Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-22645048

RESUMO

Otoacoustic emissions (sound emitted from the ear) allow cochlear function to be probed noninvasively. The emissions evoked by pure tones, known as stimulus-frequency emissions (SFOAEs), have been shown to provide reliable estimates of peripheral frequency tuning in a variety of mammalian and non-mammalian species. Here, we apply the same methodology to explore peripheral auditory function in the largest member of the cat family, the tiger (Panthera tigris). We measured SFOAEs in 9 unique ears of 5 anesthetized tigers. The tigers, housed at the Henry Doorly Zoo (Omaha, NE), were of both sexes and ranged in age from 3 to 10 years. SFOAE phase-gradient delays are significantly longer in tigers--by approximately a factor of two above 2 kHz and even more at lower frequencies--than in domestic cats (Felis catus), a species commonly used in auditory studies. Based on correlations between tuning and delay established in other species, our results imply that cochlear tuning in the tiger is significantly sharper than in domestic cat and appears comparable to that of humans. Furthermore, the SFOAE data indicate that tigers have a larger tonotopic mapping constant (mm/octave) than domestic cats. A larger mapping constant in tiger is consistent both with auditory brainstem response thresholds (that suggest a lower upper frequency limit of hearing for the tiger than domestic cat) and with measurements of basilar-membrane length (about 1.5 times longer in the tiger than domestic cat).


Assuntos
Cóclea/fisiologia , Emissões Otoacústicas Espontâneas , Tigres/fisiologia , Estimulação Acústica , Animais , Audiometria de Tons Puros , Membrana Basilar/anatomia & histologia , Membrana Basilar/fisiologia , Gatos , Cóclea/anatomia & histologia , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Masculino , Tempo de Reação , Espectrografia do Som , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA