Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 26(14): 3816-3827, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35678269

RESUMO

Radix puerariae, a traditional Chinese herbal medication, has been used to treat patients with diabetic kidney disease (DKD). Our previous studies demonstrated that puerarin, the active compound of radix puerariae, improves podocyte injury in type 1 DKD mice. However, the direct molecular target of puerarin and its underlying mechanisms in DKD remain unknown. In this study, we confirmed that puerarin also improved DKD in type 2 diabetic db/db mice. Through RNA-sequencing odf isolated glomeruli, we found that differentially expressed genes (DEGs) that were altered in the glomeruli of these diabetic mice but reversed by puerarin treatment were involved mostly in oxidative stress, inflammatory and fibrosis. Further analysis of these reversed DEGs revealed protein kinase A (PKA) was among the top pathways. By utilizing the drug affinity responsive target stability method combined with mass spectrometry analysis, we identified guanine nucleotide-binding protein Gi alpha-1 (Gnai1) as the direct binding partner of puerarin. Gnai1 is an inhibitor of cAMP production which is known to have protection against podocyte injury. In vitro, we showed that puerarin not only interacted with Gnai1 but also increased cAMP production in human podocytes and mouse diabetic kidney in vivo. Puerarin also enhanced CREB phosphorylation, a downstream transcription factor of cAMP/PKA. Overexpression of CREB reduced high glucose-induced podocyte apoptosis. Inhibition of PKA by Rp-cAMP also diminished the effects of puerarin on high glucose-induced podocyte apoptosis. We conclude that the renal protective effects of puerarin are likely through inhibiting Gnai1 to activate cAMP/PKA/CREB pathway in podocytes.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Animais , Apoptose , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/farmacologia , Glucose/metabolismo , Guanidina/metabolismo , Guanidina/farmacologia , Guanidina/uso terapêutico , Humanos , Isoflavonas , Camundongos , Nucleotídeos/metabolismo , Podócitos/metabolismo
2.
Hum Mol Genet ; 31(6): 929-941, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34622282

RESUMO

Dominant GNAO1 mutations cause an emerging group of childhood-onset neurological disorders characterized by developmental delay, intellectual disability, movement disorders, drug-resistant seizures and neurological deterioration. GNAO1 encodes the α-subunit of an inhibitory GTP/GDP-binding protein regulating ion channel activity and neurotransmitter release. The pathogenic mechanisms underlying GNAO1-related disorders remain largely elusive and there are no effective therapies. Here, we assessed the functional impact of two disease-causing variants associated with distinct clinical features, c.139A > G (p.S47G) and c.662C > A (p.A221D), using Caenorhabditis elegans as a model organism. The c.139A > G change was introduced into the orthologous position of the C. elegans gene via CRISPR/Cas9, whereas a knock-in strain carrying the p.A221D variant was already available. Like null mutants, homozygous knock-in animals showed increased egg laying and were hypersensitive to aldicarb, an inhibitor of acetylcholinesterase, suggesting excessive neurotransmitter release by different classes of motor neurons. Automated analysis of C. elegans locomotion indicated that goa-1 mutants move faster than control animals, with more frequent body bends and a higher reversal rate and display uncoordinated locomotion. Phenotypic profiling of heterozygous animals revealed a strong hypomorphic effect of both variants, with a partial dominant-negative activity for the p.A221D allele. Finally, caffeine was shown to rescue aberrant motor function in C. elegans harboring the goa-1 variants; this effect is mainly exerted through adenosine receptor antagonism. Overall, our findings establish a suitable platform for drug discovery, which may assist in accelerating the development of new therapies for this devastating condition, and highlight the potential role of caffeine in controlling GNAO1-related dyskinesia.


Assuntos
Proteínas de Caenorhabditis elegans , Discinesias , Acetilcolinesterase/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cafeína/farmacologia , Avaliação Pré-Clínica de Medicamentos , Discinesias/tratamento farmacológico , Discinesias/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/farmacologia , Proteínas de Ligação ao GTP/genética , Mutação , Neurotransmissores/metabolismo
3.
Int Arch Allergy Immunol ; 145(2): 131-40, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17848806

RESUMO

BACKGROUND: Basic secretagogues of connective tissue mast cells act as receptor mimetic agents that trigger mast cells by activating G proteins. This leads to simultaneous propagation of two signaling pathways: one that culminates in exocytosis, while the other involves protein tyrosine phosphorylation and leads to release of arachidonic acid metabolites. We have previously shown that introduction of a peptide that comprises the C-terminal end of G alpha i3 into permeabilized mast cells inhibits basic secretagogue-induced exocytosis [Aridor et al., Science 1993;262:1569-1572]. We investigated whether cell-permeable peptides, composed of the C-terminus of G alpha i3 fused with importation sequences, affect mast cell function. METHODS: Following preincubation with the fused peptides, rat peritoneal mast cells were activated by compound 48/80 and analyzed for histamine and prostaglandin D2 release and protein tyrosine phosphorylations. RESULTS: We demonstrate that out of three importation sequences tested only G alpha i3 peptide fused with the Kaposi fibroblast growth factor importation sequence (ALL1) inhibited release of histamine. ALL1 as well as a cell-permeable peptide that corresponds to G alpha i2 also blocked compound 48/80-stimulated protein tyrosine phosphorylation, though the latter did not block histamine release. ALL1 effect was G protein-specific, as it was incapable of blocking protein tyrosine phosphorylation stimulated by pervanadate. CONCLUSION: ALL1, a transducible G alpha i3-corresponding peptide, blocks the two signaling pathways in mast cells: histamine release and protein tyrosine phosphorylation. Cell permeable peptides that block these two signaling cascades may constitute a novel approach for preventing the onset of the allergic reaction.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/farmacologia , Mediadores da Inflamação/fisiologia , Mastócitos/efeitos dos fármacos , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Permeabilidade da Membrana Celular , Avaliação Pré-Clínica de Medicamentos , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/farmacologia , Liberação de Histamina/efeitos dos fármacos , Integrina beta3/química , Mastócitos/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/farmacologia , Peptídeos/síntese química , Fosforilação/efeitos dos fármacos , Prostaglandina D2/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transducina/farmacologia , p-Metoxi-N-metilfenetilamina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA