Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 665: 152-158, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37163935

RESUMO

Uridine has formerly been shown to alleviate obesity and hepatic lipid accumulation. N-carbamoyl aspartate (NCA) provides carbon atoms to uridine in de novo pyrimidine biosynthesis pathway. However, whether NCA is involved in the lipid metabolism remains elusive. Here we showed that NCA supplementation significantly decreased (P < 0.05) serum cholesterol (CHOL), high-density lipoprotein (HDL), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) levels of mice, and significantly increased (P < 0.05) relative mRNA expression of genes related to the synthesis of pyrimidine nucleotides and polyunsaturated fatty acids. Besides, supplemented with NCA significantly decreased body weight and area under the curve (AUC), and increased body temperature in the high-fat diet fed mice. For further, relative protein expression of uridine monophosphate synthase (UMPS), sterol regulatory element-binding protein 1(SREBP-1) and phosphorylated hormone-sensitive triglyceride lipase (P-HSL) in the liver, and uncoupling protein 1 (UCP-1) in interscapular brown adipose tissue (iBAT) also showed upregulated in the high-fat diet fed mice. Thus, NCA promoted de novo synthesis of pyrimidine and polyunsaturated fatty acid, and reduced body weight by stimulating high-fat diet-induced thermogenesis of iBAT.


Assuntos
Tecido Adiposo Marrom , Ácido Aspártico , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Ácido Aspártico/metabolismo , Peso Corporal , Termogênese/genética , Dieta Hiperlipídica/efeitos adversos , Pirimidinas/farmacologia , Uridina/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675212

RESUMO

Sensing of long-chain fatty acids (LCFA) in the hypothalamus modulates energy balance, and its disruption leads to obesity. To date, the effects of saturated or unsaturated LCFA on hypothalamic-brown adipose tissue (BAT) axis and the underlying mechanisms have remained largely unclear. Our aim was to characterize the main molecular pathways involved in the hypothalamic regulation of BAT thermogenesis in response to LCFA with different lengths and degrees of saturation. One-week administration of high-fat diet enriched in monounsaturated FA led to higher BAT thermogenesis compared to a saturated FA-enriched diet. Intracerebroventricular infusion of oleic and linoleic acids upregulated thermogenesis markers and temperature in brown fat of mice, and triggered neuronal activation of paraventricular (PaV), ventromedial (VMH) and arcuate (ARC) hypothalamic nuclei, which was not found with saturated FAs. The neuron-specific protein carnitine palmitoyltransferase 1-C (CPT1C) was a crucial effector of oleic acid since the FA action was blunted in CPT1C-KO mice. Moreover, changes in the AMPK/ACC/malonyl-CoA pathway and fatty acid synthase expression were evoked by oleic acid. Altogether, central infusion of unsaturated but not saturated LCFA increases BAT thermogenesis through CPT1C-mediated sensing of FA metabolism shift, which in turn drive melanocortin system activation. These findings add new insight into neuronal circuitries activated by LCFA to drive thermogenesis.


Assuntos
Tecido Adiposo Marrom , Hipotálamo , Termogênese , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Ácidos Graxos/metabolismo , Hipotálamo/metabolismo , Ácidos Oleicos/metabolismo , Termogênese/genética , Termogênese/fisiologia
3.
Exp Mol Med ; 54(11): 2036-2046, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36434042

RESUMO

The vitamin-C-synthesizing enzyme senescent marker protein 30 (SMP30) is a cold resistance gene in Drosophila, and vitamin C concentration increases in brown adipose tissue post-cold exposure. However, the roles of SMP30 in thermogenesis are unknown. Here, we tested the molecular mechanism of thermogenesis using wild-type (WT) and vitamin C-deficient SMP30-knockout (KO) mice. SMP30-KO mice gained more weight than WT mice without a change in food intake in response to short-term high-fat diet feeding. Indirect calorimetry and cold-challenge experiments indicated that energy expenditure is lower in SMP30-KO mice, which is associated with decreased thermogenesis in adipose tissues. Therefore, SMP30-KO mice do not lose weight during cold exposure, whereas WT mice lose weight markedly. Mechanistically, the levels of serum FGF21 were notably lower in SMP30-KO mice, and vitamin C supplementation in SMP30-KO mice recovered FGF21 expression and thermogenesis, with a marked reduction in body weight during cold exposure. Further experiments revealed that vitamin C activates PPARα to upregulate FGF21. Our findings demonstrate that SMP30-mediated synthesis of vitamin C activates the PPARα/FGF21 axis, contributing to the maintenance of thermogenesis in mice.


Assuntos
Ácido Ascórbico , PPAR alfa , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/genética , PPAR alfa/metabolismo , Termogênese/genética , Vitaminas/metabolismo
4.
J Biol Chem ; 298(11): 102568, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209826

RESUMO

Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) uncoupling in skeletal muscle and mitochondrial uncoupling via uncoupling protein 1 (UCP1) in brown/beige adipose tissue are two mechanisms implicated in energy expenditure. Here, we investigated the effects of glycogen synthase kinase 3 (GSK3) inhibition via lithium chloride (LiCl) treatment on SERCA uncoupling in skeletal muscle and UCP1 expression in adipose. C2C12 and 3T3-L1 cells treated with LiCl had increased SERCA uncoupling and UCP1 protein levels, respectively, ultimately raising cellular respiration; however, this was only observed when LiCl treatment occurred throughout differentiation. In vivo, LiCl treatment (10 mg/kg/day) increased food intake in chow-fed diet and high-fat diet (HFD; 60% kcal)-fed male mice without increasing body mass-a result attributed to elevated daily energy expenditure. In soleus muscle, we determined that LiCl treatment promoted SERCA uncoupling via increased expression of SERCA uncouplers, sarcolipin and/or neuronatin, under chow-fed and HFD-fed conditions. We attribute these effects to the GSK3 inhibition observed with LiCl treatment as partial muscle-specific GSK3 knockdown produced similar effects. In adipose, LiCl treatment inhibited GSK3 in inguinal white adipose tissue (iWAT) but not in brown adipose tissue under chow-fed conditions, which led to an increase in UCP1 in iWAT and a beiging-like effect with a multilocular phenotype. We did not observe this beiging-like effect and increase in UCP1 in mice fed a HFD, as LiCl could not overcome the ensuing overactivation of GSK3. Nonetheless, our study establishes novel regulatory links between GSK3 and SERCA uncoupling in muscle and GSK3 and UCP1 and beiging in iWAT.


Assuntos
Adenosina Trifosfatases , Lítio , Animais , Masculino , Camundongos , Adenosina Trifosfatases/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Suplementos Nutricionais , Estresse do Retículo Endoplasmático , Quinase 3 da Glicogênio Sintase/metabolismo , Lítio/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
5.
Mol Cell Endocrinol ; 544: 111557, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032625

RESUMO

Tanshinone IIA (TAN2A) is a major active ingredient of Salvia miltiorrhiza used in traditional Chinese medicine and tanshinone 20 (TAN20) is a derivative of TAN2A. In this study, we examined the effects of TAN2A and TAN20 on adipogenesis, lipid metabolism, and thermogenesis. Our experiments showed that both TAN2A and TAN20 increased mitochondria content in adipose tissue, enhanced energy expenditure, reduced body weight, and improved insulin sensitivity and metabolic homeostasis in obese and diabetic mouse models. We demonstrated that TAN20 can facilitate the transformation from white to beige adipose tissue, as well as activate brown adipose tissue. In uncoupling protein 1 (UCP1) knockout mouse model, the effects of TAN2A and TAN20 on body weight and glucose tolerance were not observed, suggesting that such effects were UCP1 dependent. Furthermore, we found that TAN2A and TAN20 increased the expression of UCP1 and other thermogenic genes in adipocytes through AMPK-PGC-1α signaling pathway. Our findings indicate that TAN2A and its derivative TAN20 are potential interesting energy expenditure regulators and may be implicated in treatment of obesity and other metabolic disorders.


Assuntos
Tecido Adiposo Branco , Termogênese , Abietanos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético , Camundongos , Termogênese/genética , Proteína Desacopladora 1/metabolismo
6.
Cells ; 10(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34943890

RESUMO

Patients with chronic kidney disease (CKD) often have low serum concentrations of 25(OH)D3 and 1,25(OH)2D3. We investigated the differential effects of 25(OH)D3 versus 1,25(OH)2D3 repletion in mice with surgically induced CKD. Intraperitoneal supplementation of 25(OH)D3 (75 µg/kg/day) or 1,25(OH)2D3 (60 ng/kg/day) for 6 weeks normalized serum 25(OH)D3 or 1,25(OH)2D3 concentrations in CKD mice, respectively. Repletion of 25(OH)D3 normalized appetite, significantly improved weight gain, increased fat and lean mass content and in vivo muscle function, as well as attenuated elevated resting metabolic rate relative to repletion of 1,25(OH)2D3 in CKD mice. Repletion of 25(OH)D3 in CKD mice attenuated adipose tissue browning as well as ameliorated perturbations of energy homeostasis in adipose tissue and skeletal muscle, whereas repletion of 1,25(OH)2D3 did not. Significant improvement of muscle fiber size and normalization of fat infiltration of gastrocnemius was apparent with repletion of 25(OH)D3 but not with 1,25(OH)2D3 in CKD mice. This was accompanied by attenuation of the aberrant gene expression of muscle mass regulatory signaling, molecular pathways related to muscle fibrosis as well as muscle expression profile associated with skeletal muscle wasting in CKD mice. Our findings provide evidence that repletion of 25(OH)D3 exerts metabolic advantages over repletion of 1,25(OH)2D3 by attenuating adipose tissue browning and muscle wasting in CKD mice.


Assuntos
Tecido Adiposo Marrom/patologia , Caquexia/complicações , Calcifediol/farmacologia , Insuficiência Renal Crônica/complicações , Vitamina D/análogos & derivados , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Caquexia/sangue , Ingestão de Energia , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Insuficiência Renal Crônica/sangue , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Termogênese/genética , Vitamina D/farmacologia , Síndrome de Emaciação/complicações , Aumento de Peso/efeitos dos fármacos
7.
J Agric Food Chem ; 69(40): 11900-11911, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34581185

RESUMO

This study explored whether the antiobesity effect of theabrownin (TB) extracted from Fu brick tea (FBT) was associated with the activation of brown adipose tissue (BAT) or browning of the white adipose tissue (WAT) in mice fed a high-fat diet (HFD). Mice were divided into five groups, which received a normal diet, HFD, or HFD plus TB (200, 400, and 800 mg/kg), respectively. A 12-week administration of TB in a dose-dependent manner reduced the body weight and WAT weight and improved lipid and glucose disorders in the HFD-fed mice (p < 0.05). TB also promoted the expression of thermogenic and mitochondrial genes, whereas inflammation genes were reduced in interscapular BAT (iBAT), inguinal WAT (iWAT), and epididymis white adipose tissue (eWAT), accompanied by improvement in the intestinal homeostasis by improving SCFAs, especially butyric acid levels (p < 0.05), which was related to thermogenic and inflammatory factors of iBAT and iWAT. Mechanistically, TB was shown to efficiently promote thermogenesis by stimulating the AMPK-PGC1α pathway with an increase in uncoupling protein 1 (UCP1). Conclusively, these findings suggest that long-term consumption of TB can enhance BAT activity and WAT browning by activating the AMPK-PGC1α pathway and modulating SCFAs; meanwhile, SCFAs regulating TB improved inflammatory disorder in HFD-fed mice.


Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Adipócitos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Catequina/análogos & derivados , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Chá/metabolismo , Termogênese/genética
8.
J Therm Biol ; 98: 102909, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34016336

RESUMO

OBJECTIVE: Uncoupling protein one (UCP1) is involved in thermogenesis, especially in non-shivering heat production. In chickens, a single nucleotide polymorphism (SNP) of the av-UCP (avian UCP) gene has been reported to be associated with body weight gain and increased abdominal fat. The purpose of this study was to examine the relationship between the av-UCP gene SNP and heat production in chicks. METHODS: C/C and T/T male chicks (Rhode Island Red) of av-UCP gene SNP (g. 1270, C > T) were exposed to a low temperature environment (16 °C for 15 min) and their physiological responses were compared. RESULTS: After cold exposure, mean rectal temperatures of C/C chicks were higher than those of T/T chicks. In pectoral muscle, genes expression of av-UCP and carnitine palmitoyltransferase-1 were higher in C/C chicks than T/T chicks. Hypothalamic expression levels of thyrotropin-releasing hormone and proopiomelanocortin genes were higher in C/C chicks than T/T chicks. Expression of hypothalamic corticotropin-releasing hormone, arginine vasotocin, brain-derived neurotrophic factor and neuropeptide Y genes did not differ between C/C and T/T chicks. In addition, plasma free fatty acid levels in C/C chicks were lower than those of T/T chicks. CONCLUSION: These results suggest that the av-UCP gene SNP affects non-shivering heat production via the hypothalamo-pituitary-thyroid axis and fatty acid metabolism in the chicken.


Assuntos
Galinhas/genética , Galinhas/fisiologia , Temperatura Baixa , Termogênese/genética , Proteína Desacopladora 1/genética , Animais , Glicemia , Ácidos Graxos/sangue , Expressão Gênica , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Mutação , Polimorfismo de Nucleotídeo Único
9.
Biomolecules ; 11(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802173

RESUMO

Obesity is the epidemic of the 21st century. In developing countries, the prevalence of obesity continues to rise, and obesity is occurring at younger ages. Obesity and associated metabolic stress disrupt the whole-body physiology. Adipocytes are critical components of the systemic metabolic control, functioning as an endocrine organ. The enlarged adipocytes during obesity recruit macrophages promoting chronic inflammation and insulin resistance. Together with the genetic susceptibility (single nucleotide polymorphisms, SNP) and metabolic alterations at the molecular level, it has been highlighted that key modifiable risk factors, such as those related to lifestyle, contribute to the development of obesity. In this scenario, urgent therapeutic options are needed, including not only pharmacotherapy but also nutrients, bioactive compounds, and natural extracts to reverse the metabolic alterations associated with obesity. Herein, we first summarize the main targetable processes to tackle obesity, including activation of thermogenesis in brown adipose tissue (BAT) and in white adipose tissue (WAT-browning), and the promotion of energy expenditure and/or fatty acid oxidation (FAO) in muscles. Then, we perform a screening of 20 natural extracts (EFSA approved) to determine their potential in the activation of FAO and/or thermogenesis, as well as the increase in respiratory capacity. By means of innovative technologies, such as the study of their effects on cell bioenergetics (Seahorse bioanalyzer), we end up with the selection of four extracts with potential application to ameliorate the deleterious effects of obesity and the chronic associated inflammation.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Extratos Vegetais/uso terapêutico , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipídeos/química , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Extratos Vegetais/farmacologia , Termogênese/efeitos dos fármacos , Termogênese/genética
10.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799501

RESUMO

The growth hormone (GH)/insulin-like growth factor I (IGF-I) axis is involved in metabolic control. Malnutrition reduces IGF-I and modifies the thermogenic capacity of brown adipose tissue (BAT). Leptin has effects on the GH/IGF-I axis and the function of BAT, but its interaction with IGF-I and the mechanisms involved in the regulation of thermogenesis remains unknown. We studied the GH/IGF-I axis and activation of IGF-I-related signaling and metabolism related to BAT thermogenesis in chronic central leptin infused (L), pair-fed (PF), and control rats. Hypothalamic somatostatin mRNA levels were increased in PF and decreased in L, while pituitary GH mRNA was reduced in PF. Serum GH and IGF-I concentrations were decreased only in PF. In BAT, the association between suppressor of cytokine signaling 3 and the IGF-I receptor was reduced, and phosphorylation of the IGF-I receptor increased in the L group. Phosphorylation of Akt and cyclic AMP response element binding protein and glucose transporter 4 mRNA levels were increased in L and mRNA levels of uncoupling protein-1 (UCP-1) and enzymes involved in lipid anabolism reduced in PF. These results suggest that modifications in UCP-1 in BAT and changes in the GH/IGF-I axis induced by negative energy balance are dependent upon leptin levels.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/genética , Leptina/farmacologia , Termogênese/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metabolismo Energético/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Hormônio do Crescimento/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
11.
Front Endocrinol (Lausanne) ; 12: 634191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776928

RESUMO

Objective: The Iroquois homeobox 3 (IRX3) gene was recently reported to be a functional downstream target of a common polymorphism in the FTO gene, which encodes an obesity-associated protein; however, the role of IRX3 in energy expenditure remains unclear. Studies have revealed that the overexpression of a dominant-negative form of IRX3 in the mouse hypothalamus and adipose tissue promoted energy expenditure by enhancing brown/browning activities. Meanwhile, we and others recently demonstrated that IRX3 knockdown impaired the browning program of primary preadipocytes in vitro. In this study, we aimed to further clarify the effects of overexpressing human IRX3 (hIRX3) on brown/beige adipose tissues in vivo. Methods: Brown/beige adipocyte-specific hIRX3-overexpressing mice were generated and the browning program of white adipose tissues was induced by both chronic cold stimulation and CL316,243 injection. Body weight, fat mass, lean mass, and energy expenditure were measured, while morphological changes and the expression of thermogenesis-related genes in adipose tissue were analyzed. Moreover, the browning capacity of primary preadipocytes derived from hIRX3-overexpressing mice was assessed. RNA sequencing was also employed to investigate the effect of hIRX3 on the expression of thermogenesis-related genes. Results: hIRX3 overexpression in embryonic brown/beige adipose tissues (Rosa26hIRX3 ;Ucp1-Cre) led to increased energy expenditure, decreased fat mass, and a lean body phenotype. After acute cold exposure or CL316,243 stimulation, brown/beige tissue hIRX3-overexpressing mice showed an increase in Ucp1 expression. Consistent with this, induced hIRX3 overexpression in adult mice (Rosa26hIRX3 ;Ucp1-CreERT2) also promoted a moderate increase in Ucp1 expression. Ex vitro experiments further revealed that hIRX3 overexpression induced by Ucp1-driven Cre recombinase activity upregulated brown/beige adipocytes Ucp1 expression and oxygen consumption rate (OCR). RNA sequencing analyses indicated that hIRX3 overexpression in brown adipocytes enhanced brown fat cell differentiation, glycolysis, and gluconeogenesis. Conclusion: Consistent with the in vitro findings, brown/beige adipocyte-specific overexpression of hIRX3 promoted Ucp1 expression and thermogenesis, while reducing fat mass.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas de Homeodomínio/biossíntese , Hipotálamo/metabolismo , Polimorfismo Genético , Fatores de Transcrição/biossíntese , Proteína Desacopladora 1/biossíntese , Animais , Diferenciação Celular , Cruzamentos Genéticos , Genes Dominantes , Humanos , Camundongos , Fenótipo , Termogênese/genética
12.
Cell Metab ; 33(3): 565-580.e7, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657393

RESUMO

Stimulation of adipose tissue thermogenesis is regarded as a promising avenue in the treatment of obesity. However, pharmacologic engagement of this process has proven difficult. Using the Connectivity Map (CMap) approach, we identified the phytochemical hyperforin (HPF) as an anti-obesity agent. We found that HPF efficiently promoted thermogenesis by stimulating AMPK and PGC-1α via a Ucp1-dependent pathway. Using LiP-SMap (limited proteolysis-mass spectrometry) combined with a microscale thermophoresis assay and molecular docking analysis, we confirmed dihydrolipoamide S-acetyltransferase (Dlat) as a direct molecular target of HPF. Ablation of Dlat significantly attenuated HPF-mediated adipose tissue browning both in vitro and in vivo. Furthermore, genome-wide association study analysis indicated that a variation in DLAT is significantly associated with obesity in humans. These findings suggest that HPF is a promising lead compound in the pursuit of a pharmacological approach to promote energy expenditure in the treatment of obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Floroglucinol/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Terpenos/farmacologia , Termogênese/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Sítios de Ligação , Temperatura Baixa , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Humanos , Hypericum/química , Hypericum/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Floroglucinol/química , Floroglucinol/metabolismo , Floroglucinol/farmacologia , Floroglucinol/uso terapêutico , Terpenos/química , Terpenos/metabolismo , Terpenos/uso terapêutico , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Regulação para Cima/efeitos dos fármacos
13.
Biochem Biophys Res Commun ; 545: 189-194, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33561654

RESUMO

The prevalence of obesity is increasing globally and is associated with many metabolic disorders, such as type 2 diabetes and cardiovascular diseases. In recent years, a number of studies suggest that promotion of white adipose browning represents a promising strategy to combat obesity and its related metabolic disorders. The aim of this study was to identify compounds that induce adipocyte browning and elucidate their mechanism of action. Among the 500 natural compounds screened, a small molecule named Rutaecarpine, was identified as a positive regulator of adipocyte browning both in vitro and in vivo. KEGG pathway analysis from RNA-seq data suggested that the AMPK signaling pathway was regulated by Rutaecarpine, which was validated by Western blot analysis. Furthermore, inhibition of AMPK signaling mitigated the browning effect of Rutaecaripine. The effect of Rutaecaripine on adipocyte browning was also abolished upon deletion of Prdm16, a downstream target of AMPK pathway. In collusion, Rutaecarpine is a potent chemical agent to induce adipocyte browning and may serve as a potential drug candidate to treat obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Alcaloides Indólicos/farmacologia , Quinazolinas/farmacologia , Fatores de Transcrição/metabolismo , Adipócitos Bege/citologia , Adipócitos Brancos/citologia , Animais , Produtos Biológicos/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Termogênese/genética , Termogênese/fisiologia
14.
Phytomedicine ; 82: 153457, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33444942

RESUMO

BACKGROUND: The enhancement of energy expenditure has attracted attention as a therapeutic target for the management of body weight. Withaferin A (WFA), a major constituent of Withania somnifera extract, has been reported to possess anti-obesity properties, however the underlying mechanism remains unknown. PURPOSE: To investigate whether WFA exerts anti-obesity effects via increased energy expenditure, and if so, to characterize the underlying pathway. METHODS: C57BL/6 J mice were fed a high-fat diet (HFD) for 10 weeks, and WFA was orally administered for 7 days. The oxygen consumption rate of mice was measured at 9 weeks using an OxyletPro™ system. Hematoxylin and eosin (H&E), immunohistochemistry, immunoblotting, and real-time PCR methods were used. RESULTS: Treatment with WFA ameliorated HFD-induced obesity by increasing energy expenditure by improving of mitochondrial activity in brown adipose tissue (BAT) and promotion of subcutaneous white adipose tissue (scWAT) browning via increasing uncoupling protein 1 levels. WFA administration also significantly increased AMP-activated protein kinase (AMPK) phosphorylation in the BAT of obese mice. Additionally, WFA activated mitogen-activated protein kinase (MAPK) signaling, including p38/extracellular signal-regulated kinase MAPK, in both BAT and scWAT. CONCLUSION: WFA enhances energy expenditure and ameliorates obesity via the induction of AMPK and activating p38/extracellular signal-regulated kinase MAPK, which triggers mitochondrial biogenesis and browning-related gene expression.


Assuntos
Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Obesidade/tratamento farmacológico , Termogênese/efeitos dos fármacos , Vitanolídeos/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mitocôndrias/metabolismo , Termogênese/genética , Proteína Desacopladora 1/metabolismo , Withania/química , Vitanolídeos/farmacologia
15.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287103

RESUMO

The effects of insulin on the bioenergetic and thermogenic capacity of brown adipocyte mitochondria were investigated by focusing on key mitochondrial proteins. Two-month-old male Wistar rats were treated acutely or chronically with a low or high dose of insulin. Acute low insulin dose increased expression of all electron transport chain complexes and complex IV activity, whereas high dose increased complex II expression. Chronic low insulin dose decreased complex I and cyt c expression while increasing complex II and IV expression and complex IV activity. Chronic high insulin dose decreased complex II, III, cyt c, and increased complex IV expression. Uncoupling protein (UCP) 1 expression was decreased after acute high insulin but increased following chronic insulin treatment. ATP synthase expression was increased after acute and decreased after chronic insulin treatment. Only a high dose of insulin increased ATP synthase activity in acute and decreased it in chronic treatment. ATPase inhibitory factor protein expression was increased in all treated groups. Confocal microscopy showed that key mitochondrial proteins colocalize differently in different mitochondria within a single brown adipocyte, indicating mitochondrial mosaicism. These results suggest that insulin modulates the bioenergetic and thermogenic capacity of rat brown adipocytes in vivo by modulating mitochondrial mosaicism.


Assuntos
Adipócitos Marrons/metabolismo , Metabolismo Energético , Insulina/metabolismo , Mitocôndrias/metabolismo , Termogênese , Adipócitos Marrons/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Biomarcadores , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Imunofluorescência , Expressão Gênica , Insulina/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mosaicismo , Ratos , Termogênese/efeitos dos fármacos , Termogênese/genética
16.
Cells ; 9(11)2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171828

RESUMO

Thermogenic brown and brite adipocytes convert chemical energy from nutrients into heat. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to control fat mass such as in obesity or cachexia. The peroxisome proliferator-activated receptor (PPAR) family plays key roles in the maintenance of adipose tissue and in the regulation of thermogenic activity. Activation of these receptors induce browning of white adipocyte. The purpose of this work was to characterize the role of carnosic acid (CA), a compound used in traditional medicine, in the control of brown/brite adipocyte formation and function. We used human multipotent adipose-derived stem (hMADS) cells differentiated into white or brite adipocytes. The expression of key marker genes was determined using RT-qPCR and western blotting. We show here that CA inhibits the browning of white adipocytes and favors decreased gene expression of thermogenic markers. CA treatment does not affect ß-adrenergic response. Importantly, the effects of CA are fully reversible. We used transactivation assays to show that CA has a PPARα/γ antagonistic action. Our data pinpoint CA as a drug able to control PPAR activity through an antagonistic effect. These observations shed some light on the development of natural PPAR antagonists and their potential effects on thermogenic response.


Assuntos
Abietanos/farmacologia , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/antagonistas & inibidores , Rosmarinus/química , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Lipólise/efeitos dos fármacos , Camundongos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Rosiglitazona/farmacologia , Termogênese/efeitos dos fármacos , Termogênese/genética
17.
Benef Microbes ; 11(4): 361-373, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32755263

RESUMO

Excessive body fat and the related dysmetabolic diseases affect both developed and developing countries. The aim of this study was to investigate the beneficial role of a bacterial culture supernatant (hereafter: BS) of Lactobacillus and Bifidobacterium and their potential mechanisms of action on white-fat browning and lipolysis. For selection of four candidates among 55 Lactic acid producing bacteria (LAB) from human infant faeces, we evaluated by Oil Red O staining and Ucp1 mRNA quantitation in 3T3-L1 preadipocytes. The expression of browning and lipolysis markers was examined along with in vitro assays. The possible mechanism was revealed by molecular and biological experiments including inhibitor and small interfering RNA (siRNA) assays. In a mouse model, physiological, histological, and biochemical parameters and expression of some thermogenesis-related genes were compared among six experimental groups fed a high-fat diet and one normal-diet control group. The results allow us to speculate that BS treatment promotes browning and lipolysis both in vitro and in vivo. Moreover, the BS may activate thermogenic programs via a mechanism involving PKA-CREB signaling in 3T3-L1 cells. According to our data, we can propose that two LAB strains, Bifidobacterium longum DS0956 and Lactobacillus rhamnosus DS0508, may be good candidates for a dietary supplement against obesity and metabolic diseases; however, further research is required for the development as dietary supplements or drugs.


Assuntos
Bifidobacterium longum/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Obesidade/terapia , Termogênese/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipólise/efeitos dos fármacos , Lipólise/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Oxirredução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Termogênese/genética
18.
EMBO Rep ; 21(9): e49807, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32657019

RESUMO

This study investigated the role of CDK4 in the oxidative metabolism of brown adipose tissue (BAT). BAT from Cdk4-/- mice exhibited fewer lipids and increased mitochondrial volume and expression of canonical thermogenic genes, rendering these mice more resistant to cold exposure. Interestingly, these effects were not BAT cell-autonomous but rather driven by increased sympathetic innervation. In particular, the ventromedial hypothalamus (VMH) is known to modulate BAT activation via the sympathetic nervous system. We thus examined the effects of VMH neuron-specific Cdk4 deletion. These mice display increased sympathetic innervation and enhanced cold tolerance, similar to Cdk4-/- mice, in addition to browning of scWAT. Overall, we provide evidence showing that CDK4 modulates thermogenesis by regulating sympathetic innervation of adipose tissue depots through hypothalamic nuclei, including the VMH. This demonstrates that CDK4 not only negatively regulates oxidative pathways, but also modulates the central regulation of metabolism through its action in the brain.


Assuntos
Tecido Adiposo Branco , Termogênese , Adipócitos Marrons , Tecido Adiposo Marrom , Animais , Hipotálamo , Camundongos , Termogênese/genética
19.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671737

RESUMO

Obesity and related comorbidities are a major health concern. The drugs used to treat these conditions are largely inadequate or dangerous, and a well-researched approach based on nutraceuticals would be highly useful. Pterostilbene (Pt), i.e., 3,5-dimethylresveratrol, has been reported to be effective in animal models of obesity, acting on different metabolic pathways. We investigate here its ability to induce browning of white adipose tissue. Pt (5 µM) was first tested on 3T3-L1 mature adipocytes, and then it was administered (352 µmol/kg/day) to mice fed an obesogenic high-fat diet (HFD) for 30 weeks, starting at weaning. In the cultured adipocytes, the treatment elicited a significant increase of the levels of Uncoupling Protein 1 (UCP1) protein-a key component of thermogenic, energy-dissipating beige/brown adipocytes. In vivo administration antagonized weight increase, more so in males than in females. Analysis of inguinal White Adipose Tissue (WAT) revealed a trend towards browning, with significantly increased transcription of several marker genes (Cidea, Ebf2, Pgc1α, PPARγ, Sirt1, and Tbx1) and an increase in UCP1 protein levels, which, however, did not achieve significance. Given the lack of known side effects of Pt, this study strengthens the candidacy of this natural phenol as an anti-obesity nutraceutical.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Obesidade/metabolismo , Estilbenos/farmacologia , Células 3T3-L1 , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Proteínas Reguladoras de Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Peso Corporal , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , PPAR gama/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Sirtuína 1/genética , Proteínas com Domínio T/genética , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
20.
J Nutr Biochem ; 69: 63-72, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31060024

RESUMO

This passive overconsumption of western diet has precipitated a steep rise in obesity and its comorbidities, and obesity has become one of the main threats to health worldwide. Thus, deciphering the molecular mechanisms leading to obesity is therefore of utmost importance to guide the search for novel therapeutic and preventive strategies. Lycopene (LYC), a major carotenoid present in tomato, has been regarded as a nutraceutical that has powerful anti-oxidant and anti-obesity bioactivities. Even though substantial progress has been made in deciphering the mechanism of how LYC affects obesity in recent years, whether thermogenic genes, mitochondrial function and insulin resistance are involved in the anti-obesity effect of LYC is yet to be elucidated. In the current study, we demonstrated that LYC remarkably suppressed HFFD-elevated mice body weight gain. LYC blocked lipid accumulation in adipose tissue by decreasing the expressions of lipogenesis genes and increasing the expressions of lipidolysis related genes, including thermogenic and mitochondrial functional genes. Moreover, LYC improved HFFD-induced insulin resistance in WATs via inhibiting the inflammation responses in WATs, decreasing circulating proinflammatory cytokines, suppressing gut leak and intestinal inflammation. Our study indicating that the supplementation of LYC might be a nutritional preventive strategy to combat obesity.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Dieta Ocidental/efeitos adversos , Resistência à Insulina , Licopeno/farmacologia , Aumento de Peso/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Tecido Adiposo/metabolismo , Animais , Autofagia/efeitos dos fármacos , Suplementos Nutricionais , Frutose/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/dietoterapia , Inflamação/etiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Termogênese/genética , Aumento de Peso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA