Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4993, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591853

RESUMO

ATP-dependent RAD51 recombinases play an essential role in eukaryotic homologous recombination by catalyzing a four-step process: 1) formation of a RAD51 single-filament assembly on ssDNA in the presence of ATP, 2) complementary DNA strand-exchange, 3) ATP hydrolysis transforming the RAD51 filament into an ADP-bound disassembly-competent state, and 4) RAD51 disassembly to provide access for DNA repairing enzymes. Of these steps, filament dynamics between the ATP- and ADP-bound states, and the RAD51 disassembly mechanism, are poorly understood due to the lack of near-atomic-resolution information of the ADP-bound RAD51-DNA filament structure. We report the cryo-EM structure of ADP-bound RAD51-DNA filaments at 3.1 Å resolution, revealing a unique RAD51 double-filament that wraps around ssDNA. Structural analysis, supported by ATP-chase and time-resolved cryo-EM experiments, reveals a collapsing mechanism involving two four-protomer movements along ssDNA for mechanical transition between RAD51 single- and double-filament without RAD51 dissociation. This mechanism enables elastic change of RAD51 filament length during structural transitions between ATP- and ADP-states.


Assuntos
Citoesqueleto , DNA de Cadeia Simples , Subunidades Proteicas , DNA Complementar , Recombinação Homóloga , Trifosfato de Adenosina
2.
Biochem Pharmacol ; 193: 114781, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560053

RESUMO

The molecular basis for the signal transduction through the classical Cys-loop receptors (CLRs) has been delineated in great detail. The Zinc-Activated Channel (ZAC) constitutes a so far poorly elucidated fifth branch of the CLR superfamily, and in this study we explore the molecular mechanisms underlying ZAC signaling in Xenopus oocytes by two-electrode voltage clamp electrophysiology. In studies of chimeric receptors fusing either the extracellular domain (ECD) or the transmembrane/intracellular domain (TMD-ICD) of ZAC with the complementary domains of 5-HT3A serotonin or α1 glycine receptors, serotonin and Zn2+/H+ evoked robust concentration-dependent currents in 5-HT3A/ZAC- and ZAC/α1-Gly-expressing oocytes, respectively, suggesting that Zn2+ and protons activate ZAC predominantly through its ECD. The molecular basis for Zn2+-mediated ZAC signaling was probed further by introduction of mutations of His, Cys, Glu and Asp residues in this domain, but as none of the mutants tested displayed substantially impaired Zn2+ functionality compared to wild-type ZAC, the location of the putative Zn2+ binding site(s) in the ECD was not identified. Finally, the functional importance of Leu246 (Leu9') in the transmembrane M2 α-helix of ZAC was investigated by Ala, Val, Ile and Thr substitutions. In concordance with findings for this highly conserved residue in classical CLRs, the ZACL9'X mutants exhibited left-shifted agonist concentration-response relationships, markedly higher degrees of spontaneous activity and slower desensitization kinetics compared to wild-type ZAC. In conclusion, while ZAC is an atypical CLR in terms of its (identified) agonists and channel characteristics, its signal transduction seems to undergo similar conformational transitions as those in the classical CLR.


Assuntos
Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/fisiologia , Animais , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , Proteínas do Tecido Nervoso/genética , Oócitos , Subunidades Proteicas , Proteínas Recombinantes de Fusão , Xenopus , Zinco/farmacologia
3.
J Tissue Eng Regen Med ; 15(10): 807-817, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34310055

RESUMO

Here, we present a novel in vitro maturation (IVM) system comprising an agarose matrix supplemented with extracellular matrix (ECM) proteins for enhanced maturation of immature oocytes within cumulus-oocyte complexes (COCs) derived from porcine medium antral follicles (MAFs). Immunocytochemical analyses of integrin subunit α2 , α5 , α6 , ß1 , and ß4 expression suggested that integrin α2 ß1 , α5 ß1 , α6 ß1 , and α6 ß4 play pivotal roles in IVM of porcine immature oocytes. Combinatorial supplementation of fibronectin interacting with integrin α5 ß1 , collagen interacting with integrin α2 ß1 , and laminin interacting with integrin α6 ß1 and α6 ß4 to the agarose matrix had no significant effect on nuclear maturation. However, the number of parthenogenetic embryos that developed into blastocysts increased when oocytes were matured using agarose IVM matrices supplemented with fibronectin, collagen, or laminin. Furthermore, significant increases in cytoplasmic maturation-related parameters (BMP15 level, cumulus cell expansion score, intra-oocyte ATP level, and index of cortical granule distribution) were observed in COCs matured in vitro using ECM protein-incorporated agarose matrices. Our data suggest that mature porcine oocytes with enhanced developmental competence and high-quality cytoplasm can be generated via IVM using agarose matrices supplemented with fibronectin, collagen, or laminin.


Assuntos
Citoplasma/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Oócitos/citologia , Sefarose/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Blastocisto/efeitos dos fármacos , Proteína Morfogenética Óssea 15 , Células do Cúmulo/citologia , Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/metabolismo , Citoplasma/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Integrinas/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Partenogênese/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Suínos
4.
Sci Transl Med ; 13(606)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34285130

RESUMO

Multiple safe and effective vaccines that elicit immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary to respond to the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here, we developed a protein subunit vaccine composed of spike ectodomain protein (StriFK) plus a nitrogen bisphosphonate-modified zinc-aluminum hybrid adjuvant (FH002C). StriFK-FH002C generated substantially higher neutralizing antibody titers in mice, hamsters, and cynomolgus monkeys than those observed in plasma isolated from COVID-19 convalescent individuals. StriFK-FH002C also induced both TH1- and TH2-polarized helper T cell responses in mice. In hamsters, StriFK-FH002C immunization protected animals against SARS-CoV-2 challenge, as shown by the absence of virus-induced weight loss, fewer symptoms of disease, and reduced lung pathology. Vaccination of hamsters with StriFK-FH002C also reduced within-cage virus transmission to unvaccinated, cohoused hamsters. In summary, StriFK-FH002C represents an effective, protein subunit-based SARS-CoV-2 vaccine candidate.


Assuntos
COVID-19 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Cricetinae , Humanos , Camundongos , Subunidades Proteicas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
5.
Indian J Pharmacol ; 53(2): 132-142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34100397

RESUMO

OBJECTIVES: Water contaminated with arsenic affected millions of people worldwide and arsenic exposure is related to various neurological disorders. Hence, the current study was planned to investigate the neuroprotective activity of diosmin (DSN) against arsenic induced neurotoxicity as an attempt to identify therapeutic intervention to combat arsenicism. MATERIALS AND METHODS: Sodium arsenite an inducer of neurotoxicity was administered orally (13 mg/kg) and DSN treatment at two selected doses (50 and 100 mg/kg) was done for 21 days. Behavioral and biochemical variations were examined by various parameters. Furthermore, histopathological and immunohistochemistry studies were done with the brain sections. RESULTS: The behavioral studies evidenced that arsenic has suppressed the exploratory behavior and motor coordination in rats and DSN treatment has recovered the behavioral changes to normal. Arsenic administration has also found to induce oxidative stress and DSN co-treatment has ameliorated the oxidative stress markers. Interestingly, depleted levels of neurotransmitters were observed with the arsenic and it was restored back by the DSN treatment. Histopathological alterations like pyknosis of the neuronal cells were identified with arsenic exposure and subsided upon DSN co administration. Immunohistochemical studies have revealed the expression of NOX4 and its gp91phox and P47phox subunits and its suppression by DSN treatment may be the key therapeutic factor of it. CONCLUSIONS: Treatment with DSN showed a beneficial effect in protecting against arsenic-induced neurotoxicity by suppressing the toxicity changes and the antioxidant effect of DSN might be attributed to its ability of suppressing NOX4 and its subunits.


Assuntos
Arsênio/toxicidade , Diosmina/uso terapêutico , NADPH Oxidase 4/antagonistas & inibidores , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Animais , Antioxidantes/análise , Arsênio/análise , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Química Encefálica/efeitos dos fármacos , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Neurotransmissores/análise , Estresse Oxidativo/efeitos dos fármacos , Subunidades Proteicas/antagonistas & inibidores , Ratos , Ratos Wistar
6.
J Med Chem ; 64(9): 5905-5930, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33904304

RESUMO

There is an urgent need for new treatments for visceral leishmaniasis (VL), a parasitic infection which impacts heavily large areas of East Africa, Asia, and South America. We previously reported on the discovery of GSK3494245/DDD01305143 (1) as a preclinical candidate for VL and, herein, we report on the medicinal chemistry program that led to its identification. A hit from a phenotypic screen was optimized to give a compound with in vivo efficacy, which was hampered by poor solubility and genotoxicity. The work on the original scaffold failed to lead to developable compounds, so an extensive scaffold-hopping exercise involving medicinal chemistry design, in silico profiling, and subsequent synthesis was utilized, leading to the preclinical candidate. The compound was shown to act via proteasome inhibition, and we report on the modeling of different scaffolds into a cryo-EM structure and the impact this has on our understanding of the series' structure-activity relationships.


Assuntos
Desenho de Fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Proteínas de Protozoários/metabolismo , Animais , Antiprotozoários/química , Antiprotozoários/metabolismo , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Sítios de Ligação , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/metabolismo , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Camundongos , Simulação de Dinâmica Molecular , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/química , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Solubilidade , Relação Estrutura-Atividade
7.
Eur J Med Chem ; 219: 113455, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33894528

RESUMO

Proteasomes contribute to maintaining protein homeostasis and their inhibition is beneficial in certain types of cancer and in autoimmune diseases. However, the inhibition of the proteasomes in healthy cells leads to unwanted side-effects and significant effort has been made to identify inhibitors specific for the immunoproteasome, especially to treat diseases which manifest increased levels and activity of this proteasome isoform. Here, we report our efforts to discover fragment-sized inhibitors of the human immunoproteasome. The screening of an in-house library of structurally diverse fragments resulted in the identification of benzo[d]oxazole-2(3H)-thiones, benzo[d]thiazole-2(3H)-thiones, benzo[d]imidazole-2(3H)-thiones, and 1-methylbenzo[d]imidazole-2(3H)-thiones (with a general term benzoXazole-2(3H)-thiones) as inhibitors of the chymotrypsin-like (ß5i) subunit of the immunoproteasome. A subsequent structure-activity relationship study provided us with an insight regarding growing vectors. Binding to the ß5i subunit was shown and selectivity against the ß5 subunit of the constitutive proteasome was determined. Thorough characterization of these compounds suggested that they inhibit the immunoproteasome by forming a disulfide bond with the Cys48 available specifically in the ß5i active site. To obtain fragments with biologically more tractable covalent interactions, we performed a warhead scan, which yielded benzoXazole-2-carbonitriles as promising starting points for the development of selective immunoproteasome inhibitors with non-peptidic scaffolds.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Oxazóis/química , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Tiazóis/química , Tionas/química
8.
Cell Mol Immunol ; 18(5): 1222-1234, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33767434

RESUMO

Aluminum-containing adjuvants have been used for nearly 100 years to enhance immune responses in billions of doses of vaccines. To date, only a few adjuvants have been approved for use in humans, among which aluminum-containing adjuvants are the only ones widely used. However, the medical need for potent and safe adjuvants is currently continuously increasing, especially those triggering cellular immune responses for cytotoxic T lymphocyte activation, which are urgently needed for the development of efficient virus and cancer vaccines. Manganese is an essential micronutrient required for diverse biological activities, but its functions in immunity remain undefined. We previously reported that Mn2+ is important in the host defense against cytosolic dsDNA by facilitating cGAS-STING activation and that Mn2+ alone directly activates cGAS independent of dsDNA, leading to an unconventional catalytic synthesis of 2'3'-cGAMP. Herein, we found that Mn2+ strongly promoted immune responses by facilitating antigen uptake, presentation, and germinal center formation via both cGAS-STING and NLRP3 activation. Accordingly, a colloidal manganese salt (Mn jelly, MnJ) was formulated to act not only as an immune potentiator but also as a delivery system to stimulate humoral and cellular immune responses, inducing antibody production and CD4+/CD8+ T-cell proliferation and activation by either intramuscular or intranasal immunization. When administered intranasally, MnJ also worked as a mucosal adjuvant, inducing high levels of secretory IgA. MnJ showed good adjuvant effects for all tested antigens, including T cell-dependent and T cell-independent antigens, such as bacterial capsular polysaccharides, thus indicating that it is a promising adjuvant candidate.


Assuntos
Adjuvantes Imunológicos/farmacologia , Manganês/farmacologia , Sais/farmacologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Antivirais/farmacologia , Vacinas Anticâncer/imunologia , Linhagem Celular , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Humanos , Interleucina-1/biossíntese , Interleucina-18/biossíntese , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleotidiltransferases/metabolismo , Subunidades Proteicas/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
9.
Mol Neurobiol ; 58(6): 2590-2607, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33475949

RESUMO

In zebrafish, nicotine is known to regulate sensitivity to psychostimulants via epigenetic mechanisms. Little however is known about the regulation of addictive-like behavior by DNA methylation processes. To evaluate the influence of DNA methylation on nicotine-induced conditioned place preference (CPP), zebrafish were exposed to methyl supplementation through oral L-methionine (Met) administration. Met was found to reduce dramatically nicotine-induced CPP as well as behaviors associated with drug reward. The reduction was associated with the upregulation of DNA methyltransferases (DNMT1 and 3) as well as with the downregulation of methyl-cytosine dioxygenase-1 (TET1) and of nicotinic receptor subunits. Met also increased the expression of histone methyltransferases in nicotine-induced CPP groups. It reversed the nicotine-induced reduction in the methylation at α7 and NMDAR1 gene promoters. Treatment with the DNMT inhibitor 5-aza-2'-deoxycytidine (AZA) was found to reverse the effects of Met in structures of the reward pathway. Interestingly, Met did not modify the amount of the phospho-form of CREB (pCREB), a key factor establishing nicotine conditioning, whereas AZA increased pCREB levels. Our data suggest that nicotine-seeking behavior is partially dependent on DNA methylation occurring probably at specific gene loci, such as α7 and NMDAR1 receptor gene promoters. Overall, they suggest that Met should be considered as a potential therapeutic drug to treat nicotine addiction.


Assuntos
Comportamento Animal/fisiologia , Comportamento de Escolha , Suplementos Nutricionais , Metionina/farmacologia , Nicotina/farmacologia , Peixe-Zebra/fisiologia , 5-Metilcitosina/metabolismo , Animais , Azacitidina/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Condicionamento Clássico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Epigênese Genética/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Recompensa , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Plant J ; 104(5): 1269-1284, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32996185

RESUMO

Plant acclimatory responses to phosphate (Pi) starvation stress include the accumulation of carbohydrates, namely sugar and starch. However, whether altered endogenous carbohydrate profile could in turn affect plant Pi starvation responses remains widely unexplored. Here, two genes encoding the large and small subunits of an ADP-glucose pyrophosphorylase (AGP) in rice (Oryza sativa), AGP Large Subunit 1 (AGPL1) and AGP Small Subunit 1 (AGPS1), were functionally characterized with regard to maintenance of phosphorus (P) homeostasis and regulation of Pi starvation signaling. AGPL1 and AGPS1 were both positively responsive to nitrogen (N) or Pi deprivation, and expressed in almost all the tissues except in the meristem and mature zones of root. AGPL1 and AGPS1 physically interacted in chloroplast, and catalyzed the rate-limiting step of starch biosynthesis. Low-N- (LN) and low-Pi (LP)-triggered starch accumulation in leaves was impaired in agpl1, agps1 and apgl1 agps1 mutants compared with the wild-type plants. By contrast, mutation of AGPL1 and/or AGPS1 led to an increase in the content of the major sugar, sucrose, in leaf sheath and root under control and LN conditions. Moreover, the Pi accumulation was enhanced in the mutants under control and LN conditions, but not LP conditions. Notably, the LN-induced suppression of Pi accumulation was compromised attributed to the mutation of AGPL1 and/or AGPS1. Furthermore, the increased Pi accumulation was accompanied by the specific suppression of OsSPX2 and activation of several Pi transporter genes. These results indicate that a balanced level of carbohydrates is vital for maintaining plant P homeostasis.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Oryza/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Metabolismo dos Carboidratos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose-1-Fosfato Adenililtransferase/genética , Homeostase/fisiologia , Mutação , Nitrogênio/metabolismo , Oryza/genética , Fosfatos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Subunidades Proteicas , Amido/metabolismo
11.
BMC Plant Biol ; 20(1): 380, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811442

RESUMO

BACKGROUND: Glycosylphosphatidylinositol (GPI) addition is one of the several post-translational modifications to proteins that increase their affinity for membranes. In eukaryotes, the GPI transamidase complex (GPI-T) catalyzes the attachment of pre-assembled GPI anchors to GPI-anchored proteins (GAPs) through a transamidation reaction. A mutation in AtGPI8 (gpi8-2), the putative catalytic subunit of GPI-T in Arabidopsis, is transmitted normally through the female gametophyte (FG), indicating the FG tolerates loss of GPI transamidation. In contrast, gpi8-2 almost completely abolishes male gametophyte (MG) function. Still, the unexpected finding that gpi8-2 FGs function normally requires further investigation. Additionally, specific developmental defects in the MG caused by loss of GPI transamidation remain poorly characterized. RESULTS: Here we investigated the effect of loss of AtPIG-S, another GPI-T subunit, in both gametophytes. Like gpi8-2, we showed that a mutation in AtPIG-S (pigs-1) disrupted synergid localization of LORELEI (LRE), a putative GAP critical for pollen tube reception by the FG. Still, pigs-1 is transmitted normally through the FG. Conversely, pigs-1 severely impaired male gametophyte (MG) function during pollen tube emergence and growth in the pistil. A pPIGS:GFP-PIGS transgene complemented these MG defects and enabled generation of pigs-1/pigs-1 seedlings. However, the pPIGS:GFP-PIGS transgene seemingly failed to rescue the function of AtPIG-S in the sporophyte, as pigs-1/pigs-1, pPIGS:GFP-PIGS seedlings died soon after germination. CONCLUSIONS: Characterization of pigs-1 provided further evidence that the FG tolerates loss of GPI transamidation more than the MG and that the MG compared to the FG may be a better haploid system to study the role of GPI-anchoring. Pigs-1 pollen develops normally and thus represent a tool in which GPI anchor biosynthesis and transamidation of GAPs have been uncoupled, offering a potential way to study free GPI in plant development. While previously reported male fertility defects of GPI biosynthesis mutants could have been due either to loss of GPI or GAPs lacking the GPI anchor, our results clarified that the loss of mature GAPs underlie male fertility defects of GPI-deficient pollen grains, as pigs-1 is defective only in the downstream transamidation step.


Assuntos
Aciltransferases/fisiologia , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimento , Aciltransferases/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Técnicas de Genotipagem , Glicoproteínas de Membrana/metabolismo , Mutação , Pólen/genética , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Nicotiana/genética
12.
Mol Neurobiol ; 57(9): 3860-3874, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32613466

RESUMO

Early life and adulthood stress increase vulnerability for mental illness, and eventually trigger depression. N-3 polyunsaturated fatty acids (PUFA) have antidepressant effects, but their effect on rats exposed to combined stress has been not investigated. This study aimed to investigate whether n-3 PUFA supplementation had antidepressant-like effects in rat models of depression induced by a combination of chronic mild stress (CMS) and maternal separation (MS) through the modulation of the hypothalamic-pituitary-adrenal (HPA) axis and neurotransmission. Rats were fed the n-3 PUFA diet during the pre-weaning or post-weaning period or for lifetime, and allocated to different groups based on the type of induced stress: non-stress (NS), CMS + MS, or CMS alone. N-3 PUFA improved the depressive behaviors of the CMS alone and CMS + MS groups and modulated the HPA-axis by reducing the circulating adrenocorticotropic hormone, corticosterone, and corticotropin-releasing factor expression, and increasing glucocorticoid receptor expression. N-3 PUFA also modulated brain phospholipid fatty acid concentration, thus reducing inflammatory cytokines; improved the serotonergic pathway, thus increasing the expression of the brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), serotonin-1A receptor, and serum levels of serotonin; but did not affect glutamatergic neurotransmission. Furthermore, n-3 PUFA decreased the hippocampal expression of microRNA-218 and -132, increased that of microRNA-155, and its lifetime supplementation was more beneficial than pre- or post-weaning supplementation. This study suggests that n-3 PUFA has an antidepressant effect in rats exposed to combined stress, through the improvement of the HPA-axis abnormalities, the BDNF-serotonergic pathway, and the modulation of microRNAs.


Assuntos
Antidepressivos/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Estresse Psicológico/complicações , Transmissão Sináptica/efeitos dos fármacos , Hormônio Adrenocorticotrópico/sangue , Animais , Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/sangue , Citocinas/metabolismo , Depressão/sangue , Depressão/tratamento farmacológico , Dinoprostona/sangue , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/uso terapêutico , Feminino , Hipocampo/metabolismo , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neurotransmissores/metabolismo , Fosfolipídeos/metabolismo , Subunidades Proteicas/metabolismo , Ratos Wistar , Receptores de Glutamato/metabolismo , Serotonina/sangue , Estresse Psicológico/sangue
13.
Plant Cell ; 32(9): 2898-2916, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647068

RESUMO

Engineering improved Rubisco for the enhancement of photosynthesis is challenged by the alternate locations of the chloroplast rbcL gene and nuclear RbcS genes. Here we develop an RNAi-RbcS tobacco (Nicotiana tabacum) master-line, tobRrΔS, for producing homogenous plant Rubisco by rbcL-rbcS operon chloroplast transformation. Four genotypes encoding alternative rbcS genes and adjoining 5'-intergenic sequences revealed that Rubisco production was highest (50% of the wild type) in the lines incorporating a rbcS gene whose codon use and 5' untranslated-region matched rbcL Additional tobacco genotypes produced here incorporated differing potato (Solanum tuberosum) rbcL-rbcS operons that either encoded one of three mesophyll small subunits (pS1, pS2, and pS3) or the potato trichome pST-subunit. The pS3-subunit caused impairment of potato Rubisco production by ∼15% relative to the lines producing pS1, pS2, or pST However, the ßA-ßB loop Asn-55-His and Lys-57-Ser substitutions in the pS3-subunit improved carboxylation rates by 13% and carboxylation efficiency (CE) by 17%, relative to potato Rubisco incorporating pS1 or pS2-subunits. Tobacco photosynthesis and growth were most impaired in lines producing potato Rubisco incorporating the pST-subunit, which reduced CE and CO2/O2 specificity 40% and 15%, respectively. Returning the rbcS gene to the plant plastome provides an effective bioengineering chassis for introduction and evaluation of novel homogeneous Rubisco complexes in a whole plant context.


Assuntos
Cloroplastos/genética , Nicotiana/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Solanum tuberosum/fisiologia , Proteínas de Bactérias/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Óperon , Iniciação Traducional da Cadeia Peptídica , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Subunidades Proteicas , Interferência de RNA , Rhodospirillum rubrum/genética , Ribulose-Bifosfato Carboxilase/genética , Solanum tuberosum/genética , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
14.
Cell Rep ; 32(3): 107921, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32697982

RESUMO

The anterior thalamus (AT) is critical for memory formation, processing navigational information, and seizure initiation. However, the molecular mechanisms that regulate synaptic function of AT neurons remain largely unexplored. We report that AMPA receptor auxiliary subunit GSG1L controls short-term plasticity in AT synapses that receive inputs from the cortex, but not in those receiving inputs from other pathways. A canonical auxiliary subunit stargazin co-exists in these neurons but is functionally absent from corticothalamic synapses. In GSG1L knockout mice, AT neurons exhibit hyperexcitability and the animals have increased susceptibility to seizures, consistent with a negative regulatory role of GSG1L. We hypothesize that negative regulation of synaptic function by GSG1L plays a critical role in maintaining optimal excitation in the AT.


Assuntos
Córtex Cerebral/metabolismo , Claudinas/metabolismo , Subunidades Proteicas/metabolismo , Convulsões/metabolismo , Sinapses/imunologia , Tálamo/metabolismo , Animais , Suscetibilidade a Doenças , Camundongos Knockout , Plasticidade Neuronal , Neurônios/metabolismo
15.
Nature ; 584(7820): 304-309, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32581365

RESUMO

The human GABAB receptor-a member of the class C family of G-protein-coupled receptors (GPCRs)-mediates inhibitory neurotransmission and has been implicated in epilepsy, pain and addiction1. A unique GPCR that is known to require heterodimerization for function2-6, the GABAB receptor has two subunits, GABAB1 and GABAB2, that are structurally homologous but perform distinct and complementary functions. GABAB1 recognizes orthosteric ligands7,8, while GABAB2 couples with G proteins9-14. Each subunit is characterized by an extracellular Venus flytrap (VFT) module, a descending peptide linker, a seven-helix transmembrane domain and a cytoplasmic tail15. Although the VFT heterodimer structure has been resolved16, the structure of the full-length receptor and its transmembrane signalling mechanism remain unknown. Here we present a near full-length structure of the GABAB receptor, captured in an inactive state by cryo-electron microscopy. Our structure reveals several ligands that preassociate with the receptor, including two large endogenous phospholipids that are embedded within the transmembrane domains to maintain receptor integrity and modulate receptor function. We also identify a previously unknown heterodimer interface between transmembrane helices 3 and 5 of both subunits, which serves as a signature of the inactive conformation. A unique 'intersubunit latch' within this transmembrane interface maintains the inactive state, and its disruption leads to constitutive receptor activity.


Assuntos
Microscopia Crioeletrônica , Receptores de GABA-B/química , Receptores de GABA-B/ultraestrutura , Cálcio/metabolismo , Etanolaminas/química , Etanolaminas/metabolismo , Humanos , Ligantes , Modelos Moleculares , Fosforilcolina/química , Fosforilcolina/metabolismo , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de GABA-B/metabolismo , Relação Estrutura-Atividade
16.
Cell Rep ; 31(12): 107797, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579924

RESUMO

Peripheral nerve injury induces functional and structural remodeling of neural circuits along the somatosensory pathways, forming the basis for somatotopic reorganization and ectopic sensations, such as referred phantom pain. However, the mechanisms underlying that remodeling remain largely unknown. Whisker sensory nerve injury drives functional remodeling in the somatosensory thalamus: the number of afferent inputs to each thalamic neuron increases from one to many. Here, we report that extrasynaptic γ-aminobutyric acid-type A receptor (GABAAR)-mediated tonic inhibition is necessary for that remodeling. Extrasynaptic GABAAR currents were potentiated rapidly after nerve injury in advance of remodeling. Pharmacological activation of the thalamic extrasynaptic GABAARs in intact mice induced similar remodeling. Notably, conditional deletion of extrasynaptic GABAARs in the thalamus rescued both the injury-induced remodeling and the ectopic mechanical hypersensitivity. Together, our results reveal a molecular basis for injury-induced remodeling of neural circuits and may provide a new pharmacological target for referred phantom sensations after peripheral nerve injury.


Assuntos
Vias Aferentes/fisiopatologia , Tecido Nervoso/lesões , Tecido Nervoso/fisiopatologia , Inibição Neural/fisiologia , Sensação/fisiologia , Tálamo/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Núcleos Ventrais do Tálamo/fisiopatologia
17.
Sci Rep ; 10(1): 10078, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572053

RESUMO

Brain GABAΑ receptors are ionotropic receptors belonging to the class of Cys-loop receptors and are important drug targets for the treatment of anxiety and sleep disorders. By screening a compound library (2,112 compounds) at recombinant human α4ß1δ GABAΑ receptors heterologously expressed in a HEK cell line, we identified a scaffold of spirocyclic compounds with nanomolar antagonist activity at GABAΑ receptors. The initial screening hit 2027 (IC50 of 1.03 µM) was used for analogue search resulting in 018 (IC50 of 0.088 µM). 018 was most potent at α3,4,5-subunit containing receptors, thus showing preference for forebrain-expressed extrasynaptic receptors. Schild analysis of 018 at recombinant human α4ß1δ receptors and displacement of [3H]muscimol binding in rat cortical homogenate independently confirmed a competitive profile. The antagonist profile of 018 was further validated by whole-cell patch-clamp electrophysiology, where kinetic studies revealed a slow dissociation rate and a shallow hill slope was observed. Membrane permeability studies showed that 2027 and 018 do not cross membranes, thus making the compounds less attractive for studying central GABAΑ receptors effects, but conversely more attractive as tool compounds in relation to emerging peripheral GABAΑ receptor-mediated effects of GABA e.g. in the immune system.


Assuntos
Antagonistas de Receptores de GABA-A/isolamento & purificação , Antagonistas de Receptores de GABA-A/farmacologia , Receptores de GABA-A/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/classificação , Células HEK293 , Humanos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Subunidades Proteicas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Ácido gama-Aminobutírico/metabolismo
18.
Chin J Nat Med ; 18(5): 393-400, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32451097

RESUMO

Cordycepin was the first adenosine analogue used as an anticancer and antiviral agent, which is extracted from Cordyceps militaris and hasn't been biosynthesized until now. This study was first conducted to verify the role of ribonucleotide reductases (RNRs, the two RNR subunits, RNRL and RNRM) in the biosynthesis of cordycepin by over expressing RNRs genes in transformed C. militaris. Quantitative real-time PCR (qRT-PCR) and western blotting results showed that the mRNA and protein levels of RNR subunit genes were significantly upregulated in transformant C. militaris strains compared to the control strain. The results of the HPLC assay indicated that the cordycepin was significantly higher in the C. militaris transformants carrying RNRM than in the wild-type strain, whereas the RNRML was preferentially downregulated. For the C. militaris transformant carrying RNRL, the content of cordycepin wasn't remarkably changed. Furthermore, we revealed that inhibiting RNRs with Triapine (3-AP) almost abrogated the upregulation of cordycepin. Therefore, our results suggested that RNRM can probably directly participate in cordycepin biosynthesis by hydrolyzing adenosine, which is useful for improving cordycepin synthesis and helps to satisfy the commercial demand of cordycepin in the field of medicine.


Assuntos
Cordyceps/enzimologia , Desoxiadenosinas/biossíntese , Proteínas Fúngicas/genética , Ribonucleotídeo Redutases/genética , Cordyceps/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ribonucleotídeo Redutases/metabolismo , Transformação Genética
19.
Development ; 147(8)2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32265198

RESUMO

Endocannabinoids (eCB) modulate growth cone dynamics and axonal pathfinding through the stimulation of cannabinoid type-1 receptors (CB1R), the function of which depends on their delivery and precise presentation at the growth cone surface. However, the mechanism involved in the axonal transport of CB1R and its transport role in eCB signaling remains elusive. As mutations in the kinesin-1 molecular motor have been identified in patients with abnormal cortical development and impaired white matter integrity, we studied the defects in axonal pathfinding and fasciculation in mice lacking the kinesin light chain 1 (Klc1-/-) subunit of kinesin-1. Reduced levels of CB1R were found in corticofugal projections and axonal growth cones in Klc1-/- mice. By live-cell imaging of CB1R-eGFP we characterized the axonal transport of CB1R vesicles and described the defects in transport that arise after KLC1 deletion. Cofilin activation, which is necessary for actin dynamics during growth cone remodeling, is impaired in the Klc1-/- cerebral cortex. In addition, Klc1-/- neurons showed expanded growth cones that were unresponsive to CB1R-induced axonal elongation. Together, our data reveal the relevance of kinesin-1 in CB1R axonal transport and in eCB signaling during brain wiring.


Assuntos
Transporte Axonal , Axônios/metabolismo , Canabinoides/metabolismo , Cinesinas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Axônios/ultraestrutura , Córtex Cerebral/metabolismo , Deleção de Genes , Cones de Crescimento/metabolismo , Camundongos Endogâmicos C57BL , Subunidades Proteicas/metabolismo , Tálamo/metabolismo
20.
FEBS J ; 287(14): 3012-3023, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31876375

RESUMO

A1 AO ATP synthases with a V-type c subunit have only been found in hyperthermophilic archaea which makes bioenergetic analyses impossible due to the instability of liposomes at high temperatures. A search for a potential archaeal A1 AO ATP synthase with a V-type c subunit in a mesophilic organism revealed an A1 AO ATP synthase cluster in the anaerobic, acetogenic bacterium Eubacterium limosum KIST612. The enzyme was purified to apparent homogeneity from cells grown on methanol to a specific activity of 1.2 U·mg-1 with a yield of 12%. The enzyme contained subunits A, B, C, D, E, F, H, a, and c. Subunit c is predicted to be a typical V-type c subunit with only one ion (Na+ )-binding site. Indeed, ATP hydrolysis was strictly Na+ -dependent. N,N'-dicyclohexylcarbodiimide (DCCD) inhibited ATP hydrolysis, but inhibition was relieved by addition of Na+ . Na+ was shown directly to abolish binding of the fluorescence DCCD derivative, NCD-4, to subunit c, demonstrating a competition of Na+ and DCCD/NCD-4 for a common binding site. After incorporation of the A1 AO ATP synthase into liposomes, ATP-dependent primary transport of 22 Na+ as well as ΔµNa+ -driven ATP synthesis could be demonstrated. The Na+ A1 AO ATP synthase from E. limosum is the first ATP synthase with a V-type c subunit from a mesophilic organism. This will enable future bioenergetic analysis of these unique ATP synthases.


Assuntos
Complexos de ATP Sintetase/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Eubacterium/enzimologia , Sódio/metabolismo , Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Hidrólise , Transporte de Íons , Conformação Proteica , Subunidades Proteicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA