Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Nutr ; 29(5): 654-62, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20392549

RESUMO

BACKGROUND & AIMS: Immune-enhancing diets (IEDs) contain a mixture of nutrients claimed to have immunological properties. Therefore, it seemed relevant to determine the effect of each of their components. The aim of this study was to examine the role of arginine (Arg) and ω3 polyunsaturated fatty acids (ω3 PUFAs) in the effect of an IED (Crucial(®)) in a validated rat model of inflammation induced by turpentine (TI). METHODS: Forty-two rats were randomized into five groups: AL (ad libitum), TI-EN (TI+standard enteral nutrition (EN): Sondalis(®)HP), TI-EN-Arg (TI+standard EN+Arg in equimolar concentration to Arg in the IED), TI-M-IED (TI+modified IED containing the same ω6/ω3 ratio as in standard EN) and TI-IED (TI+Crucial(®)). Blood was sampled to determine CD25 receptor density on lymphocytes. TNF-α, IL-6 and NO (production and expression) were evaluated on isolated macrophages. Mesenteric lymph nodes, spleen and liver were cultured for analysis of enterobacterial translocation and dissemination. RESULTS: CD25 density was decreased after TI and was corrected in the TI-EN-Arg, TI-M-IED and TI-IED groups (p<0.05). TI induced an alteration of macrophage mRNA expression of IL-6, TNF-α and iNOS, corrected in the TI-EN-Arg and TI-M-IED groups (p<0.05), but not by the IED. Enterobacterial translocation was observed in all treated groups, nevertheless the amount tended (p=0.054) to be lower in the TI-EN-Arg group. CONCLUSIONS: Arg and ω3 PUFAs make a major contribution to IED effects, but our study shows interaction between them on macrophage reactivity. This indicates that the individual properties of each pharmaconutrient are not additive in IEDs.


Assuntos
Arginina/farmacocinética , Ácidos Graxos Ômega-3/farmacocinética , Alimentos Formulados , Inflamação/metabolismo , Inflamação/terapia , Animais , Arginina/imunologia , Translocação Bacteriana , Interações Medicamentosas , Nutrição Enteral , Ácidos Graxos Ômega-3/imunologia , Subunidade alfa de Receptor de Interleucina-2/análise , Subunidade alfa de Receptor de Interleucina-2/sangue , Interleucina-6/imunologia , Interleucina-6/metabolismo , Linfócitos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Terebintina/metabolismo
2.
Biochimie ; 91(6): 665-70, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19375482

RESUMO

Our society is highly depending on petroleum for its activities. About 90% is used as an energy source for transportation and for generation of heat and electricity and the remaining as feedstocks in the chemical industry. However, petroleum is a finite source as well as causing several environmental problems such as rising carbon dioxide levels in the atmosphere. Petroleum therefore needs to be replaced by alternative and sustainable sources. Plant oils and oleochemicals derived from them represent such alternative sources, which can deliver a substantial part of what is needed to replace the petroleum used as feedstocks. Plant derived feedstock oils can be provided by two types of oil qualities, multi-purpose and technical oils. Multi-purpose oils represent oil qualities that contain common fatty acids and that can be used for both food and feedstock applications. Technical oil qualities contain unusual fatty acids with special properties gained from their unique molecular structure and these types of oils should only be used for feedstock applications. As a risk mitigation strategy in the selection of crops, technical oil qualities should therefore preferably be produced by oil crop platforms dedicated for industrial usage. This review presents a short survey of oil crop platforms to be considered for either multi-purpose or technical oils production. Included among the former platforms are some of the major oil crops in cultivation such as oil palm, soybean and rapeseed. Among the later are those that could be developed into dedicated industrial platforms such as crambe, flax, cotton and Brassica carinata. The survey finishes off by highlighting the potential of substantial increase in plant oil production by developing metabolic flux platforms, which are starch crops converted into oil crops.


Assuntos
Fontes Geradoras de Energia , Petróleo , Óleos de Plantas/metabolismo , Plantas/metabolismo , Brassica rapa/metabolismo , Helianthus/metabolismo , Óleo de Palmeira , Glycine max/metabolismo , Amido/metabolismo , Terebintina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA