Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genes Cells ; 14(12): 1405-13, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19930469

RESUMO

DafA, a unique 8-kDa protein found in Thermus thermophilus, assembles the chaperones DnaK and DnaJ to produce a DnaK(3)-DnaJ(3)-DafA(3) complex (KJA complex). Although, it is known that DafA is denatured irreversibly at nonphysiological 89 degrees C and the KJA complex dissociates into fully active DnaK and DnaJ, the function of the KJA complex is not fully understood. In this article, we report that the reversible dissociation of the KJA complex occurs in a temperature-dependent manner even below physiological 75 degrees C and that excess DafA completely inhibits the chaperone activities of the DnaK system. The inhibited activities are not rescued by supplementing DnaK or DnaJ. The results indicate that DafA inhibits the chaperone activities of both DnaK and DnaJ by forming the KJA complex and can act as a thermosensor under both heat stress and optimal growth conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Thermus thermophilus/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Citrato (si)-Sintase/metabolismo , Chaperonas Moleculares/genética , Subunidades Proteicas , Temperatura , Thermus thermophilus/genética , Thermus thermophilus/crescimento & desenvolvimento
2.
J Bacteriol ; 183(6): 2086-92, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11222609

RESUMO

A cell extract of an extremely thermophilic bacterium, Thermus thermophilus HB8, cultured in a synthetic medium catalyzed cystathionine gamma-synthesis with O-acetyl-L-homoserine and L-cysteine as substrates but not beta-synthesis with DL-homocysteine and L-serine (or O-acetyl-L-serine). The amounts of synthesized enzymes metabolizing sulfur-containing amino acids were estimated by determining their catalytic activities in cell extracts. The syntheses of cystathionine beta-lyase (EC 4.4.1.8) and O-acetyl-L-serine sulfhydrylase (EC 4.2.99.8) were markedly repressed by L-methionine supplemented to the medium. L-Cysteine and glutathione, both at 0.5 mM, added to the medium as the sole sulfur source repressed the synthesis of O-acetylserine sulfhydrylase by 55 and 73%, respectively, confirming that this enzyme functions as a cysteine synthase. Methionine employed at 1 to 5 mM in the same way derepressed the synthesis of O-acetylserine sulfhydrylase 2.1- to 2.5-fold. A method for assaying a low concentration of sulfide (0.01 to 0.05 mM) liberated from homocysteine by determining cysteine synthesized with it in the presence of excess amounts of O-acetylserine and a purified preparation of the sulfhydrylase was established. The extract of cells catalyzed the homocysteine gamma-lyase reaction, with a specific activity of 5 to 7 nmol/min/mg of protein, but not the methionine gamma-lyase reaction. These results suggested that cysteine was also synthesized under the conditions employed by the catalysis of O-acetylserine sulfhydrylase using sulfur of homocysteine derived from methionine. Methionine inhibited O-acetylserine sulfhydrylase markedly. The effects of sulfur sources added to the medium on the synthesis of O-acetylhomoserine sulfhydrylase and the inhibition of the enzyme activity by methionine were mostly understood by assuming that the organism has two proteins having O-acetylhomoserine sulfhydrylase activity, one of which is cystathionine gamma-synthase. Although it has been reported that homocysteine is directly synthesized in T. thermophilus HB27 by the catalysis of O-acetylhomoserine sulfhydrylase on the basis of genetic studies (T. Kosuge, D. Gao, and T. Hoshino, J. Biosci. Bioeng. 90:271-279, 2000), the results obtained in this study for the behaviors of related enzymes indicate that sulfur is first incorporated into cysteine and then transferred to homocysteine via cystathionine in T. thermophilus HB8.


Assuntos
Homocisteína/biossíntese , Enxofre/metabolismo , Thermus thermophilus/metabolismo , Meios de Cultura , Cistationina/biossíntese , Cistationina/metabolismo , Cistationina gama-Liase/metabolismo , Cisteína/biossíntese , Cisteína/metabolismo , Cisteína Sintase/biossíntese , Cisteína Sintase/metabolismo , Regulação Bacteriana da Expressão Gênica , Liases/biossíntese , Liases/metabolismo , Metionina/metabolismo , S-Adenosilmetionina/metabolismo , Temperatura , Thermus thermophilus/genética , Thermus thermophilus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA