Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446155

RESUMO

Increasing evidence indicates that photobiomodulation, based on tissue irradiation with photons in the red to near-infrared spectrum, may be an effective therapeutic approach to central nervous system disorders. Although nervous system functionality has been shown to be affected by photons in animal models, as well as in preliminary evidence in healthy subjects or in patients with neuropsychiatric disorders, the mechanisms involved in the photobiomodulation effects have not yet been clarified. We previously observed that photobiomodulation could stimulate glutamate release. Here, we investigate mechanisms potentially involved in the glutamate-releasing effect of photons from adult mouse cerebrocortical nerve terminals. We report evidence of photon ability to induce an exocytotic vesicular release of glutamate from the terminals of glutamatergic neurons in a power-dependent way. It can be hypothesized that photobiomodulation, depending on the potency, can release glutamate in a potentially neurotoxic or physiological range.


Assuntos
Ácido Glutâmico , Fótons , Animais , Camundongos , Córtex Cerebral , Ácido Glutâmico/farmacologia , Terminações Nervosas , Neurônios , Sinaptossomos
2.
Neurosurgery ; 91(4): 618-624, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852974

RESUMO

BACKGROUND: Neural components of the fibrous filum terminale (FT) are well known but are considered as embryonic remnants without functionality. OBJECTIVE: To investigate the ultrastructure of human FT specimens for sensory nerve endings and record paraspinal muscle activity on electrostimulation of the FT. METHODS: We prospectively investigated a cohort of 53 patients who underwent excision of the FT for the treatment of tethered cord syndrome. Surgical FT specimens were investigated by light and transmission electron microscopy. Intraoperative electrophysiological routine monitoring was extended by recording paraspinal muscles above and below the laminotomy level. RESULTS: Light microscopy revealed tiny peripheral nerves piercing the pia mater of the FT and entering its fibrous core. Transmission electron microscopy unveiled within the fibrous core of the FT myelinated nerve structures in 8 of the 53 patients and unmyelinated ones in 10 of the 53 patients. Both nerve endings encapsulated in fibrous tissue or unencapsulated nonmyelinated Schwann cell nerve bundles, that is, Remak cells, were found. Those nerve endings resembled mechanoreceptor and nociceptive receptor structures found in human skin, muscle tendons, and skeletal ligaments. Specifically, we found Ruffini mechanoreceptors and in addition nerve endings which resembled nociceptive glioneural structures of the skin. Bipolar electrostimulation of the FT was associated with paraspinal muscle activity above and below the spinal segment at which the FT was stimulated. CONCLUSION: Morphological and electrophysiological results indicate the presence of functional sensory nerve endings in the FT. Like other spine ligaments, the FT may serve as a proprioceptive element but may also contribute to back pain in spine disorders.


Assuntos
Cauda Equina , Estimulação Elétrica , Humanos , Terminações Nervosas/ultraestrutura , Nociceptividade , Músculos Paraespinais
3.
J Med Food ; 24(3): 209-217, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33739887

RESUMO

Decreasing synaptic release of glutamate may counteract glutamate excitotoxicity in many neurological diseases. In this study, we investigated the effect of albanin A, a constituent in the root bark of Morus alba L., on the release of glutamate in rat cerebral cortex nerve endings (synaptosomes). We found that albanin A at 5-30µM suppressed 4-aminopyridine (4-AP)-induced release of glutamate. This phenomenon was abolished by extracellular calcium removal or by vesicular transporter inhibition, and was associated with a decrease in intrasynaptosomal Ca2+ levels. However, albanin A had no effect on the synaptosomal membrane potential. The inhibition of N- and P/Q-type Ca2+ channels, calmodulin, adenylate cyclase (AC), and protein kinase A, abolished the effect of albanin A on the glutamate release evoked by 4-AP. Moreover, the albanin A-mediated inhibition of glutamate release was prevented by the Ca2+/calmodulin-stimulated AC1 inhibitor. Western blot showed that AC1, but not AC8, was presented in the synaptosomes, and albanin A reduced 4-AP-induced increases in synaptosomal cyclic adenosine monophosphate content. In addition, albanin A pretreatment substantially attenuated neuronal damage in a rat model of kainic acid-induced glutamate excitotoxicity. Our data reveal that albanin A suppresses glutamate release by decreasing Ca2+/calmodulin/AC1 activation in synaptosomes and exerts neuroprotective effect in vivo.


Assuntos
Ácido Glutâmico , Morus , Adenilil Ciclases , Animais , Cálcio/metabolismo , Calmodulina , Córtex Cerebral/metabolismo , Terminações Nervosas/metabolismo , Casca de Planta , Ratos , Ratos Sprague-Dawley , Sinaptossomos/metabolismo
4.
J Orthop Res ; 39(7): 1540-1547, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32410235

RESUMO

Lateral ligament tears, also known as high-grade ankle sprains, are common, debilitating, and usually heal slowly. Ten to thirty percent of patients continue to suffer from chronic pain and ankle instability even after 3 to 9 months. Previously, we showed that the recombinant human amelogenin (rHAM+ ) induced regeneration of fully transected rat medial collateral ligament, a common proof-of-concept model. Our aim was to evaluate whether rHAM+ can regenerate torn ankle calcaneofibular ligament (CFL), an important component of the lateral ankle stabilizers. Right CFLs of Sabra rats were transected and treated with 0, 0.5, or 1 µg/µL rHAM+ dissolved in propylene glycol alginate (PGA). Results were compared with the normal group, without surgery. Healing was evaluated 12 weeks after treatment by mechanical testing (ratio between the right and left, untransected ligaments of the same rat), and histology including immunohistochemical staining of collagen I and S100. The mechanical properties, structure, and composition of transected ligaments treated with 0.5 µg/µL rHAM+ (experimental) were similar to untransected ligaments. PGA (control) treated ligaments were much weaker, lax, and unorganized compared with untransected ligaments. Treatment with 1 µg/µL rHAM+ was not as efficient as 0.5 µg/µL rHAM+ . Normal arrangement of collagen I fibers and of proprioceptive nerve endings, parallel to the direction of the force, was detected in ligaments treated with 0.5 µg/µL rHAM+ , and scattered arrangement, resembling scar tissue, in control ligaments. In conclusion, we showed that rHAM+ induced significant mechanical and structural regeneration of torn rat CFLs, which might be translated into treatment for grades 2 and 3 ankle sprain injuries.


Assuntos
Amelogenina/uso terapêutico , Traumatismos do Tornozelo/tratamento farmacológico , Ligamentos Laterais do Tornozelo/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Amelogenina/farmacologia , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Terminações Nervosas/efeitos dos fármacos , Ratos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
5.
Eur J Pharmacol ; 889: 173589, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32961171

RESUMO

Neferine, a bisbenzylisoquinoline alkaloid present in Nelumbo nucifera, has been reported to exhibit neuroprotective effects. Because reduced glutamatergic transmission through inhibition of glutamate release has been proposed as a mechanism of neuroprotection, we investigated whether and how neferine inhibits glutamate release in the nerve terminals of the cerebral cortex of rats. The results demonstrated that neferine inhibits the glutamate release that is evoked by the potassium channel blocker 4-aminopyridine, doing so in a dose-dependent manner. This effect was prevented by removing extracellular calcium and blocking vesicular transporters or N- and P/Q-type calcium channels but not by blocking glutamate transporters. Neferine decreased the 4-aminopyridine-stimulated elevation in intrasynaptosomal calcium concentration; however, it had no effect on the synaptosomal membrane potential. The inhibition of glutamate release by neferine was also eliminated by the selective 5-hydroxytryptamine 1A (5HT1A) receptor antagonist WAY100635, Gi/o protein inhibitor pertussis toxin, adenylyl cyclase inhibitor MDL12330A, and protein kinase A inhibitor H89. Moreover, immunocytochemical analysis revealed the presence of 5-HT1A receptor proteins in the vesicular transporter of glutamate type 1 positive synaptosomes. The molecular docking study also demonstrated that neferine exhibited the highest binding affinity with 5-HT1A receptors (Autodock scores for 5-HA1A = -11.4 kcal/mol). Collectively, these results suggested that neferine activates 5-HT1A receptors in cortical synaptosomes, which decreases calcium influx and glutamate release through the activation of Gi/o protein and the inhibition of adenylyl cyclase/cAMP/protein kinase A cascade.


Assuntos
Benzilisoquinolinas/farmacologia , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Nelumbo , Terminações Nervosas/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Benzilisoquinolinas/química , Benzilisoquinolinas/isolamento & purificação , Córtex Cerebral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Antagonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/isolamento & purificação , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Simulação de Acoplamento Molecular , Terminações Nervosas/efeitos dos fármacos , Estrutura Secundária de Proteína , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/química
6.
J Med Food ; 22(7): 696-702, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30985232

RESUMO

Evidence indicates that indirect inhibitory regulation of glutamatergic transmission, via reducing glutamate release, may induce neuroprotection. The present work was designed to examine whether allicin, a major component of garlic with neuroprotective effects, affected the release of glutamate evoked by 4-aminopyridine in rat cerebrocortical nerve terminals (synaptosomes). Allicin caused a potent inhibition on the release of glutamate evoked by 4-aminopyridine, and this inhibitory effect was abolished in the presence of Ca2+-free medium and vesicular transporter inhibitor. Allicin decreased the 4-aminopyridine-evoked elevation of intrasynaptosomal Ca2+ levels, but had no effect on the synaptosomal plasma membrane potential. The allicin-mediated inhibition of glutamate release was prevented by the N- and P/Q-type channel blocker and the protein kinase C (PKC) inhibitor, but was not affected by the intracellular Ca2+-release inhibitors, mitogen-activated protein kinase inhibitor, and protein kinase A inhibitor. Western blotting data also showed that allicin significantly reduced the phosphorylation of PKC. Together, these data indicate that in rat cerebrocortical nerve terminals, allicin depresses glutamate release and appears to decrease N- and P/Q-type Ca2+ channel and PKC activity.


Assuntos
Cálcio/metabolismo , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Terminações Nervosas/metabolismo , Proteína Quinase C/metabolismo , Ácidos Sulfínicos/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Dissulfetos , Masculino , Terminações Nervosas/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteína Quinase C/genética , Ratos , Ratos Sprague-Dawley , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
7.
Mol Cell Biochem ; 410(1-2): 121-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26354548

RESUMO

The objective of this study is to compare the antioxidant activity of a whole-grape suspension with the antioxidant activity or pure resveratrol on the effect of hydrogen peroxide (H2O2) on malondialdehyde (MDA) generation, choline acetyltransferase (ChAT) activity, calcium ATPase activity, and sarcoendoplasmic reticular ATPase (SERCA) of the male rabbit urinary bladder. MDA was used as a model for the effect of H2O2 on lipid peroxidation. ChAT, SERCA, and calcium ATPase were evaluated based on their importance in urinary bladder physiology and pathology. Four male rabbit bladders were used. Each bladder was separated into muscle and mucosa, frozen under liquid nitrogen and stored at -80 °C for biochemical evaluation. The effect of H2O2 on the enzymes listed above was determined in the presence and absence of either resveratrol or a whole-grape suspension. (1) Resveratrol was significantly more effective than the grape suspension at protecting the bladder muscle and mucosa against peroxidation as quantitated by MDA formation. (2) The grape suspension was significantly more effective at protecting ChAT activity against oxidative stress of the muscle than resveratrol. (3) Neither the grape suspension nor resveratrol were particularly effective at protecting the bladder muscle or mucosa calcium ATPase or SERCA against oxidative stress. (4) ChAT was significantly more sensitive to oxidative stress than either calcium ATPase or SERCA. These data support the idea that the grape suspension protects the mitochondria and nerve terminals to a significantly greater degree than resveratrol which suggests that the activities of the grape suspension are due to the combination of active components found in the grape suspension and not just resveratrol alone.


Assuntos
Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Preparações de Plantas/farmacologia , Estilbenos/farmacologia , Bexiga Urinária/efeitos dos fármacos , Vitis/química , Animais , Colina O-Acetiltransferase/metabolismo , Relação Dose-Resposta a Droga , Frutas , Peróxido de Hidrogênio/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mucosa/efeitos dos fármacos , Mucosa/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Terminações Nervosas/efeitos dos fármacos , Terminações Nervosas/metabolismo , Fitoterapia , Preparações de Plantas/isolamento & purificação , Plantas Medicinais , Coelhos , Resveratrol , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Bexiga Urinária/metabolismo
8.
J Anat ; 227(2): 194-213, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26179025

RESUMO

This article summarises progress to date over an exciting and very enjoyable first 15 years of collaboration with Bob Banks. Our collaboration began when I contacted him with (to me) an unexpected observation that a dye used to mark recycling synaptic vesicle membrane at efferent terminals also labelled muscle spindle afferent terminals. This observation led to the re-discovery of a system of small clear vesicles present in all vertebrate primary mechanosensory nerve terminals. These synaptic-like vesicles (SLVs) have been, and continue to be, the major focus of our work. This article describes our characterisation of the properties and functional significance of these SLVs, combining our complementary skills: Bob's technical expertise and encyclopaedic knowledge of mechanosensation with my experience of synaptic vesicles and the development of the styryl pyridinium dyes, of which the most widely used is FM1-43. On the way we have found that SLVs seem to be part of a constitutive glutamate secretory system necessary to maintain the stretch-sensitivity of spindle endings. The glutamate activates a highly unusual glutamate receptor linked to phospholipase D activation, which we have termed the PLD-mGluR. It has a totally distinct pharmacology first described in the hippocampus nearly 20 years ago but, like the SLVs that were first described over 50 years ago, has since been little researched. Yet, our evidence and literature searches suggest this glutamate/SLV/PLD-mGluR system is a ubiquitous feature of mechanosensory endings and, at least for spindles, is essential for maintaining mechanosensory function. This article summarises how this system integrates with the classical model of mechanosensitive channels in spindles and other mechanosensory nerve terminals, including hair follicle afferents and baroreceptors controlling blood pressure. Finally, in this time when there is an imperative to show translational relevance, I describe how this fascinating system might actually be a useful therapeutic drug target for clinical conditions such as hypertension and muscle spasticity. This has been a fascinating 15-year journey in collaboration with Bob who, as well as having an astute scientific mind, is also a great enthusiast, motivator and friend. I hope this exciting and enjoyable journey will continue well into the future.


Assuntos
Mecanotransdução Celular/fisiologia , Fusos Musculares/fisiologia , Terminações Nervosas/fisiologia , Neurônios Eferentes/fisiologia , Transdução de Sinais/fisiologia , Vesículas Sinápticas/fisiologia , Corantes Fluorescentes/metabolismo , Ácido Glutâmico/metabolismo , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Receptores de Glutamato/metabolismo
9.
J Chem Neuroanat ; 68: 14-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26148746

RESUMO

Previous studies have shown that the effects of manual acupuncture (MA) are contributed by collagen fibers and mast cells in local acupoints, at which acupuncture stimulation causes various afferent fiber groups to be excited. However what happens in local nerve fibers and mast cells after MA remains unclear. The aim of this study was to examine the response of cutaneous nerve fibers and mast cells to MA stimulation in acupoint Hegu (LI4). The contralateral LI4 of the same rat was used as a non-stimulated control. Immnohistochemistry analysis were carried out to observe the expression of histamine (HA), serotonin (5-HT) and nociceptive neuropeptides, calcitonin gene-related peptide (CGRP) and substance P (SP), in the LI4 area. Mast cells were labeled with anti-mast cell tryptase antibody and simultaneously with HA or 5-HT primary antibodies to observe their co-expression. Our results showed that SP and CGRP were expressed more highly on the cutaneous nerve fibers of LI4 after MA stimulation than that of the control. Mast cells aggregated in close proximity to the blood vessels in intra-epidermis and dermis and some of them with degranulation in the lower dermis and subcutaneous tissue of LI4. Both mast cells and their granules appeared with HA (+) and 5-HT (+) expression at stimulated L14 sites, while a few intact mast cells with a little expression of 5-HT and HA were distributed in areas of non-stimulated L14. The results indicated that local cutaneous nerve terminals and mast cells responded to MA with higher expression of SP and CGRP in nerve fibers, as well as with aggregation and degranulation of mast cells with HA and 5-HT granules at acupoint LI4. These neuroactive substances may convey signals to certain pathways that contribute to the effects of acupuncture.


Assuntos
Pontos de Acupuntura , Acupuntura , Mastócitos/fisiologia , Terminações Nervosas/fisiologia , Pele/inervação , Animais , Vasos Sanguíneos/citologia , Grânulos Citoplasmáticos/metabolismo , Histamina/metabolismo , Imuno-Histoquímica , Ratos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Serotonina/metabolismo , Substância P/metabolismo
10.
J Med Food ; 18(5): 516-23, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25340625

RESUMO

The excessive release of glutamate is a critical element in the neuropathology of acute and chronic brain disorders. The purpose of the present study was to investigate the effect and possible mechanism of myricetin, a naturally occurring flavonoid with a neuroprotective profile, on endogenous glutamate release in the nerve terminals (synaptosomes) of the rat cerebral cortex. The release of glutamate was evoked by the K(+) channel blocker 4-aminopyridine (4-AP) and measured by one-line enzyme-coupled fluorometric assay. We also used a membrane potential-sensitive dye to assay the synaptosomal plasma membrane potential, and a Ca(2+) indicator Fura-2 to monitor cytosolic Ca(2+) concentrations ([Ca(2+)]C). Results show that myricetin inhibited 4-AP-evoked glutamate release, and this effect was prevented by chelating extracellular Ca(2+) ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor dl-threo-beta-benzyl-oxyaspartate had no effect on myricetin action. Myricetin did not alter the synaptosomal membrane potential, but decreased 4-AP-induced increases in the cytosolic free Ca(2+) concentration. Furthermore, the myricetin effect on 4-AP-evoked glutamate release was prevented by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking intracellular Ca(2+) release. These results suggest that myricetin inhibits glutamate release from cerebrocortical synaptosomes by attenuating voltage-dependent Ca(2+) entry. This implies that the inhibition of glutamate release is an important pharmacological activity of myricetin that may play a critical role in the apparent clinical efficacy of this compound.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Flavonoides/farmacologia , Ácido Glutâmico/metabolismo , Terminações Nervosas/efeitos dos fármacos , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo N/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Masculino , Terminações Nervosas/metabolismo , Ratos , Ratos Sprague-Dawley , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
11.
PLoS One ; 9(2): e88644, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24520409

RESUMO

An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L.) Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes) was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca(2+) concentration ([Ca(2+)]C) in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA) rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg) was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg) intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca(2+) entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.


Assuntos
Flavonas/farmacologia , Ácido Glutâmico/metabolismo , Ácido Caínico/toxicidade , Neurônios/metabolismo , Neurônios/patologia , Neurotoxinas/toxicidade , 4-Aminopiridina/farmacologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Terminações Nervosas/efeitos dos fármacos , Terminações Nervosas/metabolismo , Neurônios/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
12.
Anesth Prog ; 60(2): 37-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23763557

RESUMO

The dental anesthesia sonophoresis device (DASD) is a novel device that is intended to reduce the discomfort associated with intraoral mucosa needle puncture. The DASD produces ultrasonic energy that provides a sonophoretic effect on the oral mucosa, generating microchannels through the lipids between the keratinized cells that make up the stratum corneum. Once the topical anesthetic has permeated the stratum corneum, it quickly diffuses through the soft tissue, desensitizing the nerve endings and reducing the perception of pain caused by needle penetration. The aim of this study is to evaluate whether topical anesthesia applied using the DASD will reduce the discomfort of the needle puncture when compared to the control device. A split-mouth model, using 50 healthy subjects with puncture site at the maxillary canine vestibule, was used for this study. Subjects received a needle puncture on both sides of the mouth. Prior to the needle puncture, there was randomized application of 5% lidocaine with the DASD and a control device. Subjects rated their discomfort after needle punctures utilizing the visual analog scale pain scoring system. There was no statistically significant difference in the pain perception using the DASD versus the control device.


Assuntos
Anestesia Dentária/métodos , Anestesia Local/métodos , Anestésicos Locais/administração & dosagem , Fonoforese/métodos , Adulto , Anestesia Dentária/instrumentação , Anestesia Local/instrumentação , Dente Canino/inervação , Humanos , Queratinócitos/metabolismo , Lidocaína/administração & dosagem , Maxila/inervação , Pessoa de Meia-Idade , Mucosa Bucal/inervação , Agulhas/efeitos adversos , Terminações Nervosas/efeitos dos fármacos , Dor/prevenção & controle , Medição da Dor , Fonoforese/instrumentação , Projetos Piloto , Punções/efeitos adversos , Adulto Jovem
14.
Br J Sports Med ; 47(17): 1095-104, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23429268

RESUMO

If a patient asks 'why does my shoulder hurt?' the conversation will quickly turn to scientific theory and sometimes unsubstantiated conjecture. Frequently, the clinician becomes aware of the limits of the scientific basis of their explanation, demonstrating the incompleteness of our understanding of the nature of shoulder pain. This review takes a systematic approach to help answer fundamental questions relating to shoulder pain, with a view to providing insights into future research and novel methods for treating shoulder pain. We shall explore the roles of (1) the peripheral receptors, (2) peripheral pain processing or 'nociception', (3) the spinal cord, (4) the brain, (5) the location of receptors in the shoulder and (6) the neural anatomy of the shoulder. We also consider how these factors might contribute to the variability in the clinical presentation, the diagnosis and the treatment of shoulder pain. In this way we aim to provide an overview of the component parts of the peripheral pain detection system and central pain processing mechanisms in shoulder pain that interact to produce clinical pain.


Assuntos
Dor de Ombro/etiologia , Analgesia por Acupuntura/métodos , Analgésicos/uso terapêutico , Encéfalo/fisiologia , Humanos , Hiperalgesia/fisiopatologia , Mecanorreceptores/fisiologia , Bloqueio Nervoso/métodos , Terminações Nervosas/fisiologia , Nociceptividade/fisiologia , Nociceptores/fisiologia , Limiar da Dor/fisiologia , Modalidades de Fisioterapia , Manguito Rotador/inervação , Células Receptoras Sensoriais/fisiologia , Articulação do Ombro/inervação , Dor de Ombro/fisiopatologia , Dor de Ombro/terapia , Medula Espinal/fisiologia , Tendões/inervação
15.
J Med Food ; 16(2): 112-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23342970

RESUMO

This study investigated the effects and possible mechanism of ferulic acid, a naturally occurring phenolic compound, on endogenous glutamate release in the nerve terminals of the cerebral cortex in rats. Results show that ferulic acid inhibited the release of glutamate evoked by the K⁺ channel blocker 4-aminopyridine (4-AP). The effect of ferulic acid on the evoked glutamate release was prevented by chelating the extracellular Ca²âº ions, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Ferulic acid suppressed the depolarization-induced increase in a cytosolic-free Ca²âº concentration, but did not alter 4-AP-mediated depolarization. Furthermore, the effect of ferulic acid on evoked glutamate release was abolished by blocking the Ca(v)2.2 (N-type) and Ca(v)2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na⁺/Ca²âº exchange. These results show that ferulic acid inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca²âº entry.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Ácidos Cumáricos/farmacologia , Ácido Glutâmico/metabolismo , Terminações Nervosas/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Masculino , Terminações Nervosas/efeitos dos fármacos , Canais de Potássio/metabolismo , Ratos , Ratos Sprague-Dawley , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
16.
Cell Calcium ; 51(3-4): 293-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22386684

RESUMO

Every cell or neuronal type utilizes its own specific organization of its Ca(2+) homeostasis depending on its specific function and its physiological needs. The magnocellular neurones, with their somata situated in the supraoptic and paraventricular nuclei of the hypothalamus and their nerve terminals populating the posterior hypophysis (neural lobe) are a typical and classical example of a neuroendocrine system, and an important experimental model for attempting to understand the characteristics of the neuronal organization of Ca(2+) homeostasis. The magnocellular neurones synthesize, in a cell specific manner, two neurohormones: arginine-vasopressin (AVP) and oxytocin (OT), which can be released, in a strict Ca(2+)-dependent manner, both at the axonal terminals, in the neural lobe, and at the somatodendritic level. The two types of neurones show also distinct type of bioelectrical activity, associated with specific secretory patterns. In these neurones, the Ca(2+) homeostatic pathways such as the Na(+)/Ca(2+) exchanger (NCX), the endoplasmic reticulum (ER) Ca(2+) pump, the plasmalemmal Ca(2+) pump (PMCA) and the mitochondria are acting in a complementary fashion in clearing Ca(2+) loads that follow neuronal stimulation. The somatodendritic AVP and OT release closely correlates with intracellular Ca(2+) dynamics. More importantly, the ER Ca(2+) stores play a major role in Ca(2+) homeostatic mechanism in identified OT neurones. The balance between the Ca(2+) homeostatic systems that are in the supraoptic neurones differ from those active in the terminals, in which mainly Ca(2+) extrusion through the Ca(2+) pump in the plasma membrane and uptake by mitochondria are active. In both AVP and OT nerve terminals, no functional ER Ca(2+) stores can be evidenced experimentally. We conclude that the physiological significance of the complexity of Ca(2+) homeostatic mechanisms in the somatodendritic region of supraoptic neurones and their terminals can be multifaceted, attributable, in major part, to their specialized electrical activity and Ca(2+)-dependent neurohormone release.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Terminações Nervosas/metabolismo , Hipófise/fisiologia , Terminações Pré-Sinápticas/metabolismo , Animais , Homeostase , Humanos , Neurossecreção , Ocitocina/metabolismo , Receptor Cross-Talk , Vasopressinas/metabolismo
17.
Pharmacology ; 88(1-2): 26-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21720189

RESUMO

AIM: The present study was aimed at investigating the effect of trans-6-(4-chlorobutyl)-5-hydroxy-4-(phenylthio)-1-tosyl-5,6-dihydropyridine-2(1H)-one (HTDP-2), a novel synthetic compound, on the release of endogenous glutamate in rat cerebrocortical nerve terminals (synaptosomes) and exploring the possible mechanism. METHODS: The release of glutamate was evoked by the K⁺ channel blocker 4-aminopyridine (4-AP) and measured by an on-line enzyme-coupled fluorimetric assay. We also used a membrane potential-sensitive dye to assay nerve terminal excitability and depolarization, and a Ca²âº indicator, Fura-2-acetoxymethyl ester, to monitor cytosolic Ca²âº concentrations ([Ca²âº](c)). RESULTS: HTDP-2 inhibited the release of glutamate evoked by 4-AP in a concentration-dependent manner. Inhibition of glutamate release by HTDP-2 was prevented by the chelating intraterminal Ca²âº ions, and by the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-ß-benzyloxyaspartate. HTDP-2 did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization whereas it decreased the 4-AP-induced increase in [Ca²âº](c). Furthermore, the inhibitory effect of HTDP-2 on the evoked glutamate release was abolished by the N-, and P/Q-type Ca²âº channel blocker ω-conotoxin MVIIC, but not by the ryanodine receptor blocker dantrolene, or the mitochondrial Na⁺/Ca²âº exchanger blocker CGP37157. CONCLUSION: Based on these results, we suggest that, in rat cerebrocortical nerve terminals, HTDP-2 decreases voltage-dependent Ca²âº channel activity and, in so doing, inhibits the evoked glutamate release.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/fisiologia , Córtex Cerebral/fisiologia , Ácido Glutâmico/fisiologia , Fármacos Neuroprotetores/farmacologia , Piridonas/farmacologia , Compostos de Tosil/farmacologia , 4-Aminopiridina/farmacologia , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Cálcio/análise , Cálcio/fisiologia , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/toxicidade , Canais de Cálcio/metabolismo , Clonazepam/análogos & derivados , Clonazepam/farmacologia , Citosol/fisiologia , Dantroleno/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Ácido Glutâmico/análise , Ácido Glutâmico/toxicidade , Masculino , Potenciais da Membrana , Terminações Nervosas/fisiologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/toxicidade , Bloqueadores dos Canais de Potássio/farmacologia , Piridonas/síntese química , Piridonas/toxicidade , Ratos , Ratos Sprague-Dawley , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Sinaptossomos/fisiologia , Tiazepinas/farmacologia , Compostos de Tosil/síntese química , Compostos de Tosil/toxicidade
18.
Neuroscience ; 189: 337-44, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21635939

RESUMO

We previously found that the glutamate release was decreased in synaptosomes from rat cerebral cortex during the development of experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis. Various other reports have shown a deficit in the expression of proteins associated with GABAergic neurotransmission in the neocortex of patients with multiple sclerosis and it was also demonstrated that the activation of GABAA receptors leads to an inhibition of glutamate release. Now, in order to evaluate the events that may affect the neuronal function in EAE synaptosomes, we analyzed the participation of the GABAergic system in glutamate release and in the flunitrazepam-sensitive GABAA receptor density. This revealed alterations in the GABAergic system of the frontal cortex synaptosomes from EAE animals. GABA induced a decrease in the 4-aminopyridine-evoked glutamate release in control synaptosomes which was abolished by picrotoxin, a GABAA receptor antagonist. In contrast, synaptosomes from EAE rats showed a loss in the inhibition of glutamate release mediated by GABA. Furthermore, the flunitrazepam-sensitive GABAA receptor density was decreased during the acute stage of the disease in synaptosomes from EAE rats. We also observed a loss of inhibition in the Ca2+-dependent phosphorylation of synapsin I mediated by GABA in nerve terminals from EAE animals, which could explain the loss of GABAergic regulation on evoked glutamate release. The changes observed in the GABAA receptor density as well as the loss of GABAergic inhibition of glutamate release were partially reverted in cortical synaptosomes from recovered EAE animals. These results suggest that the decrease in the flunitrazepam-sensitive GABAA receptor density may explain the observed failure of GABAergic regulation in the glutamate release of synaptosomes from EAE rats, which might contribute to the appearance of clinical symptoms and disease progression.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Lobo Frontal/metabolismo , Ácido Glutâmico/metabolismo , Terminações Nervosas/metabolismo , Sinaptossomos/metabolismo , Ácido gama-Aminobutírico/metabolismo , 4-Aminopiridina/farmacologia , Animais , Cálcio/metabolismo , Flunitrazepam/farmacologia , Lobo Frontal/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Moduladores GABAérgicos/farmacologia , Fosforilação , Ratos , Ratos Wistar , Receptores de GABA-A/metabolismo , Sinapsinas/metabolismo , Sinaptossomos/efeitos dos fármacos
19.
Arch. esp. urol. (Ed. impr.) ; 64(3): 157-167, abr. 2011. ilus
Artigo em Espanhol | IBECS | ID: ibc-92463

RESUMO

A pesar de que la prostatectomía radical constituye un tratamiento con intención curativa que ha demostrado ser eficaz en muchos de nuestros pacientes con cáncer prostático, aún se asocia a una morbilidad importante, que incluye, entre sus exponentes más destacados, la disfunción eréctil postoperatoria. La potencia posterior a la intervención puede estar influenciada por muchos factores entre los que destacan la presencia de una función eréctil adecuada previa a la cirugía, la edad del paciente, el estadio de la enfermedad en el momento del tratamiento, la experiencia del cirujano y, por supuesto, las variaciones anatómicas interpersonales.Durante las últimas décadas, el conocimiento exacto de la neuroanatomía de la pelvis masculina ha adquirido una gran importancia, tanto para el estudioso de la anatomía humana como para el cirujano pélvico. Por eso, las técnicas anatómicas de preservación neurovascular han propiciado una disminución del número de complicaciones relacionadas con la lesión de estas estructuras. Este artículo presenta una breve descripción del sustrato neuroanatómico de los haces neurovasculares junto a una detallada compilación de las diferentes técnicas quirúrgicas descritas para su preservación durante la prostatectomía radical retropúbica(AU)


Although radical prostatectomy is a curative therapy that has proven effective in many of our patients with prostate cancer, it is still associated with significant morbidity, which includes postoperative erectile dysfunction among its leading exponents. Potency after the intervention may be influenced by many factors, among which, presence of adequate erectile function before surgery, patient’s age, stage of disease at the time of treatment, surgeon’s experience and, of course, interpersonal anatomical variations may be pointed out.In recent decades, the exact knowledge of the neuroanatomy of the male pelvis has become very important, for both the student of human anatomy and the pelvic surgeon. Therefore, the anatomical nerve sparing techniques have led to fewer complications related to the injury of these structures. This article presents a brief description of the neuroanatomical substrate of the neurovascular bundles along with a detailed compilation of the different surgical techniques for their preservation during radical retropubic prostatectomy(AU)


Assuntos
Humanos , Prostatectomia/métodos , Neoplasias da Próstata/cirurgia , Terminações Nervosas , Ressecção Transuretral da Próstata/métodos , Próstata/irrigação sanguínea , Próstata/inervação
20.
Hear Res ; 276(1-2): 79-87, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21184817

RESUMO

Auditory forebrain pathways exhibit several morphological and physiological properties that underlie their specific neurobiological roles in auditory processing. Anatomically, such projections can be distinguished by their terminal size, arborization patterns, and postsynaptic dendritic locations. These structural features correlate with several postsynaptic physiological properties, such as EPSP amplitude, short-term plasticity, and postsynaptic receptor types. Altogether, these synaptic properties segregate into two main classes that are associated with either primarily information-bearing (Class 1) or modulatory (Class 2) roles, and have been used to delineate the principle routes of information flow through the auditory midbrain, thalamus, and cortex. Moreover, these synaptic properties engender as yet unexplored issues regarding the neuronal processing of auditory information, such as the convergent integration and long-term plasticity of auditory forebrain inputs.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Mesencéfalo/fisiologia , Tálamo/fisiologia , Animais , Vias Auditivas/citologia , Dendritos/ultraestrutura , Humanos , Terminações Nervosas/ultraestrutura , Plasticidade Neuronal , Neurônios Aferentes/citologia , Prosencéfalo/fisiologia , Sinapses/fisiologia , Potenciais Sinápticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA