also shown in the treatments with nanoselenium and sodium selenite. Excessive accumulation of selenium in wheat grains can lead to a deterioration of processing quality. Among them, the use of excessive nanoselenium at the filling stage inhibited the accumulation of wheat grain protein, whereas humic acid chelated selenium is beneficial to grain protein accumulation and has the least negative effect on the processing quality. The accumulation of excessive selenium in wheat seeds had a negative effect on seed germination and growth; specifically, the seed vigor of wheat treated with humic acid chelated selenium was higher than that of untreated wheat. CONCLUSION: Humic acid chelated selenium is particularly suitable for the whole process of Se-enriched bread wheat production. The seed vigour of wheat treated with humic acid chelated selenium, which supplied a moderate amount of selenium, was higher than that of untreated wheat. Conversely, the accumulation of excessive selenium in wheat seeds reduced germination and seedling growth. © 2023 Society of Chemical Industry.


Assuntos
Proteínas de Grãos , Selênio , Selênio/metabolismo , Selenito de Sódio/metabolismo , Substâncias Húmicas , Triticum/metabolismo , Biofortificação , Ecossistema , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA