RESUMO
We developed a multi-channel cell chip containing a three-dimensional (3D) scaffold for horizontal co-culture and drug toxicity screening in multi-organ culture (human glioblastoma, cervical cancer, normal liver cells, and normal lung cells). The polydimethylsiloxane (PDMS) multi-channel cell chip (PMCCC) was based on fused deposition modeling (FDM) technology. The architecture of the PMCCC was an open-type cell chip and did not require a pump or syringe. We investigated cell proliferation and cytotoxicity by conducting 3-(4,5-dimethylthiazol-2-yl)-2,5-dphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays and analysis of oleanolic acid (OA)-treated multi-channel cell chips. The results of the MTT and LDH assays showed that OA treatment in the multi-channel cell chip of four cell lines enhanced chemoresistance of cells compared with that in the 2D culture. Furthermore, we demonstrated the feasibility of the application of our multi-channel cell chip in various analysis methods through Annexin V-fluorescein isothiocyanate/propidium iodide staining, which is not used for conventional cell chips. Taken together, the results demonstrated that the PMCCC may be used as a new 3D platform because it enables simultaneous drug screening in multiple cells by single point injection and allows analysis of various biological processes.
Assuntos
Técnicas de Cultura de Células , Avaliação Pré-Clínica de Medicamentos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Proliferação de Células , Tamanho Celular , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Células HeLa , Humanos , Dispositivos Lab-On-A-Chip , Teste de Materiais , Alicerces Teciduais/química , Testes de Toxicidade/instrumentação , Testes de Toxicidade/métodosRESUMO
In vitro transport studies across cells grown on culture inserts are widely used for evaluating pharmacokinetic characteristics such as intestinal membrane permeability. However, measurements of the apparent permeability coefficient of highly lipophilic compounds are often limited by transport across the membrane filters, not by transport across the cultured cells. To overcome this concern, we have investigated the utility of a high-porosity membrane honeycomb film (HCF) for transcellular transport studies. Using the HCF inserts, the apparent permeability coefficient (Papp) of the drugs tested in LLC-PK1 and Caco-2 cells tended to increase with an increase in lipophilicity, reaching a maximum Papp value at Log D higher than 2. In contrast, using the commercially available Track-Etched membrane (TEM) inserts, a maximum value was observed at Log D higher than 1. The basolateral to apical transport permeability Papp(BLâAP) of rhodamine 123 across LLC-PK1 cells that express P-glycoprotein (P-gp) cultured on HCF inserts and TEM inserts was 2.33 and 2.39 times higher than the reverse directional Papp(APâBL) permeability, respectively. The efflux ratio (Papp(B-A)/Papp(A-B)) of rhodamine 123 in LLC-PK1 expressing P-gp cells using HCF inserts was comparable to that obtained using TEM inserts, whereas the transported amount in both directions was significantly higher when using the HCF inserts. Accordingly, due to the higher permeability and high porosity of HCF membranes, it is expected that transcellular transport of high lipophilic as well as hydrophilic compounds and substrate recognition of transporters can be evaluated more accurately by using HCF inserts.
Assuntos
Técnicas de Cultura de Células/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Rodamina 123/farmacocinética , Células CACO-2 , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , PermeabilidadeRESUMO
Owing to the prohibition of cosmetic animal testing, various attempts have recently been made using skin-on-a-chip (SOC) technology as a replacement for animal testing. Previously, we reported the development of a pumpless SOC capable of drug testing with a simple drive using the principle that the medium flows along the channel by gravity when the chip is tilted using a microfluidic channel. In this study, using pumpless SOC, instead of drug testing at the single-cell level, we evaluated the efficacy of α-lipoic acid (ALA), which is known as an anti-aging substance in skin equivalents, for skin tissue and epidermal structure formation. The expression of proteins and changes in genotyping were compared and evaluated. Hematoxylin and eosin staining for histological analysis showed a difference in the activity of fibroblasts in the dermis layer with respect to the presence or absence of ALA. We observed that the epidermis layer became increasingly prominent as the culture period was extended by treatment with 10 µM ALA. The expression of epidermal structural proteins of filaggrin, involucrin, keratin 10, and collagen IV increased because of the effect of ALA. Changes in the epidermis layer were noticeable after the ALA treatment. As a result of aging, damage to the skin-barrier function and structural integrity is reduced, indicating that ALA has an anti-aging effect. We performed a gene analysis of filaggrin, involucrin, keratin 10, integrin, and collagen I genes in ALA-treated human skin equivalents, which indicated an increase in filaggrin gene expression after ALA treatment. These results indicate that pumpless SOC can be used as an in vitro skin model similar to human skin, protein and gene expression can be analyzed, and it can be used for functional drug tests of cosmetic materials in the future. This technology is expected to contribute to the development of skin disease models.
Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Dispositivos Lab-On-A-Chip , Pele/citologia , Pele/efeitos dos fármacos , Ácido Tióctico/farmacologia , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Desenho de Equipamento , Fibroblastos , Proteínas Filagrinas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Precursores de Proteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo RealRESUMO
It is well known that cell can response to various chemical and mechanical stimuli. Therefore, flow pressure variation induced by sample loading and elution should be small enough to ignore the physical impact on cells when we use a Chip-SPE-MS system for cells. However, most existent Chip-SPE-MS systems ignored the pressure alternation because it is extremely difficult to develop a homogeneous-flow-pressure hyphenated module. Herein, we developed an interesting fluidic isolation-assisted homogeneous-flow-pressure Chip-SPE-MS system and demonstrated that it is adequate for online high-throughput determination and quantification of the 25-hydroxyvitamin D3 (25(OH)D3) biotransformation in different cells. Briefly, the homogeneous ambient flow pressure is achieved by fluidic isolation between the cell culture channel and the SPE column, and an automatic sampling probe could accomplish the sample loading and dispensing to fulfill online pretreatment of the sample. Through this new system, the expression levels of 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) can be determined in real time with a detection limit of 2.54 nM. In addition, the results revealed that 25(OH)D3 metabolic activity differed significantly between normal L-02 cells and cancerous HepG2 cells. Treatment of L-02 cells with a high dose of 25(OH)D3 was found to increase significant formation of 24,25(OH)2D3, but this change was not apparent in HepG2 cells. The presented system promises to be a versatile tool for online accurate molecule biotransformation investigation and drug screening processes.
Assuntos
Calcifediol/metabolismo , Técnicas de Cultura de Células/instrumentação , Dispositivos Lab-On-A-Chip , Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Animais , Biotransformação , Linhagem Celular , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Humanos , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vitamina D3 24-Hidroxilase/química , Vitamina D3 24-Hidroxilase/metabolismoRESUMO
Drug-induced kidney injury is a major clinical problem and causes drug attrition in the pharmaceutical industry. To better predict drug-induced kidney injury, kidney in vitro cultures with enhanced physiologic relevance are developed. To mimic the proximal tubule, the main site of adverse drug reactions in the kidney, human-derived renal proximal tubule epithelial cells (HRPTECs) were injected in one of the channels of dual-channel Nortis chips and perfused for 7 days. Tubes of HRPTECs demonstrated expression of tight junction protein 1 (zona occludens-1), lotus lectin, and primary cilia with localization at the apical membrane, indicating an intact proximal tubule brush border. Gene expression of cisplatin efflux transporters multidrug and toxin extrusion transporter (MATE) 1 (SLC47A1) and MATE2-k (SLC47A2) and megalin endocytosis receptor increased 19.9 ± 5.0-, 23.2 ± 8.4-, and 106 ± 33-fold, respectively, in chip cultures compared with 2-dimensional cultures. Moreover, organic cation transporter 2 (OCT2) (SLC22A2) was localized exclusively on the basolateral membrane. When infused from the basolateral compartment, cisplatin (25 µM, 72 hours) induced toxicity, which was evident as reduced cell number and reduced barrier integrity compared with vehicle-treated chip cultures. Coexposure with the OCT2 inhibitor cimetidine (1 mM) abolished cisplatin toxicity. In contrast, infusion of cisplatin from the apical compartment did not induce toxicity, which was in line with polarized localization of cisplatin uptake transport proteins, including OCT2. In conclusion, we developed a dual channel human kidney proximal tubule-on-a-chip with a polarized epithelium, restricting cisplatin sensitivity to the basolateral membrane and suggesting improved physiologic relevance over single-compartment models. Its implementation in drug discovery holds promise to improve future in vitro drug-induced kidney injury studies. SIGNIFICANCE STATEMENT: Human-derived kidney proximal tubule cells retained characteristics of epithelial polarization in vitro when cultured in the kidney-on-a-chip, and the dual-channel construction allowed for drug exposure using the physiologically relevant compartment. Therefore, cell polarization-dependent cisplatin toxicity could be replicated for the first time in a kidney proximal tubule-on-a-chip. The use of this physiologically relevant model in drug discovery has potential to aid identification of safe novel drugs and contribute to reducing attrition rates due to drug-induced kidney injury.
Assuntos
Injúria Renal Aguda/induzido quimicamente , Cisplatino/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Cimetidina/farmacologia , Cimetidina/uso terapêutico , Cisplatino/farmacocinética , Avaliação Pré-Clínica de Medicamentos/instrumentação , Estudos de Viabilidade , Perfilação da Expressão Gênica , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/antagonistas & inibidores , Transportador 2 de Cátion Orgânico/metabolismoRESUMO
Cytochrome P450 enzymes (CYP) function in drug metabolism in the liver. To evaluate numerous drug candidates, a high-content screening (HCS) system with hepatocyte-like cells (HLCs) that can replace adult human hepatocytes is required. Human hepatocellular carcinoma HepaRG is the only cell line capable of providing HLCs with high CYP3A4 expression comparable to that in adult hepatocytes after cell differentiation. The aim of this study was to design an ideal multiwell culture system for HLCs using transgenic HepaRG cells expressing the EGFP coding an enhanced green fluorescent protein under CYP3A4 transcriptional regulation. HLCs were matured on five different types of 96-well black plates. Culturing HLCs on glass-bottom Optical CVG plates significantly promoted cell maturation and increased metabolic activity by twofold under two-dimensional (2D) culture conditions, and these features were enhanced by 2% collagen coating. Three plates for three-dimensional (3D) cell cultures with a gas-exchangeable fabric or dimethylpolysiloxane membrane bottom formed multiple round colonies, whereas they were ineffective for CYP3A4 expression. Under optimized conditions presented here, HLCs lost responsiveness to nuclear receptor-mediated transcriptional induction of CYP3A4, suggesting that CYP3A4 transcription has already been fully upregulated. Therefore, HepaRG-derived HLCs will provide an alternative to human hepatocytes with high levels of CYP3A4 enzyme activity even under 2D culture conditions. This will improve a variety of drug screening methods.
Assuntos
Técnicas de Cultura de Células/instrumentação , Citocromo P-450 CYP3A/genética , Proteínas de Fluorescência Verde/genética , Hepatócitos/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Microscopia Confocal , Midazolam/análogos & derivados , Midazolam/farmacologia , Proteínas Recombinantes/metabolismoRESUMO
Simultaneous measurements of glucose, lactate, and neurotransmitters (e.g., glutamate) in cell culture over hours and days can provide a more dynamic and longitudinal perspective on ways neural cells respond to various drugs and environmental cues. Compared with conventional microfabrication techniques, direct writing of conductive ink is cheaper, faster, and customizable, which allows rapid iteration for different applications. Using a simple direct writing technique, we printed biosensor arrays onto cell culture dishes, flexible laminate, and glass to enable multianalyte monitoring. The ink was a composite of PEDOT:PSS conductive polymer, silicone, activated carbon, and Pt microparticles. We applied 0.5% Nafion to the biosensors for selectivity and functionalized them with oxidase enzymes. We characterized biosensors in phosphate-buffered saline and in cell culture medium supplemented with fetal bovine serum. The biosensor arrays measured glucose, lactate, and glutamate simultaneously and continued to function after incubation in cell culture at 37 °C for up to 2 days. We cultured primary human astrocytes on top of the biosensor arrays and placed arrays into astrocyte cultures. The biosensors simultaneously measured glucose, glutamate, and lactate from astrocyte cultures. Direct writing can be integrated with microfluidic organ-on-a-chip platforms or as part of a smart culture dish system. Because we print extrudable and flexible components, sensing elements can be printed on any 3D or flexible substrate.
Assuntos
Astrócitos/química , Técnicas Biossensoriais/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Glucose/análise , Ácido Glutâmico/análise , Humanos , Tinta , Ácido Láctico/análise , ReologiaRESUMO
The US Environmental Protection Agency's ToxCast program has generated toxicity data for thousands of chemicals but does not adequately assess potential neurotoxicity. Networks of neurons grown on microelectrode arrays (MEAs) offer an efficient approach to screen compounds for neuroactivity and distinguish between compound effects on firing, bursting, and connectivity patterns. Previously, single concentrations of the ToxCast Phase II library were screened for effects on mean firing rate (MFR) in rat primary cortical networks. Here, we expand this approach by retesting 384 of those compounds (including 222 active in the previous screen) in concentration-response across 43 network activity parameters to evaluate neural network function. Using hierarchical clustering and machine learning methods on the full suite of chemical-parameter response data, we identified 15 network activity parameters crucial in characterizing activity of 237 compounds that were response actives ("hits"). Recognized neurotoxic compounds in this network function assay were often more potent compared to other ToxCast assays. Of these chemical-parameter responses, we identified three k-means clusters of chemical-parameter activity (i.e., multivariate MEA response patterns). Next, we evaluated the MEA clusters for enrichment of chemical features using a subset of ToxPrint chemotypes, revealing chemical structural features that distinguished the MEA clusters. Finally, we assessed distribution of neurotoxicants with known pharmacology within the clusters and found that compounds segregated differentially. Collectively, these results demonstrate that multivariate MEA activity patterns can efficiently screen for diverse chemical activities relevant to neurotoxicity, and that response patterns may have predictive value related to chemical structural features.
Assuntos
Bases de Dados de Compostos Químicos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Síndromes Neurotóxicas/patologia , Testes de Toxicidade/métodos , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Aprendizado de Máquina , Microeletrodos , Rede Nervosa/efeitos dos fármacos , Redes Neurais de Computação , Neurônios/efeitos dos fármacos , Ratos Long-EvansRESUMO
Many potential chemotherapeutics fail to reach patients. One of the key reasons is that compounds are tested during the drug discovery stage in two-dimensional (2D) cell cultures, which are often unable to accurately model in vivo outcomes. Three-dimensional (3D) in vitro tumor models are more predictive of chemotherapeutic effectiveness than 2D cultures, and thus, their implementation during the drug screening stage has the potential to more accurately evaluate compounds earlier, saving both time and money. Paper-based cultures (PBCs) are an emerging 3D culture platform in which cells suspended in Matrigel are seeded into paper scaffolds and cultured to generate a tissue-like environment. In this study, we demonstrate the potential of matrix-assisted laser desorption/ionization-mass spectrometry imaging with PBCs (MALDI-MSI-PBC) as a drug screening platform. This method discriminated regions of the PBCs with and without cells and/or drugs, indicating that coupling PBCs with MALDI-MSI has the potential to develop rapid, large-scale, and parallel mass spectrometric drug screens.
Assuntos
Antineoplásicos/farmacologia , Técnicas de Cultura de Células/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Papel , Células HCT116 , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Existing at the interface of biology and electronics, living cells have been in use as biorecognition elements (bioreceptors) in biosensors since the early 1970s. They are an interesting choice of bioreceptors as they allow flexibility in determining the sensing strategy, are cheaper than purified enzymes and antibodies and make the fabrication relatively simple and cost-effective. And with advances in the field of synthetic biology, microfluidics and lithography, many exciting developments have been made in the design of cell-based biosensors in the last about five years. 3D cell culture systems integrated with electrodes are now providing new insights into disease pathogenesis and physiology, while cardiomyocyte-integrated microelectrode array (MEA) technology is set to be standardized for the assessment of drug-induced cardiac toxicity. From cell microarrays for high-throughput applications to plasmonic devices for anti-microbial susceptibility testing and advent of microbial fuel cell biosensors, cell-based biosensors have evolved from being mere tools for detection of specific analytes to multi-parametric devices for real time monitoring and assessment. However, despite these advancements, challenges such as regeneration and storage life, heterogeneity in cell populations, high interference and high costs due to accessory instrumentation need to be addressed before the full potential of cell-based biosensors can be realized at a larger scale. This review summarizes results of the studies that have been conducted in the last five years toward the fabrication of cell-based biosensors for different applications with a comprehensive discussion on the challenges, future trends, and potential inputs needed for improving them.
Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas de Cultura de Células/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Animais , Técnicas Biossensoriais/métodos , Técnicas de Cultura de Células/métodos , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Desenho de Equipamento , Humanos , Técnicas Analíticas Microfluídicas/métodosRESUMO
Affordable and physiologically relevant three-dimensional (3D) cell-based assays used in high-throughput screening (HTS) are on the rise in early drug discovery. These technologies have been aided by the recent adaptation of novel microplate treatments and spheroid culturing techniques. One such technology involves the use of nanoparticle (NanoShuttle-PL) labeled cells and custom magnetic drives to assist in cell aggregation to ensure rapid 3D structure formation after the cells have been dispensed into microtiter plates. Transitioning this technology from a low-throughput manual benchtop application, as previously published by our lab, into a robotically enabled format achieves orders of magnitude greater throughput but required the development of specialized support hardware. This effort included in-house development, fabrication, and testing of ancillary devices that assist robotic handing and high-precision placement of microtiter plates into an incubator embedded with magnetic drives. Utilizing a "rapid prototyping" approach facilitated by cloud-based computer-aided design software, we built the necessary components using hobby-grade 3D printers with turnaround times that rival those of traditional manufacturing/development practices at a substantially reduced cost. This approach culminated in a first-in-class HTS-compatible 3D system in which we have coupled 3D bioprinting to a fully automated HTS robotic platform utilizing our novel magnetic incubator shelf assemblies.
Assuntos
Automação Laboratorial/métodos , Técnicas de Cultura de Células/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala , Magnetismo , Robótica/métodos , Esferoides Celulares/efeitos dos fármacos , Automação Laboratorial/instrumentação , Técnicas de Cultura de Células/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Robótica/instrumentaçãoRESUMO
Plastic polymers can be combined with additives that modify physical properties and stability of the material. However, the biocompatibility of those additives is not well known. The objective of the study was to characterize the impact of zinc stearate-a common additive-through the development of a novel three-dimensional (3-D) in vitro platform with endometrial cells from domestic cats. Epithelial and stromal cells from adult uteri were isolated and cultured in medium supplemented with 3% Matrigel for two weeks in plastic tissue culture dishes that had been identified as polystyrene with and without zinc stearate by Raman, FTIR, and X-ray fluorescence spectroscopies. Three-dimensional cell structures that were obtained were measured and categorized by shape. Cell viability, proliferation, differentiation, organization, and apoptosis then were assessed by immuno-staining. Results indicated that zinc stearate did not affect 3-D endometrial cell structure morphology, viability, or cellular composition. This first study of a new in vitro platform will be useful for studies testing the influence of other additives, drugs, or exogenous hormones.
Assuntos
Técnicas de Cultura de Células/métodos , Endométrio/citologia , Plásticos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Gatos , Técnicas de Cultura de Células/instrumentação , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Feminino , Organoides/citologia , Organoides/efeitos dos fármacos , Poliestirenos/toxicidade , Ácidos Esteáricos/toxicidade , Células Estromais/citologia , Células Estromais/efeitos dos fármacosRESUMO
Tumors develop within complex cell-to-cell interactions, with accessory cells playing a relevant role starting in the early phases of cancer progression. This event occurs in a three-dimensional (3D) environment, which to date, has been difficult to reproduce in vitro due to its complexity. While bi-dimensional cultures have generated substantial data, there is a progressive awareness that 3D culture strategies may rapidly increase the understanding of tumor development and be used in anti-cancer compound screening and for predicting response to new drugs utilizing personalized approaches. However, simple systems capable of rapidly rebuilding cancer tissues ex-vivo in 3D are needed and could be used for a variety of applications. Therefore, we developed a flat, handheld and versatile 3D cell culture bioreactor that can be loaded with tumor and/or normal cells in combination which can be monitored using a variety of read-outs. This biocompatible device sustained 3D growth of tumor cell lines representative of various cancers, such as pancreatic and breast adenocarcinoma, sarcoma, and glioblastoma. The cells repopulated the thin matrix which was completely separated from the outer space by two gas-permeable membranes and was monitored in real-time using both microscopy and luminometry, even after transportation. The device was tested in 3D cytotoxicity assays to investigate the anti-cancer potential of chemotherapy, biologic agents, and cell-based therapy in co-cultures. The addition of luciferase in target cancer cells is suitable for comparative studies that may also involve parallel in vivo investigations. Notably, the system was challenged using primary tumor cells harvested from lung cancer patients as an innovative predictive functional assay for cancer responsiveness to checkpoint inhibitors, such as nivolumab. This bioreactor has several novel features in the 3D-culture field of research, representing a valid tool useful for cancer investigations, drug screenings, and other toxicology approaches.
Assuntos
Técnicas de Cultura de Células/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Terapia Genética/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Técnicas de Cultura de Células/instrumentação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Nivolumabe/farmacologia , Nivolumabe/uso terapêuticoRESUMO
Microfluidics is an appealing platform for drug screening and discovery. Compared with the conventional drug screening methods based on Petri dishes and experimental animals, microfluidic devices have many advantages including miniaturized size, ease-to-use, high sensitivity, and high throughput. More importantly, bioassays on microfluidics can avoid ethical issues which can be a big obstacle hindering the performance of the experiments on animals or human being. Furthermore, three-dimensional (3D) microchips can recapitulate various biochemical and biophysical conditions in vivo and mimic the natural microenvironment of the tissues/organs, providing versatile in vitro models for biomedical applications. In this Perspective, we will focus on the cell-based microfluidic assays for drug screening. Meanwhile, we also propose potential solutions for the difficulties in this field and discuss the prospects of microfluidics-based technologies for drug screening.
Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Técnicas Analíticas Microfluídicas/métodos , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/instrumentação , Humanos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Célula Única/instrumentação , Análise de Célula Única/métodosRESUMO
PURPOSE: Alumina substrates are one of the commonly used scaffolds applied in cell culture, but in order to prevent formation of biofilm on the alumina substrate, these substrates are modified with carbon nanotube. METHODS: The alumina substrate was made by a two-step anodization method and was then modified with carbon nanotubes by simple chemical reaction. The substrates were characterized with FTIR, SEM, EDX, 3D laser scanning digital microscope, contact angle (CA) and surface free energy (SFE). To determine how this modification influences the reduction of biofilm, biofilm of two various bacteria, Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus), were investigated. RESULTS: The biofilm on the modified substrate decreased due to the presence of carbon nanotubes and increased antibacterial properties. Dental pulp stem cells (DPSCs) were cultured onto flat alumina (FA) and nanoporous alumina-multiwalled carbon nanotubes (NAMC) substrates to examine how the chemical modification and surface topography affects growth of DPSCs. CONCLUSION: Cell attachment and proliferation were investigated with SEM and Presto Blue assay, and the findings show that the NAMC substrates are suitable for cell culture.
Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Polpa Dentária/citologia , Nanotubos de Carbono , Células-Tronco/citologia , Óxido de Alumínio , Aderência Bacteriana , Biofilmes , Proliferação de Células , Células Cultivadas , Escherichia coli/fisiologia , Humanos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Nanoporos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/fisiologiaRESUMO
This paper presents a novel method for monitoring drug cytotoxicity using a hybrid microfluidic CMOS platform. This platform consists of an array of 8 × 8 capacitive sensors integrated with a readout circuit on the same chip. In this paper, we present a layer-by-layer (LBL) polyelectrolyte deposition technique to coat the surface of microelectrodes realized in the top most metal layer in 0.35-µm CMOS process. This process successfully enhances the biocompatibility of sensing microelectrodes and consequently increases the cell viability over a three-day period. Herein, we demonstrate and discuss the advantage of the proposed platform for drug cytotoxicity as well as cellular growth monitoring. This CMOS sensing platform possesses a wide output dynamic range and allows tracking cell growth at initial cell concentrations ranging from 10 to 200 k Cells/ml. We also use a standard Alamarblue cell-based assay and Geneticin selective antibiotic (G418) as control and cytotoxic drugs introduced to non-resistant H1299 and resistant Hek293 cell lines, respectively. Furthermore, a low complexity microfluidic packaging technique is presented to create and bond micro-wells on CMOS chip for rapid test and characterization. With the potential to perform label-free cellular analysis, the proposed platform opens an avenue to transition from traditional to smart cellular analysis techniques suitable for a variety of biological applications, in particular high throughput cell-based drug testing.
Assuntos
Técnicas de Cultura de Células/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Técnicas de Cultura de Células/métodos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Desenho de Equipamento , Células HEK293 , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Oxazinas/farmacologia , Semicondutores , Xantenos/farmacologiaRESUMO
A major challenge in the development of a successful tumor vaccination is to break immune tolerance and to sensitize efficiently the immune system toward relevant tumor antigens, thus enabling T-cell-mediated antitumor responses in vivo. Dendritic cell (DC)-based immunotherapy shows the advantage to induce an adaptive immune response against the tumor, with the potential to generate a long-lasting immunological memory able to prevent further relapses and hopefully metastasis. Recently different preclinical studies highlighted the golden opportunity to exploit the features of immunogenic cell death (ICD) to generate ex vivo a highly immunogenic tumor cell lysate as potent antigen formulation for improved DC-based vaccine against aggressive cancers. This chapter focuses on the methods to obtain tumor lysates from cells undergoing ICD to be used for DC pulsing and to test the functionality of the generated DCs for antitumor vaccine development.
Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Vigilância Imunológica , Imunoterapia/métodos , Neoplasias/terapia , Alitretinoína/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Vacinas Anticâncer/uso terapêutico , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Proteína HMGB1/análise , Proteína HMGB1/imunologia , Proteína HMGB1/metabolismo , Humanos , Imunogenicidade da Vacina , Imunoterapia/instrumentação , Interferon-alfa/farmacologia , Monócitos/imunologia , Monócitos/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Vacinação/instrumentação , Vacinação/métodosRESUMO
Development of antibody-based immunotherapeutics has progressed from direct tumor-targeting, with antibodies such as rituximab, to blocking of immune checkpoints to reactivate antitumor immunity. In addition, bispecific antibodies/antibody fragments are also of great interest in cancer therapy, as these constructs have the ability to redirect immune effector cells to cancer targets and, thereby, enhance therapeutic efficacy. A number of bispecific antibody formats have been reported, with the first FDA-approved bispecific antibody being blinatumomab, a so-called bispecific T cell engager (BiTE), which redirects and potently activates T cell immune responses. Recently, we described an additional novel bispecific antibody derivative, termed RTX-CD47, which was designed to inhibit the innate immune checkpoint CD47-SIRPα only on -positive cancer cells. RTX-CD47 contains two antibody fragments in tandem and has monovalent binding specificity for CD47 and . Only upon dual binding to and CD47 RTX-CD47 blocks CD47 "Don't eat me" signaling. Here, we provide a detailed protocol for the construction and functional evaluation of such a bispecific antibody derivative.
Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos/farmacologia , Bioensaio/métodos , Neoplasias/tratamento farmacológico , Proteínas Recombinantes de Fusão/imunologia , Animais , Anticorpos Biespecíficos/uso terapêutico , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Antígenos de Diferenciação/metabolismo , Antineoplásicos/uso terapêutico , Bioensaio/instrumentação , Antígeno CD47/genética , Antígeno CD47/imunologia , Antígeno CD47/metabolismo , Células CHO , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Separação Celular/instrumentação , Separação Celular/métodos , Cromatografia de Afinidade/instrumentação , Cromatografia de Afinidade/métodos , Cricetulus , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/patologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
High-content imaging (HCI) assays on two-dimensional (2D) cell cultures often do not represent in vivo characteristics accurately, thus reducing the predictability of drug toxicity/efficacy in vivo. On the other hand, conventional 3D cell cultures are relatively low throughput and possess difficulty in cell imaging. To address these limitations, a miniaturized 3D cell culture has been developed on a micropillar/microwell chip platform with human cells encapsulated in biomimetic hydrogels. Model compounds are used to validate human cell microarrays for high-throughput assessment of mechanistic toxicity. Main mechanisms of toxicity of compounds can be investigated by analyzing multiple parameters such as DNA damage, mitochondrial impairment, intracellular glutathione level, and cell membrane integrity. IC50 values of these parameters can be determined and compared for the compounds to investigate the main mechanism of toxicity. This paper describes miniaturized HCI assays on 3D-cultured cell microarrays for high-throughput assessment of mechanistic profiles of compound-induced toxicity. © 2018 by John Wiley & Sons, Inc.
Assuntos
Técnicas de Cultura de Células/métodos , Ensaios de Triagem em Larga Escala/métodos , Imageamento Tridimensional , Técnicas Analíticas Microfluídicas , Preparações Farmacêuticas/química , Técnicas de Cultura de Células/instrumentação , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Hidrogéis , Testes de ToxicidadeRESUMO
Recently, paper has gained traction in the biotechnology research field due to its ability to be a substrate for 3D cell culture. In this work, we demonstrate the application of paper-based 3D cell culture for rapid and easy screening of the effect of natural compounds on melanin production. Whatman No. 1 filter paper was used as the substrate for B16F10 melanoma cell culture. The use of paper is beneficial for supporting the 3D structure of cells, which makes the result more reliable due to the similarity to in vivo conditions. Furthermore, paper is beneficial for melanin observation due to melanin's black color, which is easily in situ visualized after it is cultured on white paper. Matrigel was used to encapsulate cells before being pipetted onto the paper to prevent the passing of cells through paper pores. The intensity of melanin can then be observed with the naked eye and analyzed by scanning the paper. The analysis process took only 20 minutes, which is faster than that of the conventional absorbance spectroscopy, owing to the elimination of centrifugation, melanin solubilization, and the absorbance measurement step. The color intensity on the paper showed a direct proportion with increased α-MSH concentrations, confirming that the color on the paper was melanin. The 3D structure of cells was confirmed by using a scanning electron microscope. To demonstrate the application of the paper-based scaffold, paper-based 3D cell culture was used for screening the effects of Kojic acid and Arbutin on melanin production, which showed increased anti-melanogenesis effects with increased concentrations of natural compounds. High cell viability was observed over 120 hours. In conclusion, the developed paper-based scaffold can be used for screening the effect of natural compounds on melanin production, as a rapid and simple method with low cost.