Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 857
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Transpl Infect Dis ; 26(2): e14268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38477039

RESUMO

BACKGROUND: Prolonged periods of immunosuppression during hematopoietic stem cell transplant (HSCT) can result in serious infectious complications and contribute to transplant-related morbidity and mortality. Adherence to standardized pre and postinfection screening guidelines, prescribed medications, and early identification of infectious symptoms through comprehensive patient and family education are crucial to minimizing infectious complications. Advanced practice nurses (APNs) are key members of the multidisciplinary care team in the HSCT specialty, maintaining a specialized skillset and scope of practice which includes a holistic based, preventative medicine and risk mitigation approach. METHODS: This review sought to describe the role of the APN in HSCT care and to further examine existing APN led models of care which focus on infection prevention and education throughout the HSCT treatment journey. RESULTS: No studies specifically examined the APN role in infectious diseases risk assessment, screening, and management throughout the HSCT journey were identified throughout our review, however, there was considerable evidence to demonstrate the benefits of APN led care in the oncology and solid organ transplantation specialty which led to improvements in continuity of care, overall patient outcomes, and multidisciplinary team collaboration. The key themes identified in our review, were the role of the APN in the delivery of comprehensive patient and family education, the role of the APN in supporting, mentoring, and educating junior medical and nursing teams, the collaboration between the APN and the multidisciplinary care team, and the role of the APN in prompt recognition, triage, and management of treatment related complications, such as infection.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Papel do Profissional de Enfermagem , Humanos , Terapia de Imunossupressão , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
2.
Phytomedicine ; 126: 155226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387276

RESUMO

BACKGROUND: Chronic inflammation brought on by oxidative stress can result in several immunopathologies. Natural compounds with antioxidant characteristics, like quercetin, have shown effectiveness in reducing oxidative damage and regulating the immune response. PURPOSE: The commonly used food additive monosodium glutamate (M) causes immunosuppression by disrupting redox equilibrium and inducing oxidative stress. The goal of this work is to examine the therapeutic potential of quercetin against immunotoxicity brought on by M, revealing the molecular route implicated in such immunopathology by targeting the thymus and spleen, to support the development of future anti-inflammatory and antioxidant therapies. STUDY DESIGN AND METHODS: M-fed rats were employed as an immunotoxicity model and were supplemented with quercetin for four weeks. Hematological and biochemical parameters were measured; H&E staining, immunohistochemistry, flow cytometry, real-time quantitative PCR, and western blotting were performed. RESULTS: Based on the findings, TLR4 was activated by M to cause oxidative stress-mediated inflammation, which was alleviated by the supplementation of quercetin by modulating redox homeostasis to neutralize free radicals and suppress the inflammatory response. To prevent M-induced inflammation, quercetin demonstrated anti-inflammatory functions by blocking NF-kB activation, lowering the production of pro-inflammatory cytokines, and increasing the release of anti-inflammatory cytokines. By normalizing lipid profiles and lowering the potential risk of immunological deficiency caused by M, quercetin also improves lipid metabolism. Additionally, it has shown potential for modifying insulin levels, suggesting a possible function in controlling M-induced alteration in glucose metabolism. The addition of quercetin to M enhanced the immune response by improving immunoglobulin levels and CD4/CD8 expression in the thymus and spleen. Additionally, quercetin inhibited apoptosis by controlling mitochondrial caspase-mediated cellular signaling, suggesting that it may be able to halt cell death in M-fed rats. CONCLUSION: The results of this study first indicate that quercetin, via modulating redox-guided cellular signaling, has a promising role in reducing immune disturbances. This study illuminates the potential of quercetin as a safe, natural remedy for immunopathology caused by M, including thymic hypoplasia and/or splenomegaly, and paves the way for future anti-inflammatory and antioxidant supplements.


Assuntos
Antioxidantes , Quercetina , Ratos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Antioxidantes/metabolismo , Glutamato de Sódio/metabolismo , Glutamato de Sódio/farmacologia , Glutamato de Sódio/uso terapêutico , Baço , Oxirredução , Estresse Oxidativo , Inflamação/metabolismo , Terapia de Imunossupressão , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo
3.
Int J Biol Macromol ; 261(Pt 1): 129590, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266859

RESUMO

As a Chinese folk health product, Abrus cantoniensis exhibits good immunomodulatory activity because of its polysaccharide components (ACP), and carboxymethylation of polysaccharides can often further improve the biological activity of polysaccharides. In this study, we explored the impact of prophylactic administration of carboxymethylated Abrus cantoniensis polysaccharide (CM-ACP) on immunosuppression and intestinal damage induced by cyclophosphamide (CTX) in mice. Our findings demonstrated that CM-ACP exhibited a more potent immunomodulatory activity compared to ACP. Additionally, CM-ACP effectively enhanced the abundance of short-chain fatty acid (SCFA)-producing bacteria in immunosuppressed mice and regulated the gene expression of STAT6 and STAT3 mediated pathway signals. In order to further explore the relationship among polysaccharides, intestinal immunity and intestinal flora, we performed a pseudo-sterile mouse validation experiment and fecal microbiota transplantation (FMT) experiment. The findings suggest that CM-FMT and butyrate attenuate CTX-induced immunosuppression and intestinal injury. CM-FMT and butyrate show superior immunomodulatory ability, and may effectively regulate intestinal cell metabolism and repair the damaged intestine by activating STAT6 and STAT3-mediated pathways. These findings offer new insights into the mechanisms by which CM-ACP functions as functional food or drug, facilitating immune response regulation and maintaining intestinal health.


Assuntos
Abrus , Microbioma Gastrointestinal , Camundongos , Animais , Ácido Butírico , Terapia de Imunossupressão , Intestinos , Polissacarídeos/farmacologia
4.
Small Methods ; 8(1): e2301005, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37743260

RESUMO

Chemotherapy is a critical modality in cancer therapy to combat malignant cell proliferation by directly attacking cancer cells and inducing immunogenic cell death, serving as a vital component of multi-modal treatment strategies for enhanced therapeutic outcomes. However, chemotherapy may inadvertently contribute to the immunosuppression of the tumor microenvironment (TME), inducing the suppression of antitumor immune responses, which can ultimately affect therapeutic efficacy. Chemo-immunotherapy, combining chemotherapy and immunotherapy in cancer treatment, has emerged as a ground-breaking approach to target and eliminate malignant tumors and revolutionize the treatment landscape, offering promising, durable responses for various malignancies. Notably, functional nanomaterials have substantially contributed to chemo-immunotherapy by co-delivering chemo-immunotherapeutic agents and modulating TME. In this review, recent advancements in chemo-immunotherapy are thus summarized to enhance treatment effectiveness, achieved by reversing the immunosuppressive TME (ITME) through the exploitation of immunotherapeutic drugs, or immunoregulatory nanomaterials. The effects of two-way immunomodulation and the causes of immunoaugmentation and suppression during chemotherapy are illustrated. The current strategies of chemo-immunotherapy to surmount the ITME and the functional materials to target and regulate the ITME are discussed and compared. The perspective on tumor immunosuppression reversal strategy is finally proposed.


Assuntos
Antineoplásicos , Nanoestruturas , Neoplasias , Humanos , Imunoterapia , Terapia de Imunossupressão , Imunomodulação , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Nanoestruturas/uso terapêutico , Microambiente Tumoral
5.
J Pharm Pharm Sci ; 26: 11863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022904

RESUMO

Aplastic anemia (AA) is a bone marrow failure disease caused by T cell hyperfunction. Although the overall response rate has been improved by immunosuppressive therapy (IST) plus Eltrombopag, 30% of patients have either no response or relapse. We therefore attempted to find other ways to improve the outcomes of AA patients. Traditional Chinese medicine has the advantages of low cost, reasonable effects, and few side effects. More and more clinical studies have confirmed that traditional Chinese medicine has a beneficial role in treating AA patients. This article reviews the potential mechanism of traditional Chinese medicine or its active ingredients in the treatment of AA. These include improving the bone marrow microenvironment, regulating immunity, and affecting the fate of hematopoietic stem cells. This provides useful information for further treatment of AA with integration of traditional Chinese and Western medicine and the development of new treatment strategies.


Assuntos
Anemia Aplástica , Humanos , Anemia Aplástica/tratamento farmacológico , Medicina Tradicional Chinesa , Terapia de Imunossupressão , Recidiva , Imunossupressores/uso terapêutico , Imunossupressores/efeitos adversos
6.
Asian Pac J Cancer Prev ; 24(11): 3729-3738, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019230

RESUMO

OBJECTIVE: In the present study, we investigated the immunomodulatory effect of a polyherbal formulation referred to as Imusil (IM) on cyclophosphamide (CP) induced immunosuppression model. METHODS: CP induced experimental animal model was used for evaluating the immunomodulatory effect of IM. For the study, animals were divided into four groups. Group I is served as the normal control, group II is treated only with CP, group III is treated with the standard drug, levamisole and group IV is treated with IM. The experimental duration was 30 days. At the end of the study, we had evaluated various parameters such as immune organ index, liver marker enzymes, antioxidants, haematological analysis, Th1/Th2 cytokine balance and humoral immune responses were examined using ELISA kits, T-lymphocyte subsets by flow cytometry, and histopathological analysis of the liver, spleen and thymus by H&E staining. RESULTS: The results obtained from the study revealed that the treatment of immunosuppressed animals with IM significantly (p<0.05) reversed the immune response in a positive manner. Treatment with IM properly shields the immune organs and triggers the cell-mediated and humoral immune responses accordingly. Thus, no significant changes were observed in the haematological parameters. Moreover, IM supplementation helps to boost up the antioxidant activity, thereby preventing oxidative stress-mediated damage, and also protects the liver from the toxicity induced by CP. CONCLUSION: The results suggest that IM has the ability to counteract the immunosuppressive effect of chemotherapeutic drugs by stimulating the immune system, along with its potent antioxidant and hepatoprotective properties.


Assuntos
Terapia de Imunossupressão , Fígado , Animais , Ciclofosfamida , Modelos Animais , Antioxidantes/farmacologia , Imunidade
7.
Nat Commun ; 14(1): 7021, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919262

RESUMO

Immune-checkpoint inhibitors (ICI) are promising modalities for treating triple negative breast cancer (TNBC). However, hyperglycolysis, a hallmark of TNBC cells, may drive tumor-intrinsic PD-L1 glycosylation and boost regulatory T cell function to impair ICI efficacy. Herein, we report a tumor microenvironment-activatable nanoassembly based on self-assembled aptamer-polymer conjugates for the targeted delivery of glucose transporter 1 inhibitor BAY-876 (DNA-PAE@BAY-876), which remodels the immunosuppressive TME to enhance ICI response. Poly ß-amino ester (PAE)-modified PD-L1 and CTLA-4-antagonizing aptamers (aptPD-L1 and aptCTLA-4) are synthesized and co-assembled into supramolecular nanoassemblies for carrying BAY-876. The acidic tumor microenvironment causes PAE protonation and triggers nanoassembly dissociation to initiate BAY-876 and aptamer release. BAY-876 selectively inhibits TNBC glycolysis to deprive uridine diphosphate N-acetylglucosamine and downregulate PD-L1 N-linked glycosylation, thus facilitating PD-L1 recognition of aptPD-L1 to boost anti-PD-L1 therapy. Meanwhile, BAY-876 treatment also elevates glucose supply to tumor-residing regulatory T cells (Tregs) for metabolically rewiring them into an immunostimulatory state, thus cooperating with aptCTLA-4-mediated immune-checkpoint inhibition to abolish Treg-mediated immunosuppression. DNA-PAE@BAY-876 effectively reprograms the immunosuppressive microenvironment in preclinical models of TNBC in female mice and provides a distinct approach for TNBC immunotherapy in the clinics.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antígeno B7-H1 , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia de Imunossupressão , DNA , Microambiente Tumoral , Linhagem Celular Tumoral
8.
Sci Rep ; 13(1): 17745, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853057

RESUMO

Triterpenoids, as the main active ingredient of Ganoderma lucidum fermented extract, exert multiple pharmacological activities, including immunomodulatory properties. Our study aimed to reveal the pharmacological effects and potential mechanisms of Ganoderic acid C2 (GAC) against cyclophosphamide (CY)-associated immunosuppression. Target genes were collected from several public databases, including the DisGeNET, Comparative Toxicogenomics Database, GeneCards, and PharmMapper. STRING database was used to construct the protein-protein interaction of network. Subsequently, molecular docking was carried out to visualize the protein-GAC interactions. Experimental validations, including ELISA and qRT-PCR were performed to confirm the pharmacological activities of GAC on CY-induced immunosuppression model. A total of 56 GAC-related targets were identified to be closely associated with CY-induced immunosuppression. Enrichment analyses results revealed that these targets were mainly involved in immune and inflammatory response-related pathways. STAT3 and TNF were identified as the core targets of GAC. Molecular docking indicated that GAC combined well with STAT3 and TNF protein. In addition, animal experiments indicated that GAC improved immunity as well as STAT3 and TNF genes expression in CY-induced immunosuppression, which further verified the prediction through bioinformatics analysis and molecular docking. We successfully revealed the potential therapeutics mechanisms underlying the effect of GAC against CY-induced immunosuppression based on the combination of bioinformatics analysis, molecular docking, and animal experiments. Our findings lay a theoretical foundation for the in-depth development and utilization of Ganoderma lucidum fermentation product in the future, and also provide theoretical guidance for the development of innovative drugs that assist in improving immunity.


Assuntos
Medicamentos de Ervas Chinesas , Triterpenos , Animais , Simulação de Acoplamento Molecular , Terapia de Imunossupressão , Triterpenos/farmacologia , Ciclofosfamida/farmacologia
9.
Phytomedicine ; 121: 155082, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722243

RESUMO

BACKGROUND: Probiotic fermentation is a promising strategy for improving the nutritional and functional properties of traditional Chinese medicines (TCMs). Ganoderma lucidum and Raphani Semen are famous TCMs that have been shown to help alleviate immune system disorders. However, few studies have experimentally investigated the effects of probiotic-fermented G.lucidum and Raphani Semen on the immune system. PURPOSE: We established the in vitro fermentation of G. lucidum and Raphani Semen with a probiotic mixture (Bifidobacterium longum, Lactobacillus acidophilus, and l. fermentum) (GRFB), investigated its ameliorating effect against cyclophosphamide (CTX)-induced immunosuppression, and explored its possible mechanisms. METHODS: First, the different components in GRFB were identified by high-performance liquid chromatography. Second, its immune-stimulatory activities were evaluated in CTX-treated mice. Lastly, its possible in vitro and in vivo mechanisms were studied. RESULTS: Probiotic fermentation of G. lucidum and Raphani Semen altered some of its chemical constituents, potentially helping improve the ability of GRFB to alleviate immunosuppression. As expected, GRFB effectively ameliorated CTX-induced immunosuppression by increasing the number of splenic lymphocytes and regulating the secretion of serum and ileum cytokines. GRFB supplementation also effectively improved intestinal integrity in CTX-treated mice by upregulating tight junction proteins. It also protects against CTX-induced intestinal dysbiosis by increasing the abundance of beneficial bacteria and reducing the abundance of harmful bacteria. GRFB could directly promote intestinal immunity but not systemic immunity in vitro, suggesting a microbiota-dependent regulation of GRFB. Interestingly, cohousing CTX-induced immunosuppressed mice with GRFB-treated mice promoted their symptoms recovery. Enhanced CTX-induced immunosuppression by GRFB in vitro depended on the gut microbiota. Remarkably, a Kyoto Encyclopedia of Genes and Genomes analysis showed that the GRFB-reprogrammed microbiota was significantly enriched in DNA damage repair pathways, which contribute to repairing the intestinal mucosal barrier. CONCLUSION: This is the first study to suggest that compare with unfermented G. lucidum and Raphani Semen, GRFB can more effectively promote intestinal immunity and manipulate the gut microbiota to promote immunostimulatory activity and repair immunosuppression-induced intestinal barrier damage by biotransforming G.lucidum and Raphani Semen components.


Assuntos
Microbioma Gastrointestinal , Probióticos , Reishi , Animais , Camundongos , Fermentação , Probióticos/farmacologia , Probióticos/uso terapêutico , Ciclofosfamida/efeitos adversos , Imunidade , Terapia de Imunossupressão , Sementes
10.
Pharm Biol ; 61(1): 1211-1221, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37585723

RESUMO

CONTEXT: Preparations of Echinacea have been used by herbalists to boost the immune system. OBJECTIVE: In this study, Echinacea purpurea (L.) Moench (Asteraceae) extract with enriched chicoric acid content was investigated for immunomodulation. MATERIALS AND METHODS: The standardized hydroalcoholic extract (4% chicoric acid) was prepared from the aerial parts of E. purpurea (SEP). The extract was screened for in vitro antioxidant activities, and immunomodulation in RAW 264.7 cells, at 200 and 400 µg/mL. Further, the male BALB/c mice (20-25 g) were divided into 4 groups (n = 6 per group). All the groups except control, were intraperitoneally injected with 70 mg/kg/day of cyclophosphamide (CTX) for 4 consecutive days. The treatment groups received SEP extract (100 and 200 mg/kg body weight) p.o. from day 5 to 14. RESULTS: The SEP extract inhibited DPPH (IC50 = 106.7 µg/mL), ABTS+ (IC50 = 19.88 µg/mL) and nitric oxide (IC50 = 120.1 µg/mL). The SEP extract's ORAC (oxygen radical absorbance capacity) value was 1931.63 µM TE/g. In RAW 264.7 cells, SEP extract increased the nitric oxide production by 30.76- and 39.07-fold at 200 and 400 µg/mL, respectively, compared to the untreated cells. SEP extract significantly increased phagocytosis and cytokine release (TNF-α, IL-6, and IL-1ß) in the cells. Further, the extract improved immune organ indices, lymphocyte proliferation and serum cytokine levels in CTX-induced mice. The extract at 200 mg/kg significantly increased the natural killer cell activity (24.6%) and phagocytic index (28.03%) of CTX mice. CONCLUSION: Our results strongly support SEP extract with 4% chicoric acid as a functional ingredient for immunomodulation.


Assuntos
Echinacea , Camundongos , Masculino , Animais , Echinacea/química , Óxido Nítrico , Citocinas , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Macrófagos , Terapia de Imunossupressão , Imunidade
11.
Arch Immunol Ther Exp (Warsz) ; 71(1): 17, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37410164

RESUMO

During carcinogenesis, the microenvironment plays a fundamental role in tumor progression and resistance. This tumor microenvironment (TME) is characterized by being highly immunosuppressive in most cases, which makes it an important target for the development of new therapies. One of the most important groups of cells that orchestrate immunosuppression in TME is myeloid-derived suppressor cells (MDSCs), which have multiple mechanisms to suppress the immune response mediated by T lymphocytes and thus protect the tumor. In this review, we will discuss the importance of modulating MDSCs as a therapeutic target and how the use of natural products, due to their multiple mechanisms of action, can be a key alternative for modulating these cells and thus improve response to therapy in cancer patients.


Assuntos
Produtos Biológicos , Células Supressoras Mieloides , Neoplasias , Humanos , Produtos Biológicos/uso terapêutico , Microambiente Tumoral , Terapia de Imunossupressão
12.
Front Immunol ; 14: 1085456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153583

RESUMO

This study aimed to clarify the effects of two processed forms of American ginseng (Panax quinquefolius L.) on immunosuppression caused by cyclophosphamide (CTX) in mice. In the CTX-induced immunosuppressive model, mice were given either steamed American ginseng (American ginseng red, AGR) or raw American ginseng (American ginseng soft branch, AGS) by intragastric administration. Serum and spleen tissues were collected, and the pathological changes in mice spleens were observed by conventional HE staining. The expression levels of cytokines were detected by ELISA, and the apoptosis of splenic cells was determined by western blotting. The results showed that AGR and AGS could relieve CTX-induced immunosuppression through the enhanced immune organ index, improved cell-mediated immune response, increased serum levels of cytokines (TNF-α, IFN-γ, and IL-2) and immunoglobulins (IgG, IgA, and IgM), as well as macrophage activities including carbon clearance and phagocytic index. AGR and AGS downregulated the expression of BAX and elevated the expression of Bcl-2, p-P38, p-JNK, and p-ERK in the spleens of CTX-injected animals. Compared to AGS, AGR significantly improved the number of CD4+CD8-T lymphocytes, the spleen index, and serum levels of IgA, IgG, TNF-α, and IFN-γ. The expression of the ERK/MAPK pathway was markedly increased. These findings support the hypothesis that AGR and AGS are effective immunomodulatory agents capable of preventing immune system hypofunction. Future research may investigate the exact mechanism to rule out any unforeseen effects of AGR and AGS.


Assuntos
Panax , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Ciclofosfamida/efeitos adversos , Terapia de Imunossupressão , Citocinas/metabolismo , Macrófagos , Imunoglobulina G/farmacologia , Transdução de Sinais , Imunoglobulina A/farmacologia
13.
Zhongguo Zhen Jiu ; 43(5): 529-36, 2023 May 12.
Artigo em Chinês | MEDLINE | ID: mdl-37161806

RESUMO

OBJECTIVE: To observe the effects of herbal cake separated moxibustion on macrophage effector molecule T-cell immunoglobulin and mucin-domain containing-4 (Tim-4) and ubiquitination of programmed cell death protein 1 (PD-1) in rabbits with immunosuppression, and to explore the possible mechanism on herbal cake separated moxibustion in improving immunosuppression. METHODS: Thirty-two big-ear white rabbits were randomly divided into a normal group, a model group, a moxa stick moxibustion group and a herbal cake separated moxibustion group, 8 rabbits in each group. Except the normal group, the immunosuppression model was established by intraperitoneal injection of cyclophosphamide of60 mg/kg in the other 3 groups. "Shenque" (CV 8), "Shenshu" (BL 23), "Zusanli" (ST 36), etc. were selected in both the moxa stick moxibustion group and the herbal cake separated moxibustion group. Moxa stick moxibustion was applied in the moxa stick moxibustion group, one cone at each acupoint; herbal cake separated moxibustion was applied in the herbal cake separated moxibustion group, 5 cones at each acupoint. The intervention was given once every other day for 10 times in both groups. Leukocyte content in peripheral blood was detected by blood cell analyzer; the positive expression of PD-1 in CD+4 T lymphocytes, CD+8T lymphocytes and CD+68 macrophages in peripheral blood was measured by flow cytometry, the serum levels of interleukin 2 (IL-2), CD8, CD68 and Tim-4 were detected by ELISA, and the expression of Tim-4 and F-box only protein 38 (FBXO38) in the liver and spleen tissues was measured by immunohistochemistry. RESULTS: Compared with the normal group, in the model group, white blood cell count (WBC) and percentage of neutrophils (NEU%) were decreased while percentage of lymphocyte (LYM%) was increased (P<0.01) in peripheral blood; the positive expression rates of PD-1 in CD+4 T lymphocytes, CD+8T lymphocytes and CD+68 macrophages in peripheral blood were increased (P<0.01); the serum levels of IL-2, CD68 and Tim-4 were increased (P<0.01), the serum level of CD8 was decreased (P<0.01); the average optical density (AOD) of Tim-4 in the liver tissue and FBXO38 in the liver and spleen tissues was increased (P<0.01). Compared with the model group, in the moxa stick moxibustion group and the herbal cake separated moxibustion group, WBC and NEU% were increased (P<0.01); the positive expression rates of PD-1 in CD+4 T lymphocytes, CD+8T lymphocytes and CD+68 macrophages in peripheral blood were decreased (P<0.01); the serum levels of IL-2, CD68 and Tim-4 were decreased (P<0.01), the serum levels of CD8 were increased (P<0.01); the AOD of Tim-4 and FBXO38 in the liver tissue and FBXO38 in the spleen tissue was decreased (P<0.01, P<0.05). Compared with the moxa stick moxibustion group, in the herbal cake separated moxibustion group, the positive expression rate of PD-1 in CD+68 macrophages in peripheral blood was increased (P<0.05); serum level of Tim-4 was increased (P<0.01); AOD of Tim-4 in the liver tissue was decreased (P<0.05). CONCLUSION: Herbal cake separated moxibustion can improve immunosuppression by regulating the expression of macrophage effector molecule Tim-4 and the FBXO38 mediated ubiquitination of PD-1, Tim-4 may be one of the specific indexes of immunomodulation involving with herbal cake separated moxibustion.


Assuntos
Interleucina-2 , Moxibustão , Animais , Coelhos , Interleucina-2/genética , Receptor de Morte Celular Programada 1/genética , Terapia de Imunossupressão , Ubiquitinação
14.
Phytother Res ; 37(8): 3583-3601, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37070654

RESUMO

Oral decoction is widely applied in traditional Chinese medicines. The polysaccharides of decoction promote the exposure of small molecules and increase their bioavailability. This study mainly compared the component and activities of total ginsenosides (TGS) and ginseng extract (GE) on immunosuppressed mice induced by cyclophosphamide. Thirty-two mice were randomly divided into control, model, TGS, and GE groups. The mice were orally administered for 28 days and then injected with cyclophosphamide on the last four days. The results of component analysis showed the total content of 12 ginsenosides in TGS (67.21%) was higher than GE (2.04%); the total content of 17 amino acids in TGS (1.41%) was lower than GE (5.36%); the total content of 10 monosaccharides was similar in TGS (74.12%) and GE (76.36%). The animal results showed that both TGS and GE protected the hematopoietic function of bone marrow by inhibiting cell apoptosis, and recovering the normal cell cycle of BM; maintained the dynamic balance between the Th1 and Th2 cells; also protected the spleen, thymus, and liver. Meanwhile, TGS and GE protected the intestinal bacteria of immunosuppressed mice by increasing the abundance of lactobacillus and decreasing the abundance of the odoribacter and clostridia_UCG-014. The prevention effect of GE was superior to TGS in some parameters. In conclusion, TGS and GE protected the immune function of immunosuppressed mice induced by cyclophosphamide. Meanwhile, GE showed higher bioavailability and bioactivity compared with TGS, because the synergistic effect of polysaccharides and ginsenosides plays an important role in protecting the immune function.


Assuntos
Ginsenosídeos , Panax , Camundongos , Animais , Ginsenosídeos/farmacologia , Panax/química , Ciclofosfamida/toxicidade , Terapia de Imunossupressão , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia
15.
Fish Shellfish Immunol ; 136: 108717, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004894

RESUMO

Aquatic pollutants, including cadmium (Cd), cause oxidative stress on aquatic animals. The use of probiotics, including microalgae as a feed additive to alleviate the toxic impacts of heavy metals, is a much more interesting point. Hence, the current study investigated the oxidative stress and immunosuppression in Nile tilapia (Oreochromis niloticus) fingerlings caused by Cd toxicity as well as the preventive function of dietary Chlorella vulgaris against Cd toxicity. Accordingly, fish were fed on 0.0 (control), 5, and 15 g/kg diet of Chlorella up to satiation thrice a day, along with being exposed to 0.0 or 2.5 mg Cd/L for 60 days. Following the experimental procedure, fish from each group were intraperitoneally injected with Streptococcus agalactiae, and their survivability was observed for further ten days. Chlorella-supplemented diets meaningfully (P < 0.05) boosted the antioxidative capability of fish, which was evidenced by higher activities of hepatic superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) as well as higher levels of reduced glutathione (GSH) along with significant reductions in hepatic malondialdehyde levels. Moreover, the innate immunity indices [phagocytic activity (PA), respiratory burst activity (RBA), and alternative complement activity (ACH50)] were significantly higher in Chlorella-fed fish, particularly in the group of 15 g/kg diet. Additionally, serum of Chlorella-fed fish showed potent bactericidal activities against S. agalactiae, particularly at the treatment of a 15 g/kg diet. Feeding Chlorella diets to Nile tilapia fingerlings upregulated SOD, CAT, and GPx genes expression alongside the down-regulation of IL-1ß, IL-8, IL-10, TNF-α, and HSP70 genes expression. Conversely, Cd toxicity caused oxidative stress and suppressed the fish's innate immunity with upregulation of the expression of IL-1ß, IL-8, IL-10, TNF-α, and HSP70 genes. Feeding Cd-exposed fish on Chlorella-containing diets attenuated these adverse effects. The current research revealed that supplementing feeds with the treatment of 15 g/kg diet of C. vulgaris supports the antioxidant-immune responses and alleviates the Cd toxicity effects on Nile tilapia fingerlings.


Assuntos
Chlorella vulgaris , Ciclídeos , Doenças dos Peixes , Animais , Cádmio/toxicidade , Streptococcus agalactiae/fisiologia , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-8 , Dieta/veterinária , Suplementos Nutricionais , Antioxidantes/metabolismo , Estresse Oxidativo , Terapia de Imunossupressão , Superóxido Dismutase/metabolismo , Ração Animal/análise , Doenças dos Peixes/induzido quimicamente
16.
Front Immunol ; 14: 1092402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865562

RESUMO

With the constantly deeper understanding of individualized precision therapy, immunotherapy is increasingly developed and personalized. The tumor immune microenvironment (TIME) mainly consists of infiltrating immune cells, neuroendocrine cells, extracellular matrix, lymphatic vessel network, etc. It is the internal environment basis for the survival and development of tumor cells. As a characteristic treatment of traditional Chinese medicine, acupuncture has shown potentially beneficial impacts on TIME. The currently available information demonstrated that acupuncture could regulate the state of immunosuppression through a range of pathways. An effective way to understand the mechanisms of action of acupuncture was to analyze the response following treatment of the immune system. This research reviewed the mechanisms of acupuncture regulating tumor immunological status based on innate and adaptive immunity.


Assuntos
Terapia por Acupuntura , Imunomodulação , Imunoterapia , Terapia de Imunossupressão , Imunidade Adaptativa
17.
J Microbiol Biotechnol ; 33(6): 840-847, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36994619

RESUMO

Korean ginseng (Panax ginseng C. A. Meyer), a member of the Araliaceae family, is known as a traditional medicinal plant to have a wide range of health properties. Polysaccharides constitute a major component of Korean ginseng, and its berries exhibit immune-modulating properties. The purpose of this study was to investigate the immune effects of crude polysaccharide (GBPC) extracted from Korean ginseng berry on peritoneal macrophages in mice with cyclophosphamide (CY)- induced immunosuppression. BALB/c mice were divided into eight groups: normal control, normal control + CY, levamisole + CY, ginseng + CY, and four concentrations of 50, 100, 250, and 500mg/kg BW/day of GBPC + CY. Mice were orally administered with samples for 10 days. Immunosuppression was established by treating mice with CY (80 mg/kg BW/day) through intraperitoneal injection on days 4 to 6. The immune function of peritoneal macrophages was then evaluated. Oral administration of 500mg/kg BW/day GBPC resulted in proliferation, NO production, and phagocytosis at 100%, 88%, and 91%, respectively, close to the levels of the normal group (100%) of peritoneal macrophages. In CY-treated mice, GBPC of 50-500 mg/kg BW/day also dose-dependently stimulated the proliferation, NO production, and phagocytosis at 56-100%, 47-88%, and 53-91%, respectively, with expression levels of immune-associated genes, such as iNOS, COX-2, IL-1ß, IL-6, and TNF-α, of about 0.32 to 2.87-fold, compared to those in the CY group. GBPC could be a potential immunomodulatory material to control peritoneal macrophages under an immunosuppressive condition.


Assuntos
Macrófagos Peritoneais , Panax , Animais , Camundongos , Frutas , Ciclofosfamida/farmacologia , Terapia de Imunossupressão , Imunidade , Imunomodulação , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo
18.
J Ethnopharmacol ; 307: 116192, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36706933

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tiepishihu Xiyangshen granules (TXG) is a traditional Chinese medicine formula composed of Panax quinquefolius L, Dendrobium officinale Kimura & Migo and Ganoderma lucidum (Curtis) P. Karst. It has long been used as a nutritional supplement and an immune enhancer in China. However, the immunomodulatory effects and the underlying mechanisms of TXG have not been clarified. AIM OF THE STUDY: This study aims to investigate the immunomodulatory effects of TXG and clarify the underlying mechanism. MATERIALS AND METHOD: TXG was administered by gavage for 18 days. From the 15th day, the immunosuppression model was induced by intraperitoneally injecting 80 mg/kg CTX for 3 days. The immune regulatory effects of TXG on immune organs were verified by calculating the organ index and observing the spleen tissue structure through HE staining. The effects of TXG on immune cells were examined by recording the PBWC, the proliferation rate of lymphocyte and the T lymphocyte phenotype. The effects of TXG on immune molecules were measured by detecting serum hemolysin and the content of cytokines. In parallel, kit was utilized to detect its antioxidant capacity. RNA seq and Western blot were used to analyze the possible immune regulation mechanism of TXG. HPLC and UPLC-Q-TOF-MS were used to identify the chemical components in TXG. RESULTS: At the level of immune organs, TXG effectively reduced the adverse reaction to the body and the substantial damage to the spleen after chemotherapy by improving the spleen damage. At the level of immune molecules, TXG upregulated the expression of cytokines and antibodies. At the level of immune cells, TXG antagonized bone marrow suppression by increasing the PBWC of immunosuppressed mice. Meanwhile, TXG upregulated the ratio of CD4+/CD8+ lymphocytes and ameliorated the proliferation of T and B lymphocytes. And the mechanism of TXG to improve immunity might be through TLR4/MAPKs and PI3K/AKT/FOXO3a signaling pathways. CONCLUSION: The results of this study confirmed that TXG has prominent immunomodulatory activities, and the immunity regulations of TXG may be achieved by regulating TLR4/MAPKs and PI3K/AKT/FOXO3a signal pathways.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 4 Toll-Like , Ciclofosfamida/farmacologia , Transdução de Sinais , Terapia de Imunossupressão , Citocinas/farmacologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-36368505

RESUMO

Astragaloside IV (ASIV) has effects of antioxidation and immunologic enhancement. However, there are few reports on the application and potential mechanism of ASIV in aquaculture. In this study, we investigated the effect of ASIV on growth, antioxidation, and immune function of tilapia. Tilapia were fed a diet containing 0.1, 0.2, and 0.5 g·kg-1 ASIV for 60 days, followed by an intrapleural injection of 50 mg·kg-1 cyclophosphamide (CTX) to induce oxidative damage and immunosuppression. Then tilapia were weighed and blood, liver, spleen, kidney, and intestinal were collected. The results showed ASIV increased the final weight, relative weight rate, and specific growth rate of tilapia, reduce conversion ratio, and reduced the morphological lesions of tissues. Meanwhile, ASIV alleviated CTX-induced oxidative damage by improving antioxidant activity in serum and tissues and inhibiting lipid peroxidation. Additionally, ASIV attenuated the immunosuppression of tilapia caused by CTX, regulated immunochemical indexes in serum, increased the viability of peripheral blood leukocytes and head kidney macrophages, and restored respiratory burst activity (O2-) in head kidney macrophages and splenocytes. Furthermore, qPCR data showed ASIV up-regulated antioxidant-related gene expression of nrf2, ho-1, gpx3, and cat and immune-related gene expression including C3 and igm. In conclusion, ASIV as a feed additive can not only improve the growth performance but also enhance the antioxidant capacity and immune function of tilapia, which may be associated with the ability of ASIV to scavenge free radicals, reduce lipid peroxidation levels, and stabilize numbers of immune cells.


Assuntos
Ciclídeos , Tilápia , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Tilápia/metabolismo , Ciclídeos/metabolismo , Estresse Oxidativo , Dieta , Terapia de Imunossupressão , Ração Animal/análise , Suplementos Nutricionais
20.
Int Immunopharmacol ; 115: 109635, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580758

RESUMO

The therapeutic benefits of curcuminoids in various diseases have been extensively reported. However, little is known regarding their preventive effects on extensive immunosuppression. We investigated the immunoregulatory effects of a curcuminoid complex (CS/M), solubilized with stevioside, using a microwave-assisted method in a cyclophosphamide (CTX)-induced immunosuppressive mouse model and identified its new pharmacological benefits. CTX-treated mice showed a decreased number of innate cells, such as dendritic cells (DCs), neutrophils, and natural killer (NK) cells, and adaptive immune cells (CD4 and CD8 T cells) in the spleen. In addition, CTX administration decreased T cell activation, especially that of Th1 and CD8 T cells, whereas it increased Th2 and regulatory T (Treg) cell activations. Pre-exposure of CS/M to CTX-induced immunosuppressed mice restored the number of innate cells (DCs, neutrophils, and NK cells) and increased their activity (including the activity of macrophages). Exposure to CS/M also led to the superior restoration of T cell numbers, including Th1, activated CD8 T cells, and multifunctional T cells, suppressed by CTX, along with a decrease in Th2 and Treg cells. Furthermore,CTX-injected mice pre-exposed to CS/M were accompanied by an increase in the levels of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), which play an essential role against oxidative stress. Importantly, CS/M treatment significantly reduced viral loads in severe acute respiratory syndrome coronavirus2-infected hamsters and attenuated the gross pathology in the lungs. These results provide new insights into the immunological properties of CS/M in preventing extensive immunosuppression and offer new therapeutic opportunities against various cancers and infectious diseases caused by viruses and intracellular bacteria.


Assuntos
COVID-19 , Reconstituição Imune , Animais , Camundongos , Antioxidantes/uso terapêutico , SARS-CoV-2 , Terapia de Imunossupressão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA