Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
DNA Res ; 31(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38600880

RESUMO

We report the complete telomere-to-telomere genome assembly of Oldenlandia diffusa which renowned in traditional Chinese medicine, comprising 16 chromosomes and spanning 499.7 Mb. The assembly showcases 28 telomeres and minimal gaps, with a total of only five. Repeat sequences constitute 46.41% of the genome, and 49,701 potential protein-coding genes have been predicted. Compared with O. corymbosa, O. diffusa exhibits chromosome duplication and fusion events, diverging 20.34 million years ago. Additionally, a total of 11 clusters of terpene synthase have been identified. The comprehensive genome sequence, gene catalog, and terpene synthase clusters of O. diffusa detailed in this study will significantly contribute to advancing research in this species' genetic, genomic, and pharmacological aspects.


Assuntos
Genoma de Planta , Telômero , Telômero/genética , Alquil e Aril Transferases/genética , Duplicação Cromossômica
2.
Integr Cancer Ther ; 22: 15347354231154267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615075

RESUMO

A 4-year prospective cohort study on patients with lung, gastric, hepatic, colorectal, breast, uterine, and ovarian cancer was conducted at the East-West Cancer Center (EWCC) of Daejeon Korean Medicine Hospital in Daejeon, Korea. We divided patients into 2 groups based on how long they had been receiving TKM oncotherapy and compared event-free survival (EFS), telomere length change, and quality of life (QoL). The study collected data on 83 patients from October 2016 to June 2020 and discovered no statistical differences in EFS based on the duration of TKM oncotherapy. In the analysis of changes in QoL outcomes, there were no statistically significant group differences between the groups. After controlling for covariates that could affect telomere length, the long-term TKM oncotherapy group had a higher daily telomere attrition rate. The study of the relationship between telomere length and prognostic factors discovered that patients with advanced N stage at the time of diagnosis and who had previously received radiotherapy had shorter telomere length. When examining associations between SNP genotype and percentile score of telomere length, this study was able to confirm an association between telomere length and rs4387287. This study is significant because it is the first to assess the effects of TKM oncotherapy and investigate telomere length-related factors. To assess the effects of TKM oncotherapy on cancer patients' survival and QoL, a longer-term observational study with a larger sample size is required.


Assuntos
Medicina Tradicional Coreana , Qualidade de Vida , Feminino , Humanos , Estudos Prospectivos , Intervalo Livre de Progressão , Telômero/genética , República da Coreia
3.
Nucleic Acids Res ; 51(11): 5678-5698, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37207337

RESUMO

Universal Minicircle Sequence binding proteins (UMSBPs) are CCHC-type zinc-finger proteins that bind the single-stranded G-rich UMS sequence, conserved at the replication origins of minicircles in the kinetoplast DNA, the mitochondrial genome of kinetoplastids. Trypanosoma brucei UMSBP2 has been recently shown to colocalize with telomeres and to play an essential role in chromosome end protection. Here we report that TbUMSBP2 decondenses in vitro DNA molecules, which were condensed by core histones H2B, H4 or linker histone H1. DNA decondensation is mediated via protein-protein interactions between TbUMSBP2 and these histones, independently of its previously described DNA binding activity. Silencing of the TbUMSBP2 gene resulted in a significant decrease in the disassembly of nucleosomes in T. brucei chromatin, a phenotype that could be reverted, by supplementing the knockdown cells with TbUMSBP2. Transcriptome analysis revealed that silencing of TbUMSBP2 affects the expression of multiple genes in T. brucei, with a most significant effect on the upregulation of the subtelomeric variant surface glycoproteins (VSG) genes, which mediate the antigenic variation in African trypanosomes. These observations suggest that UMSBP2 is a chromatin remodeling protein that functions in the regulation of gene expression and plays a role in the control of antigenic variation in T. brucei.


Assuntos
Proteínas de Protozoários , Trypanosoma brucei brucei , Variação Antigênica/genética , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Telômero/genética , Telômero/metabolismo , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Proteínas de Protozoários/metabolismo , Montagem e Desmontagem da Cromatina
5.
Nutrients ; 15(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986083

RESUMO

Telomere length, as a biomarker of accelerated aging, is closely related to many chronic diseases. We aimed to explore the association between coffee consumption and telomere length. Our study included 468,924 participants from the UK Biobank. Multivariate linear models (observational analyses) were conducted to evaluate the associations of coffee intake, instant coffee intake, and filtered coffee intake with telomere length. In addition, we evaluated the causality of these associations in Mendelian randomization (MR) analyses by four methods (inverse-variance weighted (IVW), MR pleiotropy residual sum and outlier (MR-PRESSO), MR-Egger, and weighted median). Observational analyses indicated that coffee intake and instant coffee intake were negatively correlated with telomere length, which was equal to 0.12 year of age-related decrease in telomere length for each additional cup of coffee intake (p < 0.001), and 0.38 year of age-related decrease in telomere length for each additional cup of instant coffee intake (p < 0.001), respectively. There was no significant correlation between filtered coffee and telomere length (p = 0.862). Mendelian randomization analyses supported the results of observational analyses. Coffee intake was found to have a causal effect on telomere length through weighted median analysis (p = 0.022), and instant coffee intake had a causal effect on telomere length through IVW analysis (p = 0.019) and MR-PRESSO analysis (p = 0.028). No causal relationship was found between filtered coffee intake and telomere length (p > 0.05). Coffee intake, particularly instant coffee, was found to have an important role in shortening telomere length.


Assuntos
Envelhecimento , Café , Análise da Randomização Mendeliana , Telômero , Humanos , Envelhecimento/genética , Bancos de Espécimes Biológicos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Telômero/genética , Reino Unido , Café/efeitos adversos
6.
Neuro Oncol ; 25(7): 1331-1342, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-36541551

RESUMO

BACKGROUND: To achieve replicative immortality, most cancers develop a telomere maintenance mechanism, such as reactivation of telomerase or alternative lengthening of telomeres (ALT). There are limited data on the prevalence and clinical significance of ALT in pediatric brain tumors, and ALT-directed therapy is not available. METHODS: We performed C-circle analysis (CCA) on 579 pediatric brain tumors that had corresponding tumor/normal whole genome sequencing through the Open Pediatric Brain Tumor Atlas (OpenPBTA). We detected ALT in 6.9% (n = 40/579) of these tumors and completed additional validation by ultrabright telomeric foci in situ on a subset of these tumors. We used CCA to validate TelomereHunter for computational prediction of ALT status and focus subsequent analyses on pediatric high-grade gliomas (pHGGs) Finally, we examined whether ALT is associated with recurrent somatic or germline alterations. RESULTS: ALT is common in pHGGs (n = 24/63, 38.1%), but occurs infrequently in other pediatric brain tumors (<3%). Somatic ATRX mutations occur in 50% of ALT+ pHGGs and in 30% of ALT- pHGGs. Rare pathogenic germline variants in mismatch repair (MMR) genes are significantly associated with an increased occurrence of ALT. CONCLUSIONS: We demonstrate that ATRX is mutated in only a subset of ALT+ pHGGs, suggesting other mechanisms of ATRX loss of function or alterations in other genes may be associated with the development of ALT in these patients. We show that germline variants in MMR are associated with the development of ALT in patients with pHGG.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Criança , Reparo de Erro de Pareamento de DNA , Homeostase do Telômero/genética , Proteína Nuclear Ligada ao X/genética , Glioma/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Mutação , Telômero/genética , Telômero/patologia
7.
Aging (Albany NY) ; 14(17): 7126-7136, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36098743

RESUMO

Zbtb34 is a novel zinc finger protein, which is revealed by biological software analysis to have 3 zinc fingers, but its functions remain unknown. In this study, mouse Zbtb34 cDNA was amplified by PCR and inserted into the plasmid pEGFP-N1 to generate Zbtb34-EGFP fusion protein. The upregulation of Zbtb34 in mouse embryonic stem cells promoted telomere elongation and increased cell proliferation. In order to understand the above phenomena, the telomere co-immunoprecipitation technique was employed to investigate the relationship between Zbtb34 and telomeres. The results indicated that Zbtb34 could bind to the DNA sequences of the telomeres. Alanine substitution of the third zinc finger abolished such binding. Since Pot1 is the only protein binding to the single-stranded DNA at the end of the telomeres, we further investigated the relationship between Zbtb34 and Pot1. The results revealed that the upregulation of Zbtb34 decreased the binding of Pot1b to the telomeres. Through the upregulation of Pot1b, the binding of Zbtb34 to the telomeres was also reduced. In conclusion, we showed that the main biological function of Zbtb34 was to bind telomere DNA via its third ZnF, competing with Pot1b for the binding sites, resulting in telomere elongation and cell proliferation.


Assuntos
DNA de Cadeia Simples , Proteínas Repressoras , Proteínas de Ligação a Telômeros , Animais , Camundongos , Alanina/genética , Proliferação de Células , DNA , DNA Complementar , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/metabolismo , Proteínas Repressoras/metabolismo , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
8.
Endocr Pathol ; 33(4): 494-505, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34993885

RESUMO

Neoplastic cells acquire the ability to proliferate endlessly by maintaining telomeres via telomerase, or alternative lengthening of telomeres (ALT). The role of telomere maintenance in pituitary neuroendocrine tumors (PitNETs) has yet to be thoroughly investigated. We analyzed surgical samples of 24 adult recurrent PitNETs (including onset and relapses for 14 of them) and 12 pediatric primary PitNETs. The presence of ALT was assessed using telomere-specific fluorescence in situ hybridization, methylation of telomerase reverse transcriptase promoter (TERTp) by methylation-specific PCR, and ATRX expression by immunohistochemistry. Among the adult recurrent PitNETs, we identified 3/24 (12.5%) ALT-positive cases. ALT was present from the onset and maintained in subsequent relapses, suggesting that this mechanism occurs early in tumorigenesis and is stable during progression. ATRX loss was only seen in one ALT-positive case. Noteworthy, ALT was observed in 3 out of 5 aggressive PitNETs, including two aggressive corticotroph tumors, eventually leading to patient's death. ALT-negative tumors (87.5%) were classified according to their low (29.2%), medium (50%), and high (8.3%) telomere fluorescence intensity, with no significant differences emerging in their molecular, clinical, or pathological characteristics. TERTp methylation was found in 6/24 cases (25%), with a total concordance in methylation status between onset and recurrences, suggesting that this mechanism remains stable throughout disease progression. TERTp methylation did not influence telomere length. In the pediatric cohort of PitNETs, TERTp methylation was also observed in 4/12 cases (33.3%), but no case of ALT activation was observed. In conclusion, ALT is triggered at onset and maintained during tumor progression in a subset of adult PitNETs, suggesting that it could be used for clinical purposes, as a potential predictor of aggressive behavior.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Telomerase , Telômero , Adulto , Criança , Humanos , Hibridização in Situ Fluorescente , Recidiva Local de Neoplasia/genética , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Neoplasias Hipofisárias/genética , Telomerase/genética , Telômero/genética , Telômero/patologia , Homeostase do Telômero/genética , Proteína Nuclear Ligada ao X/genética , Metilação de DNA , Regiões Promotoras Genéticas
10.
Zhen Ci Yan Jiu ; 46(2): 117-22, 2021 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-33788432

RESUMO

OBJECTIVE: To observe the effects of "lingguibafa" moxibustion performing at the appropriate acupoints at their "opening" time on telomere length,expressions of p53 of tumor supressor genes and retinoblastoma gene(Rb)in the liver of aging rats,so as to explore its mechanisms underlying delaying senescence. METHODS: Forty male SD rats were randomly divi-ded into normal, model, prevention and treatment groups, with 10 rats in each group. The rat model was established by intrape-ritoneally injection of D-galactose (200 mg/kg) once a day for 42 days. The rats in the prevention group were given "lingguibafa" moxibustion during modeling, while those in the treatment group were given "lingguibafa" moxibustion after modeling. Quantitative real-time PCR was used to detect the telomere length and the mRNA expressions of p53 and Rb,ELISA was used to detect the protein contents of p53 and Rb in the liver tissues. RESULTS: Compared with the normal group, the relative telomere length of the model group was significantly shortened (P<0.01), the mRNA expressions and protein contents of p53 and Rb were significantly increased (P<0.01). After intervention and in comparison with the model group, the relative telomere length of the prevention group and the treatments group were significantly increased (P<0.01), and the expressions of p53 and Rb mRNA and protein contents were significantly reduced (P<0.01, P<0.05). There were no significant difference between the prevention and the treatment groups in the abovementioned indexes (P>0.05). CONCLUSION: Moxibustion on acupoints at "opening" time can inhibit the shortening of telomere length and the down-regulation of the expressions of p53 and Rb in aging rats, which may contribute to its function in delaying the process of cell senescence.


Assuntos
Moxibustão , Pontos de Acupuntura , Envelhecimento/genética , Animais , Ciclo Celular , Fígado , Masculino , Ratos , Ratos Sprague-Dawley , Telômero/genética
11.
BMC Pediatr ; 21(1): 24, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413203

RESUMO

BACKGROUND: Telomeres play a crucial role in cellular survival and its length is a predictor for onset of chronic non-communicable diseases. Studies on association between telomeres and obesity in children have brought discrepant results and the underlying mechanisms and influential factors are to be elucidated. This study aimed to investigate changes in telomere length and telomerase reverse transcriptase (TERT) DNA methylation, and further to determine their correlation with n-3 polyunsaturated fatty acids (PUFAs) in preschool children with obesity. METHODS: Forty-six preschool children with obesity aged 3 to 4 years were included in the study, with equal numbers of age- and gender-matched children with normal weight as control. Leukocyte telomere length was determined by the ratio of telomeric product and single copy gene obtained using real-time qPCR. DNA methylation of TERT promoter was analyzed by bisulfite sequencing. Fatty acids in erythrocytes were measured by gas chromatography with a total of 15 fatty acids analyzed. The total saturated fatty acids (SFAs), total n-6 PUFAs, total n-3 PUFAs, and the ratio of arachidonic acid (AA) to docosahexaenoic acid (DHA) were calculated. Then the correlation between leukocyte telomere length, TERT promoter methylation and fatty acids was determined. RESULTS: In preschool children with obesity, leukocyte telomeres were shortened and had a negative association with the body mass index. The methylated fractions in 13 of 25 CpG sites in the TERT promoter were increased by approximately 3 to 35% in the children with obesity compared to the normal weight children. Erythrocyte lauric acid and total SFAs, lenoleic acid and total n-6 PUFAs were higher, and DHA was lower in the children with obesity than those in the children with normal weight. Correlative analysis showed that leukocyte telomere length had a positive association with total SFAs and DHA, and a negative association with the AA/DHA ratio. However, no association between erythrocyte DHA and the TERT promoter methylation was found. CONCLUSION: These data indicate that the reduced body DHA content and increased AA/DHA ratio may be associated with shortened leukocyte telomeres in child obesity, which is probably not involved in the TERT promoter methylation.


Assuntos
Ácidos Graxos Ômega-3 , Obesidade Infantil , Telomerase , Pré-Escolar , Metilação de DNA , Humanos , Obesidade Infantil/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
12.
J Frailty Aging ; 10(1): 2-9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33331615

RESUMO

Telomeres are repetitive nucleotide sequences that together with the associated sheltrin complex protect the ends of chromosomes and maintain genomic stability. Evidences from various organisms suggests that several factors influence telomere length regulation, such as telomere binding proteins, telomere capping proteins, telomerase, and DNA replication enzymes. Recent studies suggest that micronutrients, such as vitamin D, folate and vitamin B12, are involved in telomere biology and cellular aging. In particular, vitamin D is important for a range of vital cellular processes including cellular differentiation, proliferation and apoptosis. As a result of the multiple functions of vitamin D it has been speculated that vitamin D might play a role in telomere biology and genomic stability. In this study, our main goal is investigating the relationship between telomerase enzyme and vitamin D. Findings of this study suggest that higher vitamin D concentrations, which are easily modifiable through nutritional supplementation, are associated with longer LTL, which underscores the potentially beneficial effects of this hormone on aging and age-related diseases. Vitamin D may reduce telomere shortening through anti-inflammatory and anti-cell proliferation mechanisms. Significant Low levels of telomerase activity create short telomeres, which in turn signal exit from the cell cycle resulting in cell senescence and apoptosis. In follow-up examination, the patients who remained vitamin D deficient tended to have shorter telomeres than those patients whose 25-hydroxyvitamin D levels were depleted. Increasing 25-hydroxyvitamin D levels in patients with SLE may be beneficial in maintaining telomere length and preventing cellular aging. Moreover, anti-telomere antibody levels may be a promising biomarker of SLE status and disease activity.


Assuntos
Senescência Celular/fisiologia , Telômero/metabolismo , Vitamina D/sangue , Vitamina D/metabolismo , Envelhecimento/sangue , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Humanos , Telomerase/genética , Telomerase/metabolismo , Telômero/genética
13.
PLoS One ; 15(10): e0241363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33125425

RESUMO

INTRODUCTION: We examined whether abuse in childhood and/or adolescence was associated with shorter telomere length in a pooled analysis of 3,232 participants from five diverse cohorts. We also assessed whether religion or spirituality (R/S) could buffer deleterious effects of abuse. METHODS: Physical and sexual abuse in childhood (age <12) and adolescence (age 12-18) was assessed using the Revised Conflict Tactics Scale and questions from a 1995 Gallup survey. We measured relative leukocyte telomere lengths (RTL) using quantitative real time polymerase chain reaction. We used generalized estimating equations to assess associations of physical and sexual abuse with log-transformed RTL z-scores. Analyses were conducted in each cohort, overall, and stratified by extent of religiosity or spirituality and religious coping in adulthood. We pooled study-specific estimates using random-effects models and assessed between-study heterogeneity. RESULTS: Compared to no abuse, severe sexual abuse was associated with lower RTL z-scores, in childhood: -15.6%, 95% CI: -25.9, -4.9; p-trend = 0.04; p-heterogeneity = 0.58 and in adolescence: -16.5%, 95% CI: -28.1, -3.0; p-trend = 0.08; p-heterogeneity = 0.68. Sexual abuse experienced in both childhood and adolescence was associated with 11.3% lower RTL z-scores after adjustment for childhood and demographic covariates (95% CI: -20.5%, -2.0%; p-trend = 0.03; p-heterogeneity = 0.62). There was no evidence of effect modification by R/S. Physical abuse was not associated with telomere length. CONCLUSIONS: Sexual abuse in childhood or adolescence was associated with a marker of accelerated biological aging, decreased telomere length. The lack of moderation by R/S may be due to inability to capture the appropriate time period for those beliefs and practices.


Assuntos
Leucócitos/metabolismo , Telômero/genética , Adolescente , Criança , Humanos , Abuso Físico
14.
Genes Dev ; 34(23-24): 1619-1636, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122293

RESUMO

Mutations in the telomere-binding protein POT1 are associated with solid tumors and leukemias. POT1 alterations cause rapid telomere elongation, ATR kinase activation, telomere fragility, and accelerated tumor development. Here, we define the impact of mutant POT1 alleles through complementary genetic and proteomic approaches based on CRISPR interference and biotin-based proximity labeling, respectively. These screens reveal that replication stress is a major vulnerability in cells expressing mutant POT1, which manifests as increased telomere mitotic DNA synthesis at telomeres. Our study also unveils a role for the nuclear pore complex in resolving replication defects at telomeres. Depletion of nuclear pore complex subunits in the context of POT1 dysfunction increases DNA damage signaling, telomere fragility and sister chromatid exchanges. Furthermore, we observed telomere repositioning to the nuclear periphery driven by nuclear F-actin polymerization in cells with POT1 mutations. In conclusion, our study establishes that relocalization of dysfunctional telomeres to the nuclear periphery is critical to preserve telomere repeat integrity.


Assuntos
Replicação do DNA/genética , Poro Nuclear/patologia , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Linhagem Celular Tumoral , Dano ao DNA/genética , Humanos , Mitose/genética , Mutação , Neoplasias/genética , Neoplasias/fisiopatologia , Complexo Shelterina , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
15.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906638

RESUMO

In this review, we propose a holistic approach to understanding cancer as a metabolic disease. Our search for relevant studies in medical databases concludes that cancer cells do not evolve directly from normal healthy cells. We hypothesize that aberrant DNA damage accumulates over time-avoiding the natural DNA controls that otherwise repair or replace the rapidly replicating cells. DNA damage starts to accumulate in non-replicating cells, leading to senescence and aging. DNA damage is linked with genetic and epigenetic factors, but the development of cancer is favored by telomerase activity. Evidence indicates that telomere length is affected by chronic inflammations, alterations of mitochondrial DNA, and various environmental factors. Emotional stress also influences telomere length. Chronic inflammation can cause oxidative DNA damage. Oxidative stress, in turn, can trigger mitochondrial changes, which ultimately alter nuclear gene expression. This vicious cycle has led several scientists to view cancer as a metabolic disease. We have proposed complex personalized treatments that seek to correct multiple changes simultaneously using a psychological approach to reduce chronic stress, immune checkpoint therapy with reduced doses of chemo and radiotherapy, minimal surgical intervention, if any, and mitochondrial metabolic reprogramming protocols supplemented by intermittent fasting and personalized dietary plans without interfering with the other therapies.


Assuntos
Neoplasias/metabolismo , Homeostase do Telômero/fisiologia , Telômero/metabolismo , Divisão Celular , Senescência Celular/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , DNA Mitocondrial/genética , Saúde Holística , Humanos , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/terapia , Estresse Oxidativo , Medicina de Precisão/métodos , Telomerase/metabolismo , Telômero/genética , Homeostase do Telômero/genética
16.
Oncogene ; 39(36): 5811-5824, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32733068

RESUMO

Telomere maintenance via telomerase reactivation is a nearly universal hallmark of cancer cells which enables replicative immortality. In contrast, telomerase activity is silenced in most adult somatic cells. Thus, telomerase represents an attractive target for highly selective cancer therapeutics. However, development of telomerase inhibitors has been challenging and thus far there are no clinically approved strategies exploiting this cancer target. The discovery of prevalent mutations in the TERT promoter region in many cancers and recent advances in telomerase biology has led to a renewed interest in targeting this enzyme. Here we discuss recent efforts targeting telomerase, including immunotherapies and direct telomerase inhibitors, as well as emerging approaches such as targeting TERT gene expression driven by TERT promoter mutations. We also address some of the challenges to telomerase-directed therapies including potential therapeutic resistance and considerations for future therapeutic applications and translation into the clinical setting. Although much work remains to be done, effective strategies targeting telomerase will have a transformative impact for cancer therapy and the prospect of clinically effective drugs is boosted by recent advances in structural models of human telomerase.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Telomerase/antagonistas & inibidores , Animais , Biomarcadores Tumorais , Estudos Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/diagnóstico , Neoplasias/etiologia , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero , Resultado do Tratamento
17.
J Am Assoc Nurse Pract ; 32(6): 419-422, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32511191

RESUMO

Genomics influences the aging process in many different ways. This 10-part series of articles describes what is known about genetics and aging, including genes, adducts, and telomeres, decreased immune defenses, oxidation and inefficient mitochondria, toxins and radiation, glycosylation, caloric intake and sirtuin production, neurotransmitter imbalance, hormone mechanisms, reduced nitric oxide, and stem cell slowdown. This first article explores gene adducts as an epigenetic "sludge," the influence of telomeres and other mutations that contribute to DNA dysfunction, cell stress, and premature aging. Factors that contribute to adduct formation and reduced telomere length are presented along with some changes in behavior, environmental exposure, food/supplement use, weight, sleep, and exercise that have been found to reduce damage, potentially increasing longevity. Adherence to a Mediterranean diet that contains fruits and whole grains along with fiber, antioxidants (e.g., beta-carotene, vitamins C and E), omega-3 fatty acids, and soy protein may reduce DNA adducts and protect telomeres. So providers may want to recommend these simple but key clinical and individual changes to enhance DNA health, wellness, and longevity.


Assuntos
Envelhecimento/genética , Adutos de DNA/genética , Humanos , Telômero/genética , Telômero/fisiologia
18.
Nutrients ; 11(7)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340612

RESUMO

The long-term influence of gestational diabetes mellitus (GDM) on offspring and the effect of omega-3 polyunsaturated fatty acids (n-3 PUFA) on GDM offspring are poorly understood. We studied the long-term diabetic risk in GDM offspring and evaluated the effect of n-3 PUFA intervention. Healthy offspring rats were fed standard diet (soybean oil) after weaning. GDM offspring were divided into three groups: GDM offspring (soybean oil), n-3 PUFA adequate offspring (fish oil), and n-3 PUFA deficient offspring (safflower oil), fed up to 11 months old. The diabetic risk of GDM offspring gradually increased from no change at weaning to obvious impaired glucose and insulin tolerance at 11 months old. N-3 PUFA decreased oxidative stress and inflammation in the liver of older GDM offspring. There was a differential effect of n-3 PUFA and n-6 PUFA on hepatic telomere length in GDM offspring. Non-targeted metabolomics showed that n-3 PUFA played a modulating role in the liver, in which numerous metabolites and metabolic pathways were altered when GDM offspring grew to old age. Many metabolites were related to diabetes risk, such as α-linolenic acid, palmitic acid, ceramide, oxaloacetic acid, tocotrienol, tetrahydro-11-deoxycortisol, andniacinamide. In summary, GDM offspring exhibited obvious diabetes risk at old age, whereas n-3 PUFA decreased this risk.


Assuntos
Diabetes Mellitus/prevenção & controle , Diabetes Gestacional/metabolismo , Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Fígado/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Encurtamento do Telômero , Telômero/metabolismo , Fatores Etários , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Gestacional/genética , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/metabolismo , Feminino , Masculino , Gravidez , Ratos Wistar , Fatores de Risco , Telômero/genética , Fatores de Tempo
19.
Oxid Med Cell Longev ; 2019: 4569614, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31949878

RESUMO

Sleep deprivation is reported to cause oxidative stress and is hypothesized to induce subsequent aging-related diseases including chronic inflammation, Alzheimer's disease, and cardiovascular disease. However, how sleep deprivation contributes to the pathogenesis of sleep deficiency disorder remains incompletely defined. Accordingly, more effective treatment methods for sleep deficiency disorder are needed. Thus, to better understand the detailed mechanism of sleep deficiency disorder, a sleep deprivation mouse model was established by the multiple platform method in our study. The accumulation of free radicals and senescence-associated secretory phenotype (SASP) was observed in the sleep-deprived mice. Moreover, our mouse and human population-based study both demonstrated that telomere shortening and the formation of telomere-specific DNA damage are dramatically increased in individuals suffering from sleeplessness. To our surprise, the secretion of senescence-associated cytokines and telomere damage are greatly improved by folic acid supplementation in mice. Individuals with high serum baseline folic acid levels have increased resistance to telomere shortening, which is induced by insomnia. Thus, we conclude that folic acid supplementation could be used to effectively counteract sleep deprivation-induced telomere dysfunction and the associated aging phenotype, which may potentially improve the prognosis of sleeplessness disorder patients.


Assuntos
Senescência Celular/efeitos dos fármacos , Dano ao DNA , Suplementos Nutricionais , Ácido Fólico/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Privação do Sono/tratamento farmacológico , Telômero/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Citocinas , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fenótipo , Privação do Sono/fisiopatologia , Telômero/genética
20.
Gene ; 675: 54-61, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29960068

RESUMO

With the advent of recent advances in molecular techniques and whole genome sequencing, we have come to know that the non-coding landscape (including non-coding RNAs, tRNAs and even telomeres) plays a major role in the regulation of cellular processes. Furthermore, the deregulation of this landscape has been found to contribute to and even bring about the pathogenesis of a large number of diseases. One of such diseases is diabetes mellitus (type 2 specifically) whose incidence rate and global burden is constantly increasing. Nutrition has been proven to be a key player in the development, onset and control of type 2 diabetes mellitus. Additionally, non-coding DNA based molecular markers are emerging as biomarkers of T2D, susceptibility, and perhaps dietary supplements can modulate non-coding DNA based markers expression and function in T2D management. In this review, we provide a brief overview of the developmental origins and genetics of type 2 diabetes mellitus, how each component of the non-coding landscape contributes to the development and progression of the disease and finally we discuss how dietary interventions modulate the non-coding landscape in T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Fenômenos Fisiológicos da Nutrição , RNA de Transferência/genética , RNA não Traduzido/genética , Telômero/genética , Epigênese Genética/fisiologia , Interação Gene-Ambiente , Humanos , Estado Nutricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA