Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 124(5): 2441-2511, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38382032

RESUMO

Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.


Assuntos
Boranos , Terapia por Captura de Nêutron de Boro , Neoplasias , Humanos , Boro/química , Química Farmacêutica , Compostos de Boro/química , Neoplasias/tratamento farmacológico , Ácidos Borônicos , Terapia por Captura de Nêutron de Boro/métodos
2.
Appl Radiat Isot ; 205: 111184, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215645

RESUMO

Boron neutron capture therapy (BNCT) combines neutron irradiation with boron compounds that are selectively uptaken by tumor cells. Boronophenylalanine (BPA) is a boron compound used to treat malignant brain tumors. The determination of boron concentration in cells is of great relevance to the field of BNCT. This study was designed to develop a novel method for simultaneously measuring the uptake of BPA by U87 and U251 cells (two brain tumor cell lines) and number of cells using inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results revealed a linear correlation between phosphorus intensity and the numbers of U87 and U251 cells, with correlation coefficients (R2) of 0.9995 and 0.9994, respectively. High accuracy and reliability of phosphorus concentration standard curve were also found. Using this new method, we found that BPA had no significant effect on phosphorus concentration in either U87 or U251 cells. However, BPA increased the boron concentration in U87 and U251 cells in a concentration-dependent manner, with the boron concentration in U87 cells being higher than that in U251 cells. In both U87 and U251 cells, boron was mainly distributed in the cytoplasm and nucleus, accounting for 85% and 13% of the total boron uptake by U87 cells and 86% and 11% of the total boron uptake by U251 cells, respectively. In the U87 and U251 cell-derived xenograft (CDX) animal model, tumor exhibited higher boron concentration values than blood, heart, liver, lung, and brain, with a tumor/blood ratio of 2.87 for U87 cells and 3.11 for U251 cells, respectively. These results suggest that the phosphorus concentration in U87 and U251 cells can represent the number of cells and BPA is easily uptaken by tumor cells as well as in tumor tissue.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Animais , Humanos , Espectrofotometria Atômica , Boro , Reprodutibilidade dos Testes , Neoplasias Encefálicas/radioterapia , Encéfalo , Compostos de Boro , Fósforo , Terapia por Captura de Nêutron de Boro/métodos
3.
Sci Rep ; 13(1): 22883, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38129553

RESUMO

Boron neutron capture therapy (BNCT) is a high-dose-intensive radiation therapy that has gained popularity due to advancements in accelerator neutron sources. To determine the dose for BNCT, it is necessary to know the difficult-to-determine boron concentration and neutron fluence. To estimate this dose, we propose a method of measuring the prompt γ-rays (PGs) from the boron neutron capture reaction (BNCR) using a Compton camera. We performed a fundamental experiment to verify basic imaging performance and the ability to discern the PGs from 511 keV annihilation γ-rays. A Si/CdTe Compton camera was used to image the BNCR and showed an energy peak of 478 keV PGs, separate from the annihilation γ-ray peak. The Compton camera could visualize the boron target with low neutron intensity and high boron concentration. This study experimentally confirms the ability of Si/CdTe Compton cameras to image BNCRs.


Assuntos
Terapia por Captura de Nêutron de Boro , Compostos de Cádmio , Pontos Quânticos , Terapia por Captura de Nêutron de Boro/métodos , Boro/uso terapêutico , Telúrio , Nêutrons
4.
Biomed Phys Eng Express ; 9(3)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021631

RESUMO

We developed a 'hybrid algorithm' that combines the Monte Carlo (MC) and point-kernel methods for fast dose calculation in boron neutron capture therapy. The objectives of this study were to experimentally verify the hybrid algorithm and to verify the calculation accuracy and time of a 'complementary approach' adopting both the hybrid algorithm and the full-energy MC method. In the latter verification, the results were compared with those obtained using the full-energy MC method alone. In the hybrid algorithm, the moderation process of neutrons is simulated using only the MC method, and the thermalization process is modeled as a kernel. The thermal neutron fluxes calculated using only this algorithm were compared with those measured in a cubic phantom. In addition, a complementary approach was used for dose calculation in a geometry simulating the head region, and its computation time and accuracy were verified. The experimental verification indicated that the thermal neutron fluxes calculated using only the hybrid algorithm reproduced the measured values at depths exceeding a few centimeters, whereas they overestimated those at shallower depths. Compared with the calculation using only the full-energy MC method, the complementary approach reduced the computation time by approximately half, maintaining nearly same accuracy. When focusing on the calculation only using the hybrid algorithm only for the boron dose attributed to the reaction of thermal neutrons, the computation time was expected to reduce by 95% compared with the calculation using only the full-energy MC method. In conclusion, modeling the thermalization process as a kernel was effective for reducing the computation time.


Assuntos
Terapia por Captura de Nêutron de Boro , Dosagem Radioterapêutica , Terapia por Captura de Nêutron de Boro/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Nêutrons , Algoritmos
5.
J Biomed Mater Res A ; 111(8): 1176-1184, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36740897

RESUMO

Radiation therapy has been widely used in the clinical treatment of tumors. Due to the low radiation absorption of tumors, a high dose of ionizing radiation is often required during radiotherapy, which causes serious damage to normal tissues near tumors. Boron neutron capture therapy (BNCT) is more targeted than conventional radiotherapy. To improve the therapeutic effect of cancer, albumin was selected as the drug carrier to wrap the fluorescent tracer boron drug BS-CyP and prepare the nanoparticles. Then, we developed a novel tumor-targeting nano-boron drug by using hyaluronic acid to modify the nanoparticles. We found that BS-CyP albumin nanoparticles modified with hyaluronic acid effectively delayed drug release and enhanced the aggregation, in tumors, showing good safety with no obvious toxicity to cells and mice. This study confirmed the advantages of boron drugs modified with hyaluronic acid targeting tumors and may provide a reference for BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro , Nanopartículas , Neoplasias , Animais , Camundongos , Ácido Hialurônico , Boro/uso terapêutico , Neoplasias/tratamento farmacológico , Compostos de Boro
6.
Cells ; 11(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36078143

RESUMO

In clinical boron neutron capture therapy (BNCT), boronophenylalanine (BPA) administrations through one-step infusion (OSI) and two-step infusion (TSI) are the most widely used. This study compared the advantages of OSI and TSI using a human oral squamous cell carcinoma-bearing animal model. OSI was administered at a high-dose rate of 20 mg/kg/min for 20 min (total dose: 400 mg/kg) as the first step infusion. TSI was a prolonged infusion at a low-dose rate of 1.67 mg/kg/min for 15, 30, 45, and 60 min (total dose: 25, 50, 75, and 100 mg/kg) following the first step infusion. The sigmoid Emax model was used to evaluate the boron accumulation effect in the tumor. The advantages of TSI were observed to be greater than those of OSI. The observed advantages of TSI were as follows: a stable level of boron concentration in blood; tumor to blood boron ratio (T/B); tumor to muscle boron ratio (T/M); and skin to blood boron ratio (S/B). The boron accumulation effect in tumors increased to 68.98%. Thus, effective boron concentration in these tumor cells was achieved to enhance the lethal damage in BNCT treatment. Boron concentration in the blood was equal to that in the skin. Therefore, the equivalent dose was accurately estimated for the skin.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Carcinoma de Células Escamosas , Neoplasias Bucais , Animais , Boro , Compostos de Boro/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/radioterapia , Modelos Animais de Doenças , Humanos , Neoplasias Bucais/tratamento farmacológico , Fenilalanina/uso terapêutico
7.
Molecules ; 27(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889538

RESUMO

A series of novel cobalt bis(dicarbollide)-curcumin conjugates were synthesized. Two conjugates were obtained through the nucleophilic ring-opening reaction of the 1,4-dioxane and tetrahydropyran derivatives of cobalt bis(dicarbollide) with the OH group of curcumin, and using two equiv. of the oxonium derivatives, two other conjugates containing two cobalt bis(dicarbollide) units per molecule were obtained. In contrast to curcumin, the conjugates obtained were found to be non-cytotoxic against both tumor and normal cell lines. The analysis of the intracellular accumulation of the conjugates by flow cytometry showed that all cobalt bis(dicarbollide)-curcumin conjugates entered HCT116 colorectal carcinoma cells in a time-dependent manner. New non-cytotoxic conjugates contain a large amount of boron atoms in the biomolecule and can potentially be used for further biological research into boron neutron capture therapy (BNCT).


Assuntos
Terapia por Captura de Nêutron de Boro , Curcumina , Neoplasias , Boro/farmacologia , Compostos de Boro , Cobalto , Curcumina/farmacologia , Humanos
8.
Cells ; 10(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943904

RESUMO

BACKGROUND: Boron neutron capture therapy (BNCT) is a nuclear reaction-based tumor cell-selective particle irradiation method. High-dose methotrexate and whole-brain radiation therapy (WBRT) are the recommended treatments for primary central nervous system lymphoma (PCNSL). This tumor responds well to initial treatment but relapses even after successful treatment, and the prognosis is poor as there is no safe and effective treatment for relapse. In this study, we aimed to conduct basic research to explore the possibility of using BNCT as a treatment for PCNSL. METHODS: The boron concentration in human lymphoma cells was measured. Subsequently, neutron irradiation experiments on lymphoma cells were conducted. A mouse central nervous system (CNS) lymphoma model was created to evaluate the biodistribution of boron after the administration of borono-phenylalanine as a capture agent. In the neutron irradiation study of a mouse PCNSL model, the therapeutic effect of BNCT on PCNSL was evaluated in terms of survival. RESULTS: The boron uptake capability of human lymphoma cells was sufficiently high both in vitro and in vivo. In the neutron irradiation study, the BNCT group showed a higher cell killing effect and prolonged survival compared with the control group. CONCLUSIONS: A new therapeutic approach for PCNSL is urgently required, and BNCT may be a promising treatment for PCNSL. The results of this study, including those of neutron irradiation, suggest success in the conduct of future clinical trials to explore the possibility of BNCT as a new treatment option for PCNSL.


Assuntos
Terapia por Captura de Nêutron de Boro , Encéfalo/efeitos da radiação , Neoplasias do Sistema Nervoso Central/radioterapia , Linfoma/radioterapia , Animais , Apoptose/efeitos da radiação , Boro/química , Boro/isolamento & purificação , Boro/farmacologia , Encéfalo/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/patologia , Irradiação Craniana , Modelos Animais de Doenças , Humanos , Linfoma/tratamento farmacológico , Linfoma/patologia , Metotrexato/farmacologia , Camundongos , Fenilalanina/química , Fenilalanina/isolamento & purificação , Fenilalanina/farmacologia , Distribuição Tecidual/efeitos dos fármacos
9.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770947

RESUMO

Boron neutron capture therapy is a unique form of adjuvant cancer therapy for various malignancies including malignant gliomas. The conjugation of boron compounds and human serum albumin (HSA)-a carrier protein with a long plasma half-life-is expected to extend systemic circulation of the boron compounds and increase their accumulation in human glioma cells. We report on the synthesis of fluorophore-labeled homocystamide conjugates of human serum albumin and their use in thiol-'click' chemistry to prepare novel multimodal boronated albumin-based theranostic agents, which could be accumulated in tumor cells. The novelty of this work involves the development of the synthesis methodology of albumin conjugates for the imaging-guided boron neutron capture therapy combination. Herein, we suggest using thenoyltrifluoroacetone as a part of an anticancer theranostic construct: approximately 5.4 molecules of thenoyltrifluoroacetone were bound to each albumin. Along with its beneficial properties as a chemotherapeutic agent, thenoyltrifluoroacetone is a promising magnetic resonance imaging agent. The conjugation of bimodal HSA with undecahydro-closo-dodecaborate only slightly reduced human glioma cell line viability in the absence of irradiation (~30 µM of boronated albumin) but allowed for neutron capture and decreased tumor cell survival under epithermal neutron flux. The simultaneous presence of undecahydro-closo-dodecaborate and labeled amino acid residues (fluorophore dye and fluorine atoms) in the obtained HSA conjugate makes it a promising candidate for the combination imaging-guided boron neutron capture therapy.


Assuntos
Antineoplásicos/uso terapêutico , Compostos de Boro/uso terapêutico , Terapia por Captura de Nêutron de Boro , Sistemas de Liberação de Medicamentos , Homocisteína/química , Albumina Sérica Humana/química , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos de Boro/síntese química , Compostos de Boro/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Homocisteína/análogos & derivados , Humanos , Estrutura Molecular
10.
Br J Radiol ; 94(1128): 20210593, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34520668

RESUMO

OBJECTIVE: The aim of the present study was to evaluate the local and regional therapeutic efficacy and abscopal effect of BNCT mediated by boronophenyl-alanine, combined with Bacillus Calmette-Guerin (BCG) as an immunotherapy agent in this model. METHODS: The local effect of treatment was evaluated in terms of tumor response in the irradiated tumor-bearing right hind flank. Metastatic spread to tumor-draining lymph nodes was analyzed as an indicator of regional effect. The abscopal effect of treatment was assessed as tumor growth inhibition in the contralateral (non-irradiated) left hind flank inoculated with tumor cells 2 weeks post-irradiation. The experimental groups BNCT, BNCT + BCG, BCG, Beam only (BO), BO +BCG, SHAM (tumor-bearing, no treatment, same manipulation) were studied. RESULTS: BNCT and BNCT + BCG induced a highly significant local anti-tumor response, whereas BCG alone induced a weak local effect. BCG and BNCT + BCG induced a significant abscopal effect in the contralateral non-irradiated leg. The BNCT + BCG group showed significantly less metastatic spread to tumor-draining lymph nodes vs SHAM and vs BO. CONCLUSION: This study suggests that BNCT + BCG-immunotherapy would induce local, regional and abscopal effects in tumor-bearing animals. BNCT would be the main effector of the local anti-tumor effect whereas BCG would be the main effector of the abscopal effect. ADVANCES IN KNOWLEDGE: Although the local effect of BNCT has been widely evidenced, this is the first study to show the local, regional and abscopal effects of BNCT combined with immunotherapy, contributing to comprehensive cancer treatment with combined therapies.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Neoplasias do Colo/terapia , Imunoterapia/métodos , Animais , Neoplasias do Colo/imunologia , Neoplasias do Colo/radioterapia , Terapia Combinada/métodos , Modelos Animais de Doenças , Feminino , Masculino , Ratos , Resultado do Tratamento
11.
Sci Rep ; 11(1): 15520, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330984

RESUMO

Boron neutron capture therapy (BNCT) is a two-step therapeutic process that utilizes Boron-10 in combination with low energy neutrons to effectively eliminate targeted cells. This therapy is primarily used for difficult to treat head and neck carcinomas; recent advances have expanded this method to cover a broader range of carcinomas. However, it still remains an unconventional therapy where one of the barriers for widespread adoption is the adequate delivery of Boron-10 to target cells. In an effort to address this issue, we examined a unique nanoparticle drug delivery system based on a highly stable and modular proteinaceous nanotube. Initially, we confirmed and structurally analyzed ortho-carborane binding into the cavities of the nanotube. The high ratio of Boron to proteinaceous mass and excellent thermal stability suggest the nanotube system as a suitable candidate for drug delivery into cancer cells. The full physicochemical characterization of the nanotube then allowed for further mechanistic molecular dynamic studies of the ortho-carborane uptake and calculations of corresponding energy profiles. Visualization of the binding event highlighted the protein dynamics and the importance of the interhelical channel formation to allow movement of the boron cluster into the nanotube. Additionally, cell assays showed that the nanotube can penetrate outer membranes of cancer cells followed by localization around the cells' nuclei. This work uses an integrative approach combining experimental data from structural, molecular dynamics simulations and biological experiments to thoroughly present an alternative drug delivery device for BNCT which offers additional benefits over current delivery methods.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Portadores de Fármacos/química , Nanotubos/química , Boro/química , Isótopos/química
12.
Appl Radiat Isot ; 169: 109407, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33444907

RESUMO

Synovial sarcoma is a rare tumor requiring new treatment methods. A 46-year-old woman with primary monophasic synovial sarcoma in the left thigh involving the sciatic nerve, declining surgery because of potential dysfunction of the affected limbs, received two courses of BNCT. The tumor thus reduced was completely resected with no subsequent recurrence. The patient is now able to walk unassisted, and no local recurrence has been observed, demonstrating the applicability of BNCT as adjuvant therapy for synovial sarcoma. Further study and analysis with more experience accumulation are needed to confirm the real impact of BNCT efficacy for its application to synovial sarcoma.


Assuntos
Terapia por Captura de Nêutron de Boro , Sarcoma Sinovial/radioterapia , Terapia Combinada , Feminino , Humanos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Sarcoma Sinovial/diagnóstico por imagem , Sarcoma Sinovial/cirurgia
13.
Molecules ; 25(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066470

RESUMO

In comparison with pristine sinomenine and carborane precursors, the calculations of molecular docking with matrix metalloproteinases (MMPs) and methylcarboranyl-n-butyl sinomenine showed improved interactions. Accordingly, methylcarboranyl-n-butyl sinomenine shows a high potential in the treatment of rheumatoid arthritis (RA) in the presence of slow neutrons. The reaction of potassium salt of sinomenie, which is generated from the deprotonation of sinomenine (1) using potassium carbonate in a solvent of N,N-dimethyl formamide, with 4-methylcarboranyl-n-butyl iodide, (2) forms methylcarboranyl-n-butyl sinomenine (3) in 54.3% yield as a new product. This new compound was characterized by 1H, 13C, and 11B NMR spectroscopy, FT-IR spectroscopy, and elemental analyses to confirm its molecular composition. In addition to molecular docking interactions with MMPs, the in vitro killing effects of 3, along with its toxicity measurements, exhibited its potential to be the new drug delivery agent for boron neutron capture synovectomy (BNCS) and boron neutron capture therapy (BNCT) for the treatment of rheumatoid arthritis (RA) and cancers in the presence of slow neutrons, respectively.


Assuntos
Antineoplásicos/química , Antirreumáticos/química , Antirreumáticos/farmacologia , Terapia por Captura de Nêutron de Boro/métodos , Morfinanos/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antirreumáticos/síntese química , Boro/farmacocinética , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Espectroscopia de Ressonância Magnética , Metaloproteinase 1 da Matriz/química , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/química , Metaloproteinase 13 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Sinoviócitos/efeitos dos fármacos
14.
Appl Radiat Isot ; 166: 109404, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32956924

RESUMO

The shortcomings in Boron neutron capture therapy (BNCT) and Hyperthermia for killing the tumor cell desired for the synthesis of a new kind of material suitable to be first used in BNCT and later on enable the conditions for Hyperthermia to destroy the tumor cell. The desire led to the synthesis of large band gap semiconductor nano-size Boron-10 enriched crystals of hexagonal boron nitride (10BNNCs). The contents of 10BNNCs are analyzed with the help of x-ray photoelectron spectroscopy (XPS) and counter checked with Raman and XRD. The 10B-contents in 10BNNCs produce 7Li and 4He nuclei. A Part of the 7Li and 4He particles released in the cell is allowed to kill the tumor (via BNCT) whereas the rest produce electron-hole pairs in the semiconductor layer of 10BNNCs suggested to work in Hyperthermia with an externally applied field.


Assuntos
Compostos de Boro/síntese química , Terapia por Captura de Nêutron de Boro/métodos , Nanopartículas/química , Animais , Boro/química , Boro/uso terapêutico , Compostos de Boro/química , Compostos de Boro/uso terapêutico , Humanos , Hipertermia Induzida/métodos , Isótopos/química , Isótopos/uso terapêutico , Microscopia Eletrônica de Transmissão , Nanopartículas/uso terapêutico , Nanopartículas/ultraestrutura , Nanotecnologia , Neoplasias/radioterapia , Neoplasias/terapia , Espectroscopia Fotoeletrônica , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Pontos Quânticos/ultraestrutura , Análise Espectral Raman , Difração de Raios X
15.
Appl Radiat Isot ; 164: 109297, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32768887

RESUMO

PURPOSE: The present study analyzed different protocols of administration of boronophenylalanine (BPA) and sodium butyrate (NaB) to increase the BNCT efficacy for poorly differentiated thyroid cancer (PDTC). MATERIALS AND METHODS: Nude mice implanted with human PDTC cells (WRO) were distributed into four protocols: 1) BPA; 2) BPA + ip NaB; 3) BPA + oral NaB; 4) Control. Biodistribution and histologic studies were performed. LAT (BPA transporter) isoforms gene expression was assessed by RT-PCR. RESULTS: Tumor growth delay was observed in animals of the Protocol #3 (p < 0.05). NaB (Protocol #2) increased tumor boron uptake 2-h post BPA injection (p < 0.05). On the other hand, NaB upregulated the expression of all the isoforms of the LAT transporter in vitro. Histologic studies showed a significant decrease of mitotic activity and an increase of vacuoles in tumors of Protocol #3. Neutrons alone or combined with NaB caused some tumor growth delay (p < 0.05), while in the BNCT and BNCT + NaB groups, there was a halt in tumor growth in 70 and 80% of the animals, respectively. CONCLUSIONS: Intraperitoneally administration of NaB increased boron uptake while oral administration for a longer period of time induced tumor growth delay previous to BPA administration. The use of NaB via ip would optimize the irradiation results.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Ácido Butírico/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/radioterapia , Animais , Ácido Butírico/farmacocinética , Diferenciação Celular , Linhagem Celular Tumoral , Terapia Combinada , Inibidores de Histona Desacetilases/farmacocinética , Humanos , Camundongos , Neoplasias da Glândula Tireoide/patologia , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Appl Radiat Isot ; 157: 109018, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31889683

RESUMO

The current methodology for determining the biological effect of Boron Neutron Capture Therapy (BNCT) has recently been questioned, and a more accurate framework based in the photon iso-effective dose has been proposed. In this work we derive a first order approximation to this quantity. The new approach removes the main drawbacks of the current method, being based on new weighting factors which are true constants (dose independent) but which can be evaluated from published data on the existing (dose-dependent) weighting factors. In addition to this, we apply the formalism to allow the comparison to a fractionated conventional radiotherapy treatment, for which there is a lot of knowledge from clinical practice. As an application, the photon iso-effective dose of a BNCT treatment for a brain tumor is estimated. An excel sheet used for these calculations is also provided as supplementary material and can be used also with user-provided input data for the estimation of the photon iso-effective dose for comparison with conventional radiotherapy, both to single and fractionated treatments.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Dosagem Radioterapêutica , Animais , Neoplasias Encefálicas/radioterapia , Relação Dose-Resposta à Radiação , Gliossarcoma/radioterapia , Humanos , Fótons/uso terapêutico , Ratos
17.
Int J Clin Oncol ; 25(1): 43-50, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31168726

RESUMO

Boron neutron capture therapy (BNCT) has a unique property of tumor-cell-selective heavy-particle irradiation. BNCT can form large dose gradients between cancer cells and normal cells, even if the two types of cells are mingled at the tumor margin. This property makes it possible for BNCT to be used for pre-irradiated locally recurrent tumors. Shallow-seated, locally recurrent lesions have been treated with BNCT because of the poor penetration of neutrons in the human body. BNCT has been used in clinical studies for recurrent malignant gliomas and head and neck cancers using neutron beams derived from research reactors, although further investigation is warranted because of the small number of patients. In the latter part of this review, the development of accelerator-based neutron sources is described. BNCT for common cancers will become available at medical institutes that are equipped with an accelerator-based BNCT system. Multiple metastatic lung tumors have been investigated as one of the new treatment candidates because BNCT can deliver curative doses of radiation to the tumors while sparing normal lung tissue. Further basic and clinical studies are needed to move toward an era of accelerator-based BNCT when more patients suffering from refractory cancers will be treated.


Assuntos
Terapia por Captura de Nêutron de Boro/instrumentação , Nêutrons/uso terapêutico , Aceleradores de Partículas/instrumentação , Humanos , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/radioterapia , Neoplasias/patologia , Neoplasias/radioterapia
18.
Anticancer Res ; 39(12): 6661-6671, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31810931

RESUMO

BACKGROUND: Boron neutron capture therapy (BNCT) selectively kills tumor cells while sparing adjacent normal cells. Boric acid (BA)-mediated BNCT showed therapeutic efficacy in treating hepatocellular carcinoma (HCC) in vivo. However, DNA damage and corresponding responses induced by BA-mediated BNCT remained unclear. This study aimed to investigate whether BA-mediated BNCT induced DNA double-strand breaks (DSBs) and to explore DNA damage responses in vitro. MATERIALS AND METHODS: Huh7 Human HCC cells were treated with BA and irradiated with neutrons during BA-BNCT. Cell survival and DNA DSBs were examined by clonogenic assay and expression of phosphorylated H2A histone family member X (γH2AX), respectively. The DNA damage response was explored by determining the expression levels of DNA repair- and apoptosis-associated proteins and conducting a cell-cycle analysis. RESULTS: DNA DSBs induced by BA-mediated BNCT were primarily repaired through the homologous recombination pathway. BA-mediated BNCT induced G2/M arrest and apoptosis in HCC. CONCLUSION: Our findings may enable the identification of radiosensitizers or adjuvant drugs for potentiating the therapeutic effectiveness of BA-mediated BNCT for HCC.


Assuntos
Ácidos Bóricos/uso terapêutico , Terapia por Captura de Nêutron de Boro/métodos , Carcinoma Hepatocelular/radioterapia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Neoplasias Hepáticas/radioterapia , Radiossensibilizantes/uso terapêutico , Proteínas Reguladoras de Apoptose/metabolismo , Ácidos Bóricos/farmacocinética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Radiossensibilizantes/farmacocinética , Reparo de DNA por Recombinação
20.
Mil Med Res ; 6(1): 32, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31651361

RESUMO

Locally recurrent head and neck squamous cell carcinoma (HNSCC) is often unresectable, and a repeat course of radiotherapy is associated with incremental toxicities. Boron neutron capture therapy (BNCT) is a novel targeted radiotherapy modality that can achieve a high dose gradient between cancerous and adjacent normal tissues. However, the relationships among the dose resulting from BNCT, tumor response to BNCT, and survival are not completely understood. Recently, a study published in Radiotherapy and Oncology investigated the efficacy of BNCT in the treatment of patients with locally recurrent HNSCC and the factors associated with favorable treatment response and survival. In this article, the findings, strengths and limitations of this study are discussed in depth, and the significance of the study and motivations for future research are highlighted.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias de Cabeça e Pescoço/radioterapia , Recidiva Local de Neoplasia/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/mortalidade , Humanos , Recidiva Local de Neoplasia/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA