RESUMO
While motor cortical circuits contain information related to specific movement parameters1, long-range inputs also have a critical role in action execution2,3. Thalamic projections can shape premotor activity2-6 and have been suggested7 to mediate the selection of short, stereotyped actions comprising more complex behaviours8. However, the mechanisms by which thalamus interacts with motor cortical circuits to execute such movement sequences remain unknown. Here we find that thalamic drive engages a specific subpopulation of premotor neurons within the zebra finch song nucleus HVC (proper name) and that these inputs are critical for the progression between vocal motor elements (that is, 'syllables'). In vivo two-photon imaging of thalamic axons in HVC showed robust song-related activity, and online perturbations of thalamic function caused song to be truncated at syllable boundaries. We used thalamic stimulation to identify a sparse set of thalamically driven neurons within HVC, representing ~15% of the premotor neurons within that network. Unexpectedly, this population of putative thalamorecipient neurons is robustly active immediately preceding syllable onset, leading to the possibility that thalamic input can initiate individual song components through selectively targeting these 'starter cells'. Our findings highlight the motor thalamus as a director of cortical dynamics in the context of an ethologically relevant behavioural sequence.
Assuntos
Corte , Tentilhões , Tálamo , Vocalização Animal , Animais , Tentilhões/fisiologia , Neurônios/fisiologia , Tálamo/citologia , Tálamo/fisiologia , Vocalização Animal/fisiologia , Córtex Motor/citologia , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , MasculinoRESUMO
Refining and modifying experimental procedures play a vital role in improving methodology while also reducing animal distress. In this study, we asked if an increase in feed time duration affects discrimination in an operant go/no-go task. Specifically, we used zebra finches' sexually dimorphic distance calls as acoustic stimuli to test whether there were any significant differences in performance on an operant discrimination task requiring zebra finches to classify calls according to the sex of the producer when a key experimental parameter, feed time duration, was increased from 1 s to 2 s. We found no differences in learning speed (trials to criterion) between birds that were given 1 s or 2 s of food access following a correct go response. Our results indicate doubling food access duration did not impact the speed of acquisition of distance call discrimination in zebra finches. These findings suggest that we can provide twice as much time for zebra finches to access food, potentially improving animal welfare, with no impact on experimental outcomes.
Assuntos
Tentilhões , Animais , Tentilhões/fisiologia , Vocalização Animal/fisiologia , Percepção Auditiva/fisiologia , Estimulação Acústica , AprendizagemRESUMO
Species recognition is an essential behavioral outcome of social discrimination, flocking, mobbing, mating, and/or parental care. In songbirds, auditory species recognition cues are processed through specialized forebrain circuits dedicated to acoustic discrimination. Here we addressed the direction of behavioral and neural metrics of zebra finches' (Taeniopygia guttata) responses to acoustic cues of unfamiliar conspecifics vs. heterospecifics. Behaviorally, vocal response rates were greater for conspecific male zebra finch songs over heterospecific Pin-tailed Whydah (Vidua macroura) songs, which paralleled greater multiunit spike rates in the auditory forebrain in response to the same type of conspecific over heterospecific auditory stimuli. In contrast, forebrain activation levels were reversed to species-specific song playbacks during two functional magnetic resonance imaging experiments: we detected consistently greater responses to whydah songs over finch songs and did so independently of whether subjects had been co-housed or not with heterospecifics. These results imply that the directionality of behavioral and neural response selectivity metrics are not always consistent and appear to be experience-independent in this set of stimulus-and-subject experimental paradigms.
Assuntos
Percepção Auditiva/fisiologia , Sinais (Psicologia) , Tentilhões/fisiologia , Prosencéfalo/fisiologia , Reconhecimento Psicológico/fisiologia , Vocalização Animal/fisiologia , Estimulação Acústica , Animais , Eletrofisiologia , Imageamento por Ressonância Magnética , Masculino , Especificidade da EspécieRESUMO
Sequential activation of neurons has been observed during various behavioral and cognitive processes, but the underlying circuit mechanisms remain poorly understood. Here, we investigate premotor sequences in HVC (proper name) of the adult zebra finch forebrain that are central to the performance of the temporally precise courtship song. We use high-density silicon probes to measure song-related population activity, and we compare these observations with predictions from a range of network models. Our results support a circuit architecture in which heterogeneous delays between sequentially active neurons shape the spatiotemporal patterns of HVC premotor neuron activity. We gauge the impact of several delay sources, and we find the primary contributor to be slow conduction through axonal collaterals within HVC, which typically adds between 1 and 7.5 ms for each link within the sequence. Thus, local axonal "delay lines" can play an important role in determining the dynamical repertoire of neural circuits.
Assuntos
Tentilhões/fisiologia , Prosencéfalo/fisiologia , Vocalização Animal/fisiologia , Comunicação Animal , Animais , Axônios , Masculino , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologiaRESUMO
Food availability affects metabolism and reproduction in higher vertebrates including birds. This study tested the idea of adaptive homeostasis to time-restricted feeding (TRF) in diurnal zebra finches by using multiple (behavioral, physiological and molecular) assays. Adult birds were subjected for 1 week or 3 weeks to food restriction for 4 h in the evening (hour 8-12) of the 12 h light-on period, with controls on ad lib feeding. Birds on TRF showed enhanced exploratory behavior and plasma triglycerides levels, but did not show differences from ad lib birds in the overall food intake, body mass, and plasma corticosterone and thyroxine levels. As compared to ad lib feeding, testis size and circulation testosterone were reduced after first but not after third week of TRF. The concomitant change in the mRNA expression of metabolic and reproductive genes was also found after week 1 of TRF. Particularly, TRF birds showed increased expression of genes coding for gonadotropin releasing hormone (GnRH) in hypothalamus, and for receptors of androgen (AR) and estrogen (ER-alpha) in both hypothalamus and testes. However, genes coding for the deiodinases (Dio2, Dio3) and gonadotropin inhibiting hormone (GnIH) showed no difference between feeding conditions in both hypothalamus and testes. Further, increased Sirt1, Fgf10 and Ppar-alpha, and decreased Egr1 expression in the liver suggested TRF-effects on the overall metabolism. Importantly, TRF-effects on gene expressions by week 1 seemed alleviated to a considerable extent by week 3. These results on TRF-induced reproductive and metabolic effects suggest homeostatic adaptation to food-restriction in diurnal vertebrates.
Assuntos
Metabolismo Energético/fisiologia , Tentilhões/fisiologia , Privação de Alimentos/fisiologia , Reprodução/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Ritmo Circadiano/fisiologia , Corticosterona/sangue , Jejum/fisiologia , Tentilhões/metabolismo , Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Homeostase/fisiologia , Hipotálamo/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Masculino , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Testículo/metabolismo , Testosterona/sangue , Fatores de Tempo , Vertebrados/fisiologiaRESUMO
We investigated the effects of exposure at ecologically relevant levels of dim light at night (dLAN) on sleep and the 24 h hypothalamic expression pattern of genes involved in the circadian timing (per2, bmal1, reverb-ß, cry1, ror-α, clock) and sleep regulatory pathways (cytokines: tlr4, tnf-α, il-1ß, nos; Ca2+-dependent pathway: camk2, sik3, nr3a; cholinergic receptor, achm3) in diurnal female zebra finches. Birds were exposed to 12 h light (150 lux) coupled with 12 h of absolute darkness or of 5 lux dim light for three weeks. dLAN fragmented the nocturnal sleep in reduced bouts, and caused sleep loss as evidenced by reduced plasma oxalate levels. Under dLAN, the 24 h rhythm of per2, but not bmal1 or reverb-ß, showed a reduced amplitude and altered peak expression time; however, clock, ror-α and cry1 expressions showed an abolition of the 24 h rhythm. Decreased tlr4, il-1ß and nos, and the lack of diurnal difference in achm3 messenger RNA levels suggested an attenuated inhibition of the arousal system (hence, awake state promotion) under dLAN. Similarly, changes in camk2, sik3 and nr3a expressions suggested dLAN-effects on Ca2+-dependent sleep-inducing pathways. These results demonstrate dLAN-induced negative effects on sleep and associated hypothalamic molecular pathways, and provide insights into health risks of illuminated night exposures to diurnal animals.
Assuntos
Ritmo Circadiano/fisiologia , Tentilhões/fisiologia , Fotoperíodo , Sono/fisiologia , Animais , Corticosterona , Feminino , Expressão Gênica , Hipotálamo , MasculinoRESUMO
Food deprivation or restriction causes animals to mount a stereotypical behavioral and physiological response that involves overall increases in activity, elevated glucocorticoid production, and (often) inhibition of the reproductive system. Although there is increasing evidence that these responses can differ in their degree or covariation between the sexes, most studies to-date on food restriction/deprivation have focused on male songbirds. We therefore aimed to characterize the behavioral, physiological, and neuroendocrine response to acute food deprivation in a female songbird using a nomadic species, the zebra finch. We quantified behavior during a 6.5 h food deprivation and then measured physiological and neuroendocrine responses of female birds at the 6.5 h timepoint. Within 1 h of acute food deprivation, female zebra finches increased foraging behaviors, and after 6.5 h of food deprivation, females lost 5% of their body mass, on average. Change in body mass was positively associated with elevated corticosterone and (contrary to findings in male zebra finches) negatively related to the number of gonadotropin inhibitory hormone-immunoreactive cells in the hypothalamus. However, there was no effect of food deprivation on corticotropin releasing hormone-immunoreactive cells in the hypothalamus. There was also no relationship between corticotropin releasing hormone-immunoreactive cell number and circulating corticosterone. Our results are consistent with the hypothesis that neuroendocrine responses to food deprivation differ between male and female songbirds. Future studies should work to incorporate sex comparisons to evaluate sex-specific neuroendocrine responses to acute stress.
Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Tentilhões/fisiologia , Alimentos , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Animais , Contagem de Células , Feminino , Privação de Alimentos , Masculino , FenótipoRESUMO
Under periodic day-night environment, most circadian functions maintain a close phase relationship relative to each other, suggesting a common circadian pacemaker control of different overt rhythms. In birds, this seems highly unlikely, given multioscillatory nature of the circadian pacemaker and downstream generation of several circadian behaviors. We hypothesized the dissociation of overt rhythms from circadian gene oscillations, if the two were loosely coupled, under an aperiodic light condition. We tested this in daily rhythms in singing, activity and clock gene expressions in adult male zebra finches (Taeniopygia guttata) that were born and raised under the constant light (LL; 24L:0D), with controls on an LD cycle (12L: 12D). Particularly, we monitored daily pattern of singing and activity behavior, and measured 24 h mRNA expression of immediate early gene (c-Fos), clock genes (Bmal1, Per2 and Rev-erb ß) and epigenetic marker genes (Dnmt3b and Tet2) in the hypothalamus, and of clock genes and genes coding for the aromatase (Arom), androgen receptor (Ar) and dopamine receptor (Drd2) in the song control nuclei (Area X and HVC) and cerebellum (motor control region). We found persistence of daily rhythms in activity and singing in all birds under LD, but in only 70% (14/20) birds under LL; thus, both behaviors were arrhythmic in 30% (6/20) birds) under LL. The overall song quality was also declined under LL. The clock genes showed daily rhythms in the hypothalamus, song control nuclei (except Per2 in Area X) and cerebellum under LD, although with differences in peak expression times; however, there was loss of rhythmicity in clock genes (except Bmal1 in Area X and HVC) under LL. We also found daily Ar mRNA rhythm in the Area X and cerebellum under LD. These results demonstrate for the first time the persistence of clock gene oscillations in the song control brain regions and show the dissociation of circadian behavior from genetic oscillations in relation to an imposed light environment.
Assuntos
Cerebelo/fisiologia , Ritmo Circadiano , Tentilhões/fisiologia , Regulação da Expressão Gênica , Hipotálamo/fisiologia , Vocalização Animal , Animais , Relógios Circadianos , Epigênese Genética , Luz , Masculino , Atividade Motora , Fotoperíodo , RNA Mensageiro/genética , TemperaturaRESUMO
In birds, vocal learning enables the production of sexually selected complex songs, dialects and song copy matching. But stressful conditions during development have been shown to affect song production and complexity, mediated by changes in neural development. However, to date, no studies have tested whether early-life stress affects the neural processes underlying vocal learning, in contrast to song production. Here, we hypothesized that developmental stress alters auditory memory formation and neural processing of song stimuli. We experimentally stressed male nestling zebra finches and, in two separate experiments, tested their neural responses to song playbacks as adults, using either immediate early gene (IEG) expression or electrophysiological response. Once adult, nutritionally stressed males exhibited a reduced response to tutor song playback, as demonstrated by reduced expressions of two IEGs (Arc and ZENK) and reduced neuronal response, in both the caudomedial nidopallium (NCM) and mesopallium (CMM). Furthermore, nutritionally stressed males also showed impaired neuronal memory for novel songs heard in adulthood. These findings demonstrate, for the first time, that developmental conditions affect auditory memories that subserve vocal learning. Although the fitness consequences of such memory impairments remain to be determined, this study highlights the lasting impact early-life experiences can have on cognitive abilities.
Assuntos
Encéfalo/fisiologia , Tentilhões/fisiologia , Memória/fisiologia , Vocalização Animal/fisiologia , Estimulação Acústica , Fenômenos Fisiológicos da Nutrição Animal , Animais , Encéfalo/metabolismo , Cognição , Feminino , Tentilhões/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genes Precoces , Masculino , Estresse FisiológicoRESUMO
The coordination of complex vocal behaviors like human speech and oscine birdsong requires fine interactions between sensory and motor programs, the details of which are not completely understood. Here, we show that in sleeping male zebra finches (Taeniopygia guttata), the activity of the song system selectively evoked by playbacks of their own song can be detected in the syrinx. Electromyograms (EMGs) of a syringeal muscle show playback-evoked patterns strikingly similar to those recorded during song execution, with preferred activation instants within the song. Using this global and continuous readout, we studied the activation dynamics of the song system elicited by different auditory stimuli. We found that synthetic versions of the bird's song, rendered by a physical model of the avian phonation apparatus, evoked very similar responses, albeit with lower efficiency. Modifications of autogenous or synthetic songs reduce the response probability, but when present, the elicited activity patterns match execution patterns in shape and timing, indicating an all-or-nothing activation of the vocal motor program.
Assuntos
Eletromiografia , Tentilhões/fisiologia , Vocalização Animal/fisiologia , Estimulação Acústica , Animais , Eletrocardiografia , Masculino , FonaçãoRESUMO
Speech is a complex sensorimotor skill, and vocal learning involves both the basal ganglia and the cerebellum. These subcortical structures interact indirectly through their respective loops with thalamo-cortical and brainstem networks, and directly via subcortical pathways, but the role of their interaction during sensorimotor learning remains undetermined. While songbirds and their song-dedicated basal ganglia-thalamo-cortical circuitry offer a unique opportunity to study subcortical circuits involved in vocal learning, the cerebellar contribution to avian song learning remains unknown. We demonstrate that the cerebellum provides a strong input to the song-related basal ganglia nucleus in zebra finches. Cerebellar signals are transmitted to the basal ganglia via a disynaptic connection through the thalamus and then conveyed to their cortical target and to the premotor nucleus controlling song production. Finally, cerebellar lesions impair juvenile song learning, opening new opportunities to investigate how subcortical interactions between the cerebellum and basal ganglia contribute to sensorimotor learning.
Assuntos
Gânglios da Base/fisiologia , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Tentilhões/fisiologia , Aprendizagem , Vias Neurais/fisiologia , Tálamo/fisiologia , Vocalização Animal/fisiologia , Animais , Estimulação Encefálica Profunda , Vias Neurais/anatomia & histologia , Neurônios/fisiologia , Fonética , Células de Purkinje/metabolismo , Espectrografia do Som , Sinapses/fisiologia , Fatores de TempoRESUMO
Similar to human speech, bird song is controlled by several pathways including a cortico-basal ganglia-thalamo-cortical (C-BG-T-C) loop. Neurotoxic disengagement of the basal ganglia component, i.e. Area X, induces long-term changes in song performance, while most of the lesioned area regenerates within the first months. Importantly however, the timing and spatial extent of structural neuroplastic events potentially affecting other constituents of the C-BG-T-C loop is not clear. We designed a longitudinal MRI study where changes in brain structure were evaluated relative to the time after neurotoxic lesioning or to vocal performance. By acquiring both Diffusion Tensor Imaging and 3-dimensional anatomical scans, we were able to track alterations in respectively intrinsic tissue properties and local volume. Voxel-based statistical analyses revealed structural remodeling remote to the lesion, i.e. in the thalamus and, surprisingly, the cerebellum, both peaking within the first two months after lesioning Area X. Voxel-wise correlations between song performance and MRI parameters uncovered intriguing brain-behavior relationships in several brain areas pertaining to the C-BG-T-C loop supervising vocal motor control. Our results clearly point to structural neuroplasticity in the cerebellum induced by basal ganglia (striatal) damage and might point to the existence of a human-like cerebello-thalamic-basal ganglia pathway capable of modifying vocal motor output.
Assuntos
Gânglios da Base , Cerebelo , Imagem Ecoplanar/métodos , Tentilhões/fisiologia , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Tálamo , Vocalização Animal/fisiologia , Animais , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/patologia , Gânglios da Base/fisiologia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Cerebelo/fisiologia , Imagem de Tensor de Difusão/métodos , Estudos Longitudinais , Masculino , Tálamo/diagnóstico por imagem , Tálamo/patologia , Tálamo/fisiologiaRESUMO
Biological predispositions in vocal learning have been proposed to underlie commonalities in vocal sequences, including for speech and birdsong, but cultural propagation could also account for such commonalities [1-4]. Songbirds such as the zebra finch learn the sequencing of their acoustic elements ("syllables") during development [5-8]. Zebra finches are not constrained to learn a specific sequence of syllables, but significant consistencies in the positioning and sequencing of syllables have been observed between individuals within populations and between populations [8-10]. To reveal biological predispositions in vocal sequence learning, we individually tutored juvenile zebra finches with randomized and unbiased sequences of syllables and analyzed the extent to which birds produced common sequences. In support of biological predispositions, birds tutored with randomized sequences produced songs with striking similarities. Birds preferentially started and ended their song sequence with particular syllables, consistently positioned shorter and higher frequency syllables in the middle of their song, and sequenced their syllables such that pitch alternated across adjacent syllables. These patterns are reminiscent of those observed in normally tutored birds, suggesting that birds "creolize" aberrant sequence inputs to produce normal sequence outputs. Similar patterns were also observed for syllables that were not used for tutoring (i.e., unlearned syllables), suggesting that motor biases could contribute to sequence learning biases. Furthermore, zebra finches spontaneously produced acoustic patterns that are commonly observed in speech and music, suggesting that sensorimotor processes that are shared across a wide range of vertebrates could underlie these patterns in humans.
Assuntos
Tentilhões/fisiologia , Aprendizagem , Vocalização Animal , Estimulação Acústica , Animais , MasculinoRESUMO
We investigated whether circannual rhythms underlying annual testis maturation and moult cycles are independent of duration and frequency of the light period and circadian clock control in non-photoperiodic spotted munia. Birds were subjected to an aberrant light-dark (LD) cycle (3.5 h L:3.5 h D; T7, where T is the period length of the LD cycle) and continuous light (LL, 24 h L:0 h D), with controls on 12 h L:12 h D (T24, 24â h LD cycle). We measured the behavioural activity pattern of the birds and 24â h mRNA oscillations of circadian clock genes (bmal1, clock, per2, cry1, cry2) in the hypothalamus, the putative site of seasonal timing. Diurnal munia were rhythmic in behaviour with the period of the activity-rest cycle matched to T7 and T24, and became behaviourally arrhythmic with activity scattered throughout 24â h under LL. Similarly, exposure to 3.5 h L:3.5 h D and LL caused arrhythmicity in 24â h clock gene expression, suggesting disruption of internal circadian timing at the transcriptional level; a significant rhythm was found under 12 h L:12 h D. During an exposure of 80â weeks, munia showed two to three cycles of testis maturation and wing primaries moult under all photoperiods, although with a longer period under 12L:12D. Thus, the frequency of light period under 3.5 h L:3.5 h D or LL disrupted circadian clock gene cycles, but did not affect the generation of circannual testis and moult cycles. We conclude that the prevailing light environment and hypothalamic circadian gene cycles do not exert direct control on the timing of the annual reproductive cycle in spotted munia, suggesting independent generation of the circadian and circannual rhythms in seasonally breeding species.
Assuntos
Proteínas Aviárias/genética , Proteínas CLOCK/genética , Ritmo Circadiano , Muda , Fotoperíodo , Aves Canoras/fisiologia , Testículo/fisiologia , Animais , Proteínas Aviárias/metabolismo , Proteínas CLOCK/metabolismo , Tentilhões/fisiologia , Hipotálamo/metabolismo , Masculino , PeriodicidadeRESUMO
Early life stress has enduring effects on behavior and physiology. However, the effects on hormones and stress physiology remain poorly understood. In the present study, parents of zebra finches of both sexes were exposed to an increased foraging paradigm from 3 to 33days post hatching. Plasma and brains were collected from chicks at 3 developmental time points: post hatching days 25, 60 and adulthood. Plasma was assayed for testosterone (T), estradiol (E2), and corticosterone (CORT). The paraventricular nucleus of the hypothalamus was assessed for corticotrophin releasing factor (CRH) and glucocorticoid receptor (GR) expression. As expected, body mass was lower in nutritionally stressed animals compared to controls at multiple ages. Nutritionally stressed animals overall had higher levels of CORT than did control and this was particularly apparent in females at post hatching day 25. Nutritionally stressed animals also had a higher number of cells expressing CRH and GR in the paraventricular nucleus of the hypothalamus than did controls. There was an interaction, such that both measures were higher in control animals at PHD 25, but higher in NS animals by adulthood. Females, regardless of treatment, had higher circulating CORT and a higher number of cells expressing CRH than did males. Nutritionally stressed animals also had higher levels of T than did control animals, and this difference was greatest for males at post hatching day 60. There were no effects of nutritional stress on E2. These findings suggest that nutritional stress during development has long-lasting effects on testosterone and stress physiology.
Assuntos
Corticosterona/sangue , Tentilhões/fisiologia , Estresse Fisiológico/fisiologia , Estresse Psicológico , Testosterona/sangue , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Estradiol/metabolismo , Feminino , Tentilhões/metabolismo , Glucocorticoides/metabolismo , Hipotálamo/metabolismo , Masculino , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/sangue , Estresse Psicológico/fisiopatologiaRESUMO
Carotenoids are finite resources that animals can allocate to self-maintenance, attractiveness or reproduction. Here we test how carotenoids affect the acute phase response (APR), an intense rapid systemic response characterized by fever, sickness behavior and production of acute phase proteins, which serves to reduce pathogen persistence. We conducted a 2×2 factorial design experiment in captive adult male and female zebra finches (Taeniopygia guttata) to determine the effects of carotenoid supplementation on the intensity of the APR. We measured changes in feeding rate, activity level and body temperature of the birds. We found that, relative to unsupplemented controls, carotenoid-supplemented birds exhibited less severe reductions in feeding and activity, smaller increases in body temperature and lower circulating levels of haptoglobin (an acute phase protein) 24â h after inducing an APR. Among supplemented individuals, those with higher blood carotenoid levels exhibited a lower reduction in activity rate after 24â h. Forty-eight hours after APR induction, birds exhibited a significant decrease in plasma carotenoid levels and a decrease in bill hue, with less reduction in hue in carotenoid-supplemented individuals. These results demonstrate that carotenoids can alleviate several important behavioral and physiological effects of an APR and that bill color can change rapidly following induction of the costly APR immune defense. In particular, immune activation may have caused birds to preferentially draw down carotenoids from the bloodstream, ostensibly for use in health. Rapid bill color changes over a 48-h period support growing evidence that bills may serve as short-term signals of health and condition.
Assuntos
Reação de Fase Aguda/veterinária , Bico/fisiologia , Carotenoides/fisiologia , Febre/veterinária , Comportamento de Doença , Aves Canoras/fisiologia , Reação de Fase Aguda/etiologia , Reação de Fase Aguda/metabolismo , Animais , Dieta , Suplementos Nutricionais/análise , Feminino , Febre/etiologia , Febre/metabolismo , Tentilhões/fisiologia , Masculino , PigmentaçãoRESUMO
A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence that the nervous system uses millisecond-scale variations in the timing of spikes within multispike patterns to control a vertebrate behavior-namely, respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision.
Assuntos
Potenciais de Ação/fisiologia , Tentilhões/fisiologia , Contração Muscular/fisiologia , Respiração , Músculos Respiratórios/fisiologia , Animais , Curare/farmacologia , Estimulação Elétrica , Eletrodos Implantados , Eletromiografia , Feminino , Masculino , Microeletrodos , Modelos Biológicos , Fibras Musculares Esqueléticas/fisiologia , Pressão , Tempo de Reação , Músculos Respiratórios/efeitos dos fármacos , Fatores de TempoRESUMO
Physiological challenges during one part of the annual cycle can carry over and affect performance at a subsequent phase, and antioxidants could be one mediator of trade-offs between phases. We performed a controlled experiment with zebra finches to examine how songbirds use nutrition to manage trade-offs in antioxidant allocation between endurance flight and subsequent reproduction. Our treatment groups included (1) a non-supplemented, non-exercised group (control group) fed a standard diet with no exercise beyond that experienced during normal activity in an aviary; (2) a supplemented non-exercised group fed a water- and lipid-soluble antioxidant-supplemented diet with no exercise; (3) a non-supplemented exercised group fed a standard diet and trained to perform daily endurance flight for 6â weeks; and (4) a supplemented exercised group fed an antioxidant-supplemented diet and trained to perform daily flight for 6â weeks. After flight training, birds were paired within treatment groups for breeding. We analyzed eggs for lutein and vitamin E concentrations and the plasma of parents throughout the experiment for non-enzymatic antioxidant capacity and oxidative damage. Exercised birds had higher oxidative damage levels than non-exercised birds after flight training, despite supplementation with dietary antioxidants. Supplementation with water-soluble antioxidants decreased the deposition of lipid-soluble antioxidants into eggs and decreased yolk size. Flight exercise also lowered deposition of lutein, but not vitamin E, to eggs. These findings have important implications for future studies of wild birds during migration and other oxidative challenges.
Assuntos
Antioxidantes/farmacologia , Dieta , Voo Animal/efeitos dos fármacos , Alimentos , Óvulo/metabolismo , Condicionamento Físico Animal , Animais , Gema de Ovo/efeitos dos fármacos , Gema de Ovo/metabolismo , Feminino , Tentilhões/sangue , Tentilhões/fisiologia , Modelos Lineares , Fígado/efeitos dos fármacos , Fígado/enzimologia , Luteína/metabolismo , Óvulo/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Vitamina E/análiseRESUMO
In monolingual humans, language-related brain activation shows a distinct lateralized pattern, in which the left hemisphere is often dominant. Studies are not as conclusive regarding the localization of the underlying neural substrate for language in sequential language learners. Lateralization of the neural substrate for first and second language depends on a number of factors including proficiency and early experience with each language. Similar to humans learning speech, songbirds learn their vocalizations from a conspecific tutor early in development. Here, we show mirrored patterns of lateralization in the avian analog of the mammalian auditory cortex (the caudomedial nidopallium [NCM]) in sequentially tutored zebra finches (Taeniopygia guttataâ) in response to their first tutor song, learned early in development, and their second tutor song, learned later in development. The greater the retention of song from their first tutor, the more right-dominant the birds were when exposed to that song; the more birds learned from their second tutor, the more left-dominant they were when exposed to that song. Thus, the avian auditory cortex may preserve lateralized neuronal traces of old and new tutor song memories, which are dependent on proficiency of song learning. There is striking resemblance in humans: early-formed language representations are maintained in the brain even if exposure to that language is discontinued. The switching of hemispheric dominance related to the acquisition of early auditory memories and subsequent encoding of more recent memories may be an evolutionary adaptation in vocal learners necessary for the behavioral flexibility to acquire novel vocalizations, such as a second language.
Assuntos
Córtex Auditivo/fisiologia , Tentilhões/fisiologia , Lateralidade Funcional/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Vocalização Animal/fisiologia , Estimulação Acústica , Animais , Córtex Auditivo/crescimento & desenvolvimento , Proteínas Aviárias/metabolismo , Tentilhões/crescimento & desenvolvimento , Proteínas Imediatamente Precoces/metabolismo , Imuno-Histoquímica , Aprendizagem/fisiologia , Masculino , Modelos Animais , Fatores de TempoRESUMO
Seed-eating birds have a diet of high nutritional value; however, they must cope with plant secondary metabolites (PSM). We postulated that the detoxification capacity of birds is associated with a metabolic cost, given that the organs responsible for detoxification significantly contribute to energetic metabolism. We used an experimental approach to assess the effects of phenol-enriched diets on two passerines with different feeding habits: the omnivorous rufous-collared sparrow (Zonotrichia capensis) and the granivorous common diuca-finch (Diuca diuca). The birds were fed with one of three diets: control diet, supplemented with tannic acid, or supplemented with Opuntia ficus-indica phenolic extract (a common food of the sparrow but not the finch). After 5 weeks of exposure to the diets, we measured basal metabolic rates (BMR), energy intake, glucuronic acid output and digestive and kidney structure. In both species, detoxification capacity expressed as glucuronic acid output was higher in individuals consuming phenol-enriched diets compared to the control diet. However, whereas sparrows increase energy intake and intestinal mass when feeding on phenol-enriched diets, finches had lower intestinal mass and energy intake remains stable. Furthermore, sparrows had higher BMR on phenol-enriched diets compared to the control group, whereas in the finches BMR remains unchanged. Interspecific differences in response to phenols intake may be determined by the dietary habits of these species. While both species can feed on moderate phenolic diets for 5 weeks, energy costs may differ due to different responses in food intake and organ structure to counteract the effects of PSM intake.