Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35163703

RESUMO

This study aimed to identify potential inhibitors and investigate the mechanism of action on SARS-CoV-2 ACE2 receptors using a molecular modeling study and theoretical determination of biological activity. Hydroxychloroquine was used as a pivot structure and antimalarial analogues of 1,2,4,5 tetraoxanes were used for the construction and evaluation of pharmacophoric models. The pharmacophore-based virtual screening was performed on the Molport® database (~7.9 million compounds) and obtained 313 structures. Additionally, a pharmacokinetic study was developed, obtaining 174 structures with 99% confidence for human intestinal absorption and penetration into the blood-brain barrier (BBB); posteriorly, a study of toxicological properties was realized. Toxicological predictions showed that the selected molecules do not present a risk of hepatotoxicity, carcinogenicity, mutagenicity, and skin irritation. Only 54 structures were selected for molecular docking studies, and five structures showed binding affinity (ΔG) values satisfactory for ACE2 receptors (PDB 6M0J), in which the molecule MolPort-007-913-111 had the best ΔG value of -8.540 Kcal/mol, followed by MolPort-002-693-933 with ΔG = -8.440 Kcal/mol. Theoretical determination of biological activity was realized for 54 structures, and five molecules showed potential protease inhibitors. Additionally, we investigated the Mpro receptor (6M0K) for the five structures via molecular docking, and we confirmed the possible interaction with the target. In parallel, we selected the TopsHits 9 with antiviral potential that evaluated synthetic accessibility for future synthesis studies and in vivo and in vitro tests.


Assuntos
Hidroxicloroquina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Tetraoxanos/farmacologia , Antivirais/farmacologia , Sítios de Ligação , Biologia Computacional/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Hidroxicloroquina/análogos & derivados , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
2.
J Med Chem ; 59(1): 264-81, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26640981

RESUMO

The syntheses and antiplasmodial activities of various substituted aminoquinolines coupled to an adamantane carrier are described. The compounds exhibited pronounced in vitro and in vivo activity against Plasmodium berghei in the Thompson test. Tethering a fluorine atom to the aminoquinoline C(3) position afforded fluoroaminoquinolines that act as intrahepatocytic parasite inhibitors, with compound 25 having an IC50 = 0.31 µM and reducing the liver load in mice by up to 92% at 80 mg/kg dose. Screening our peroxides as inhibitors of liver stage infection revealed that the tetraoxane pharmacophore itself is also an excellent liver stage P. berghei inhibitor (78: IC50 = 0.33 µM). Up to 91% reduction of the parasite liver load in mice was achieved at 100 mg/kg. Examination of tetraoxane 78 against the transgenic 3D7 strain expressing luciferase under a gametocyte-specific promoter revealed its activity against stage IV-V Plasmodium falciparum gametocytes (IC50 = 1.16 ± 0.37 µM). To the best of our knowledge, compounds 25 and 78 are the first examples of either an 4-aminoquinoline or a tetraoxane liver stage inhibitors.


Assuntos
Aminoquinolinas/síntese química , Aminoquinolinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/farmacologia , Tetraoxanos/síntese química , Tetraoxanos/farmacologia , Aminoquinolinas/metabolismo , Animais , Antimaláricos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Hemina/antagonistas & inibidores , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Fígado/parasitologia , Camundongos , Microssomos Hepáticos/metabolismo , Carga Parasitária , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Tetraoxanos/metabolismo
3.
J Med Chem ; 55(20): 8700-11, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23013253

RESUMO

Although antischistosomal properties of peroxides were studied in recent years, systematic structure-activity relationships have not been conducted. We evaluated the antischistosomal potential of 64 peroxides belonging to bridged 1,2,4,5-tetraoxanes, alphaperoxides, and tricyclic monoperoxides. Thirty-nine compounds presented IC50 values <15 µM on newly transformed schistosomula. Active drugs featured phenyl-, adamantane-, or alkyl residues at the methylene bridge. Lower susceptibility was documented on adult schistosomes, with most hit compounds being tricyclic monoperoxides (IC50: 7.7-13.4 µM). A bridged 1,2,4,5-tetraoxane characterized by an adamantane residue showed the highest activity (IC50: 0.3 µM) on adult Schistosoma mansoni . Studies with hemin and heme supplemented medium indicated that antischistosomal activation of peroxides is not necessarily triggered by iron porphyrins. Two compounds (tricyclic monoperoxide; bridged 1,2,4,5-tetraoxane) revealed high worm burden reductions in the chronic (WBR: 75.4-82.8%) but only moderate activity in the juvenile (WBR: 18.9-43.1%) S. mansoni mouse model. Our results might serve as starting point for the preparation and evaluation of related derivatives.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Heterocíclicos com 3 Anéis/química , Peróxidos/química , Esquistossomicidas/química , Tetraoxanos/química , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Doença Crônica , Feminino , Heme/metabolismo , Hemina/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Ensaios de Triagem em Larga Escala , Camundongos , Peróxidos/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia , Esquistossomicidas/farmacologia , Relação Estrutura-Atividade , Tetraoxanos/farmacologia
4.
Curr Med Chem ; 18(25): 3889-928, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21824099

RESUMO

Trioxane based compounds such as artemisinin and its synthetic and semi-synthetic analogues constitute promising class of antimalarial agents. The pharmaceutical development of artemisinin was started in 1971 after the isolation from Chinese medicinal plant Artemisia annua and this compound has drawn much attention from medical chemist and pharmacologist worldwide. Researchers from across the globe have independently and collaboratively conducted various studies on the artemisinin system in an attempt to identify lead molecules for malaria chemotherapy. This systematic study led to the discovery of artemether, arteether, dihydroartemisinin, and sodium artesunate which are being used as antimalarial drug for the treatment of Plasmodium falciparum related infections. These studies also revealed that the trioxane bridge is essential for the antimalarial activity of this class of compounds. Another class of structurally simple peroxides that emerged from these studies was the 1,2,4,5-tetraoxanes. Some of the tetraoxane based compounds have shown promising antimalarial potential, and much of work has been done on this type of compound in recent years. Apart from their antimalarial activity, these classes of compounds have also shown promising anticancer and antibacterial activity. To this end, an attempt has been made to describe the medicinal potential of trioxane and tetraoxane-based compounds. Literature from 1999 has been critically reviewed and an attempt has been made to discuss structure activity relationship study among the series of trioxane and tetraoxane based compounds.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Artemisia/química , Artemisininas/química , Artemisininas/farmacologia , Tetraoxanos/química , Tetraoxanos/farmacologia , Animais , Antimaláricos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Artemisininas/uso terapêutico , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Humanos , Malária/tratamento farmacológico , Neoplasias/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Tetraoxanos/uso terapêutico
5.
Bioorg Med Chem ; 16(14): 7039-45, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18550377

RESUMO

Eleven new tetraoxanes possessing cholic acid-derived carrier and isopropylidene moiety were synthesized and were tested in vitro and in vivo. In vitro screening revealed that nine of them were more potent against CQ-resistant W2 than CQ-susceptible D6 strain and that two of them were equally or more potent than artemisinin and mefloquine against multi-drug resistant TM91C235 strain. Amine 8 cured all mice at the dose of 160mg/kg/day, while the anilide 9 exhibited MCD

Assuntos
Antimaláricos/síntese química , Tetraoxanos/síntese química , Tetraoxanos/farmacologia , Acetona , Animais , Artemisininas , Avaliação Pré-Clínica de Medicamentos , Resistência a Múltiplos Medicamentos , Mefloquina , Camundongos , Plasmodium falciparum/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA