Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 71(1): 176-192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864368

RESUMO

Thioredoxin reductase (TrxR, enzyme code [E.C.] 1.6.4.5) is a widely distributed flavoenzyme that catalyzes nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of thioredoxin and many other physiologically important substrates. Spirulina platensis is a blue-green algae that is often used as a dietary supplement. S. platensis is rich in protein, lipid, polysaccharide, pigment, carotenoid, enzyme, vitamins and many other chemicals and exhibits a variety of pharmacological functions. In the present study, a simple and efficient method to purify TrxR from S. platensis tablets is reported. The extractions were carried out using two different methods: heat denaturation and 2',5'-adenosine diphosphate Sepharose 4B affinity chromatography. The enzyme was purified by 415.04-fold over the crude extract, with a 19% yield, and specific activity of 0.7640 U/mg protein. Optimum pH, temperature and ionic strength of the enzyme activity, as well as the Michaelis constant (Km ) and maximum velocity of enzyme (Vmax ) values for NADPH and 5,5'-dithiobis(2-nitrobenzoic acid) were determined. Tested metal ions, vitamins, and drugs showed inhibition effects, except Se4+ ion, cefazolin sodium, teicoplanin, and tobramycin that increased the enzyme activity in vitro. Ag+ , Cu2+ , Mg2+ , Ni2+ , Pb2+ , Zn2+ , Al3+ , Cr3+ , Fe3+ , and V4+ ions; vitamin B3 , vitamin B6 , vitamin C, and vitamin U and aciclovir, azithromycin, benzyladenine, ceftriaxone sodium, clarithromycin, diclofenac, gibberellic acid, glurenorm, indole-3-butyric acid, ketorolac, metformin, mupirocin, mupirocin calcium, paracetamol, and tenofovir had inhibitory effects on TrxR. Ag+ exhibited stronger inhibition than 1-chloro-2,4-dinitrobenzene (a positive control).


Assuntos
Spirulina , Tiorredoxina Dissulfeto Redutase , NADP/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Cromatografia de Afinidade , Vitaminas , Íons
2.
Biomed Khim ; 69(6): 333-352, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38153050

RESUMO

The review considers modern data on the mechanisms of activation and redox regulation of the NLRP3 inflammasome and gasdermins, as well as the role of selenium in these processes. Activation of the inflammasome and pyroptosis represent an evolutionarily conserved mechanism of the defense against pathogens, described for various types of cells and tissues (macrophages and monocytes, microglial cells and astrocytes, podocytes and parenchymal cells of the kidneys, periodontal tissues, osteoclasts and osteoblasts, as well as cells of the digestive and urogenital systems, etc.). Depending on the characteristics of redox regulation, the participants of NLRP3 inflammation and pyroptosis can be subdivided into 2 groups. Members of the first group block the mitochondrial electron transport chain, promote the formation of reactive oxygen species and the development of oxidative stress. This group includes granzymes, the mitochondrial antiviral signaling protein MAVS, and others. The second group includes thioredoxin interacting protein (TXNIP), erythroid-derived nuclear factor-2 (NRF2), Kelch-like ECH-associated protein 1 (Keap1), ninjurin (Ninj1), scramblase (TMEM16), inflammasome regulatory protein kinase NLRP3 (NEK7), caspase-1, gasdermins GSDM B, D and others. They have redox-sensitive domains and/or cysteine residues subjected to redox regulation, glutathionylation/deglutathionylation or other types of regulation. Suppression of oxidative stress and redox regulation of participants in NLRP3 inflammation and pyroptosis depends on the activity of the antioxidant enzymes glutathione peroxidase (GPX) and thioredoxin reductase (TRXR), containing a selenocysteine residue Sec in the active site. The expression of GPX and TRXR is regulated by NRF2 and depends on the concentration of selenium in the blood. Selenium deficiency causes ineffective translation of the Sec UGA codon, translation termination, and, consequently, synthesis of inactive selenoproteins, which can cause various types of programmed cell death: apoptosis of nerve cells and sperm, necroptosis of erythrocyte precursors, pyroptosis of infected myeloid cells, ferroptosis of T- and B-lymphocytes, kidney and pancreatic cells. In addition, suboptimal selenium concentrations in the blood (0.86 µM or 68 µg/l or less) have a significant impact on expression of more than two hundred and fifty genes as compared to the optimal selenium concentration (1.43 µM or 113 µg/l). Based on the above, we propose to consider blood selenium concentrations as an important parameter of redox homeostasis in the cell. Suboptimal blood selenium concentrations (or selenium deficiency states) should be used for assessment of the risk of developing inflammatory processes.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Selênio , Humanos , Gasderminas , Glutationa Peroxidase/metabolismo , Inflamassomos/metabolismo , Inflamação , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oxirredução , Piroptose , Selênio/metabolismo , Sêmen/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
3.
Molecules ; 28(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959771

RESUMO

Selenium is an essential trace element in living organisms, and is present in selenoenzymes with antioxidant activity, like glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). The search for small selenium-containing molecules that mimic selenoenzymes is a strong field of research in organic and medicinal chemistry. In this review, we review the synthesis and bioassays of new and known organoselenium compounds with antioxidant activity, covering the last five years. A detailed description of the synthetic procedures and the performed in vitro and in vivo bioassays is presented, highlighting the most active compounds in each series.


Assuntos
Compostos Organosselênicos , Selênio , Oligoelementos , Antioxidantes/química , Selênio/farmacologia , Estresse Oxidativo , Glutationa Peroxidase/metabolismo , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/química , Tiorredoxina Dissulfeto Redutase/metabolismo
4.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445606

RESUMO

Marfan syndrome (MFS) is an autosomal dominant disorder caused by a heterozygous mutation of the FBN1 gene. MFS patients present oxidative stress that disturbs redox homeostasis. Redox homeostasis depends in part on the enzymatic antioxidant system, which includes thioredoxin reductase (TrxR) and glutathione peroxidases (GPx), both of which require an adequate concentration of selenium (Se). Therefore, the aim of this study was to determine if Se levels are decreased in the TAA of patients with MFS since this could contribute to the formation of an aneurysm in these patients. The results show that interleukins IL-1ß, IL-6 TGF-ß1, and TNF-α (p ≤ 0.03), and carbonylation (p ≤ 0.03) were increased in the TAA of patients with MFS in comparison with control subjects, while Se, thiols (p = 0.02), TrxR, and GPx (p ≤ 0.001) were decreased. TLR4 and NOX1 (p ≤ 0.03), MMP9 and MMP2 (p = 0.04) and NOS2 (p < 0.001) were also increased. Therefore, Se concentrations are decreased in the TAA of MFS, which can contribute to a decrease in the activities of TrxR and GPx, and thiol groups. A decrease in the activities of these enzymes can lead to the loss of redox homeostasis, which can, in turn, lead to an increase in the pro-inflammatory interleukins associated with the overexpression of MMP9 and MMP2.


Assuntos
Aneurisma , Síndrome de Marfan , Selênio , Humanos , Aorta Torácica , Tiorredoxina Dissulfeto Redutase , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Aneurisma/complicações , Glutationa Peroxidase
5.
J Am Chem Soc ; 145(26): 14184-14189, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37267591

RESUMO

The Se-nitrosation in selenoproteins such as glutathione peroxidase and thioredoxin reductase to produce Se-nitrososelenocysteines (Sec-SeNOs) has been proposed to play crucial roles in signaling processes mediated by reactive nitrogen species and nitrosative-stress responses, although chemical evidence for the formation of Sec-SeNOs has been elusive not only in proteins but also in small-molecule systems. Herein, we report the first synthesis of a Sec-SeNO by employing a selenocysteine model system that bears a protective molecular cradle. The Sec-SeNO was characterized using 1H and 77Se nuclear magnetic resonance as well as ultraviolet/visible spectroscopy and found to have persistent stability at room temperature in solution. The reaction processes involving the Sec-SeNO provide experimental information that serves as a chemical basis for elucidating the reaction mechanisms involving the SeNO species in biological functions, as well as in selenol-catalyzed NO generation from S-nitrosothiols.


Assuntos
Selênio , Selenoproteínas , Nitrosação , Selenoproteínas/metabolismo , Glutationa Peroxidase/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Selenocisteína/química , Selênio/metabolismo
6.
Curr Opin Chem Biol ; 75: 102328, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236134

RESUMO

Selenium is connected to three small molecule antioxidant compounds, ascorbate, α-tocopherol, and ergothioneine. Ascorbate and α-tocopherol are true vitamins, while ergothioneine is a "vitamin-like" compound. Here we review how selenium is connected to all three. Selenium and vitamin E work together as a team to prevent lipid peroxidation. Vitamin E quenches lipid hydroperoxyl radicals and the resulting lipid hydroperoxide is then converted to the lipid alcohol by selenocysteine-containing glutathione peroxidase. Ascorbate reduces the resulting α-tocopheroxyl radical in this reaction back to α-tocopherol with concomitant production of the ascorbyl radical. The ascorbyl radical can be reduced back to ascorbate by selenocysteine-containing thioredoxin reductase. Ergothioneine and ascorbate are both water soluble, small molecule reductants that can reduce free radicals and redox-active metals. Thioredoxin reductase can reduce oxidized forms of ergothioneine. While the biological significance of this is not yet realized, this discovery underscores the centrality of selenium to all three antioxidants.


Assuntos
Ergotioneína , Selênio , Ácido Ascórbico , alfa-Tocoferol , Selenocisteína , Tiorredoxina Dissulfeto Redutase , Vitamina E , Antioxidantes , Vitaminas , Oxirredução , Radicais Livres , Peróxidos Lipídicos
7.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770971

RESUMO

Cellular mesenchymal-epithelial transition factor (c-Met), an oncogenic transmembrane receptor tyrosine kinase (RTK), plays an essential role in cell proliferation during embryo development and liver regeneration. Thioredoxin reductase (TrxR) is overexpressed and constitutively active in most tumors closely related to cancer recurrence. Multi-target-directed ligands (MTDLs) strategy provides a logical approach to drug combinations and would adequately address the pathological complexity of cancer. In this work, we designed and synthesized a series of selenium-containing tepotinib derivatives by means of selenium-based bioisosteric modifications and evaluated their antiproliferative activity. Most of these selenium-containing hybrids exhibited potent dual inhibitory activity toward c-Met and TrxR. Among them, compound 8b was the most active, with an IC50 value of 10 nM against MHCC97H cells. Studies on the mechanism of action revealed that compound 8b triggered cell cycle arrest at the G1 phase and caused ROS accumulations by targeting TrxR, and these effects eventually led to cell apoptosis. These findings strongly suggest that compound 8b serves as a dual inhibitor of c-Met and TrxR, warranting further exploitation for cancer therapy.


Assuntos
Antineoplásicos , Selênio , Antineoplásicos/farmacologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Selênio/farmacologia , Piperidinas/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
8.
Redox Biol ; 60: 102621, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758467

RESUMO

Multidrug-resistant (MDR) Gram-negative bacteria have become a global threat to human life and health, and novel antibiotics are urgently needed. The thioredoxin (Trx) system can be used as an antibacterial target to combat MDR bacteria. Here, we found that two active gold(I) selenium N-heterocyclic carbene complexes H7 and H8 show more promising antibacterial effects against MDR bacteria than auranofin. Both H7 and H8 irreversibly inhibit the bacterial TrxR activity via targeting the redox-active motif, abolishing the capacity of TrxR to quench reactive oxygen species (ROS) and finally leading to oxidative stress. The increased cellular superoxide radical levels impact a variety of functions necessary for bacterial survival, such as cellular redox balance, cell membrane integrity, amino acid metabolism, and lipid peroxidation. In vivo data present much better antibacterial activity of H7 and H8 than auranofin, promoting the wound healing and prolonging the survival time of Carbapenem-resistant Acinetobacter baumannii (CRAB) induced peritonitis. Most notably in this study, we revealed the influence of gold(I) complexes on both the Trx system and the cellular metabolic states to better understand their killing mechanism and to support further antibacterial drug design.


Assuntos
Ouro , Selênio , Humanos , Ouro/farmacologia , Ouro/química , Tiorredoxina Dissulfeto Redutase , Auranofina/farmacologia , Auranofina/química , Selênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo
9.
J Am Chem Soc ; 144(45): 20825-20833, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318653

RESUMO

Thioredoxin reductase (TrxR) is highly overexpressed in cancer cells to promote malignant tumor survival. Designing drugs that inhibit TrxR activity is a promising approach to achieve highly effective cancer chemotherapy. However, the selectivity of TrxR inhibitors continue to be a challenge for scientists. In this work, we demonstrate a new strategy to selectively inhibit TrxR through constructing electrophilic center -N-Se(δ+)-N- by using the polarization effect of the selenium atom. The constructed electrophilic center interacts noncovalently with the active motif of TrxR to avoid the interference of other residues in human tissues, thereby selectively inhibiting intracellular TrxR activity. Computational and experimental analysis confirms that the formed electrophilic selenium center preferred to attack the SeC residues in the redox active center of TrxR at the 498 site through strong noncovalent interactions. Both in vitro and in vivo experimental results confirmed that this strategy can significantly improve the anticancer effect. This study may provide a novel route to design highly effective and selective chemotherapeutic drugs.


Assuntos
Neoplasias , Selênio , Humanos , Tiorredoxina Dissulfeto Redutase , Selênio/farmacologia , Neoplasias/tratamento farmacológico , Oxirredução , Antioxidantes
10.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293383

RESUMO

Deodorized garlic (DG) may favor the activity of the antioxidant enzymes and promote the synthesis of hydrogen sulfide (H2S). The objective was to test if DG favors an increase in H2S and if it decreases the oxidative stress caused by lipopolysaccharide (LPS) in rat hearts. A total of 24 rats were divided into 4 groups: Group 1 control (C), Group 2 LPS, Group 3 DG, and Group 4 LPS plus DG. The cardiac mechanical performance (CMP), coronary vascular resistance (CVR), and oxidative stress markers, such as total antioxidant capacity (TAC), glutathione (GSH), selenium (Se), lipid peroxidation (LPO), thiols, hydrogen sulfide (H2S), and the activities and expressions of thioredoxin reductase (TrxR), glutathione peroxidase (GPx), and glutathione-S-transferase (GST), cystathionine synthetase (CBS), cystathionine γ-lyase (CTH), iNOS, and eNOS-p, were analyzed in the heart. Infarct zones in the cardiac tissue were present (p = 0.01). The CMP and CVR decreased and increased (p ≤ 0.05), TAC, GSH, H2S, NO, thiols, and GST activity (p ≤ 0.01) decreased, and LPO and iNOS increased (p ≤ 0.05). The activities and expressions of TrxR, GPx, eNOS-p, CTH, and CBS (p ≤ 0.05) decreased with the LPS treatment; however, DG normalized this effect. DG treatment decreases heart damage caused by LPS through the cross-talk between the H2S and NO systems.


Assuntos
Alho , Sulfeto de Hidrogênio , Selênio , Animais , Ratos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Alho/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Lipopolissacarídeos/farmacologia , Estresse Oxidativo , Selênio/farmacologia , Compostos de Sulfidrila/farmacologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Transferases/metabolismo
11.
Cells ; 11(18)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36139349

RESUMO

Hibiscus sabdariffa L. (HSL) has high amounts of antioxidants and many beneficial effects in several pathologies. However, few studies describe the possible harmful effects of high concentrations of HSL. Here we evaluate the effect of excessive and chronic consumption of infusions with different percentages of HSL on some oxidative stress markers in serum, and the possible association with inflammation and increased systolic blood pressure (SBP), in healthy rats. A total of 32 male Wistar rats were used to form 4 groups with 8 animals each. Group 1 control (drinking tap water), group 2, 3 and 4, drinking water supplemented with 15, 30 and 60 g/L of HSL calyxes respectively. SBP was evaluated and determinations in serum of the NO3-/NO2- ratio, glutathione (GSH), total antioxidant capacity (TAC), selenium (Se), TNF-α, IL-1α/IL-1F1, IL-1ß, IL-10, extracellular superoxide dismutase (EcSOD), thioredoxin reductase (TrxR) and glutathione peroxidase (GPx) activities, were evaluated. The SBP (p = 0.01), GPx activity, GSH, TAC, Se, TNF-α and EcSOD activities (p ≤ 0.001) and IL-1α/IL-1F1, IL-1ß, TrxR and NO3-/NO2- (p ≤ 0.05), were increased but IL-10 (p < 0.001) was decreased in rats that consumed the 3 and 6% HSL infusions. The excessive and chronic consumption of HSL may increase the TAC that could lead to a proinflammatory state which is associated with hypertension.


Assuntos
Hibiscus , Extratos Vegetais , Animais , Antioxidantes/farmacologia , Pressão Sanguínea , Glutationa , Glutationa Peroxidase , Hibiscus/química , Inflamação , Interleucina-10 , Masculino , Dióxido de Nitrogênio , Extratos Vegetais/efeitos adversos , Ratos , Ratos Wistar , Selênio , Superóxido Dismutase , Tiorredoxina Dissulfeto Redutase , Fator de Necrose Tumoral alfa
12.
J Anim Sci ; 100(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998071

RESUMO

This experiment was designed to examine the effects of a dietary supplementation of polysaccharides-rich noni (Morinda citrifolia L.) fruit extract (NFP) on the anti-oxidant enzyme activities, cytokines level, and expression of corresponding genes in blood of cashmere goats. Twelve castrated, 2-yr-old male cashmere goats (45.44 ± 3.30 kg of BW ± SD) were used in a 2 × 2 crossover design: the basal diet with or without (CON) supplementation of NFP at 4 g per kg DM (0.4%). Each period lasted for 29 d, including 1 wk for diet transition, 20 d for adaptation, and the last 2 d for sampling. The results showed that NFP supplementation increased (P < 0.05) the levels of nitric oxide, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and the activities of catalase (CAT), glutathione peroxidase (GPx), thioredoxin reductase (TrxR), and total superoxide dismutase (T-SOD) in serum. The expressions of CAT, GPx4, TrxR, SOD1, IL-6, and TNF-α genes were upregulated (P < 0.05), whereas the levels of malondialdehyde (P = 0.015) and reactive oxygen species (P = 0.051) in serum were reduced. The body weight gain of goats was increased (P = 0.006) with a nonsignificant increase of feed intake with NFP supplementation. In conclusion, dietary NFP supplementation enhanced the antioxidant status and immune function in blood of cashmere goats.


Due to the limited pasture supply and the seasonal imbalance of nutrients in grazed pastures in China, cashmere goats are commonly raised in a confined yard-feeding system, which may result in oxidative stress from a lack of green pastures. Noni (Morinda citrifolia L.) fruit polysaccharides contain various biological compounds that function as anti-inflammatory, antitumor, and to enhance immune responses, hence likely to relieve oxidative stress in animals. Previous researches in our laboratory have shown that polysaccharides-rich extract from noni fruit (NFP) enhanced rumen fermentation in cashmere goats. This experiment was designed to evaluate the effect of NFP supplementation on serum antioxidant status and immune function in cashmere goats. The results showed that dietary supplementation of 0.40% NFP enhanced the immune signaling molecule levels and antioxidant enzyme activities by upregulating the expression of related genes in blood and reduced the levels of lipid peroxides and free radicals in serum, while mature goats improved body weight. Therefore, NFP could be a viable source of antioxidants for cashmere goats.


Assuntos
Morinda , Animais , Masculino , Antioxidantes/metabolismo , Catalase , Citocinas/genética , Suplementos Nutricionais , Frutas , Glutationa Peroxidase , Cabras/metabolismo , Imunidade , Interleucina-6 , Malondialdeído/metabolismo , Morinda/metabolismo , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Espécies Reativas de Oxigênio , Superóxido Dismutase-1 , Tiorredoxina Dissulfeto Redutase , Fator de Necrose Tumoral alfa/metabolismo
13.
Eur J Pharmacol ; 925: 174990, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35500643

RESUMO

Accumulating evidence suggests that ginger and its pungent constituents harbor a wealth of biological activities including cancer chemopreventive activity. However, relatively few researches focus on [6]-dehydroshogaol (6-DHS) compared with other ginger pungent constituents such as [6]-shogaol (6S). In this work, we selected three ginger compounds, 6-DHS, 6S and [6]-paradol (6P) differentiated by the presence and number of the Michael acceptor units, to probe structural basis and mechanism of 6-DHS in inhibiting angiogenesis, a key step for tumor growth and metastasis. It was found that their antiangiogenic activity is significantly dependent on the presence and number of Michael acceptor units. Benefiting from its two Michael acceptor units, 6-DHS is the most potent inhibitor of thioredoxin reductase and depletor of glutathione, thereby being the most active generator of reactive oxygen species, which is responsible for its strongest ability to inhibit angiogenesis. This work highlights 6-DHS being a Michael acceptor-dependent pro-oxidative angiogenesis inhibitor.


Assuntos
Zingiber officinale , Catecóis/farmacologia , Zingiber officinale/química , Zingiber officinale/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Extratos Vegetais/farmacologia , Tiorredoxina Dissulfeto Redutase
14.
Food Chem ; 373(Pt B): 131647, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34838402

RESUMO

An "off-on" fluorescent probe, Nap-DNB, which is based on naphthimide, was designed and developed for the detection of biological selenols in vitro. We have adopted a combination of a low-pH detection environment and reaction sites that are more difficult to destroy to avoid the interference of a large number of biological thiols in biological samples. Nap-DNB can completely respond to selenocysteine within 15 mins, with a detection limit of 92 nM. Nap-DNB was successfully used for the detection of selenols in the serum, liver, and longissimus dorsi of selenium-enriched Tan sheep. Through comparison, we found that the detection of selenols by the Nap-DNB is similar to that by thioredoxin reductase and glutathione peroxidase in a commercial kit method. Nap-DNB can be used for the detection of selenols in selenium-enriched Tan sheep.


Assuntos
Compostos de Selênio , Selênio , Animais , Corantes Fluorescentes , Glutationa Peroxidase , Selenocisteína , Ovinos , Tiorredoxina Dissulfeto Redutase
15.
J Cell Biochem ; 123(3): 532-542, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34935169

RESUMO

Selenium (Se) is incorporated into the body via the selenocysteine (Sec) biosynthesis pathway, which is critical in the synthesis of selenoproteins, such as glutathione peroxidases and thioredoxin reductases. Selenoproteins, which play a key role in several biological processes, including ferroptosis, drug resistance, endoplasmic reticulum stress, and epigenetic processes, are guided by Se uptake. In this review, we critically analyze the molecular mechanisms of Se metabolism and its potential as a therapeutic target for cancer. Sec insertion sequence binding protein 2 (SECISBP2), which is a positive regulator for the expression of selenoproteins, would be a novel prognostic predictor and an alternate target for cancer. We highlight strategies that attempt to develop a novel Se metabolism-based approach to uncover a new metabolic drug target for cancer therapy. Moreover, we expect extensive clinical use of SECISBP2 as a specific biomarker in cancer therapy in the near future. Of note, scientists face additional challenges in conducting successful research, including investigations on anticancer peptides to target SECISBP2 intracellular protein.


Assuntos
Neoplasias , Selênio , Proteínas de Transporte/metabolismo , Humanos , Redes e Vias Metabólicas , Neoplasias/tratamento farmacológico , Selênio/metabolismo , Selênio/uso terapêutico , Selenoproteínas/química , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
16.
Chem Commun (Camb) ; 57(59): 7296-7299, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34223569

RESUMO

A chlorine e6 (Ce6) and curcumin (Cur) based self-delivery nanomedicine (CeCu) is prepared for chemotherapy sensitized photodynamic therapy (PDT). The chemotherapeutic agent of Cur could inhibit the TrxR activity to destroy the cellular ROS-defence system for enhanced PDT, which provides synergistic effects for tumor precision therapy in consideration of the unfavorable tumor microenvironments.


Assuntos
Nanomedicina , Fotoquimioterapia/métodos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Clorofilídeos , Curcumina/química , Curcumina/metabolismo , Curcumina/farmacologia , Humanos , Camundongos , Microscopia Confocal , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/química , Porfirinas/metabolismo , Porfirinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Transplante Heterólogo , Microambiente Tumoral
17.
Chem Biol Interact ; 344: 109529, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029542

RESUMO

Ganoderic acid A (GAA), one of the major triterpenoid components extracted from Ganoderma mushroom has been shown to possess numerous important pharmacological activities. The present study was aimed to investigate the mechanisms of GAA on carbon tetrachloride (CCl4)-induced kidney inflammation, fibrosis and oxidative stress in mice. The male mice were treated with 25 and 50 mg/mg GAA after stimulated with CCl4. Our results showed that GAA improved renal damage by decreasing the serum levels of creatinine, urea, uric acid and alleviating kidney fibrosis. GAA ameliorated CCl4-induced indices of inflammation. GAA suppressed oxidative stress by regulating the glutathione antioxidant system and the thioredoxin antioxidant system. GAA increased the activations of thioredoxin reductase (TrxR), Trx, GSH, SOD, GPx. Furthermore, GAA supplementation inhibited the JAK and STAT3 pathway. GAA inhibited the activations of RhoA, ROCK, NF-κB, TGF-ß and Smad3. Thus, this study demonstrated that GAA possesses immune-protective properties through regulating the Trx/TrxR, JAK2/STAT3 and RhoA/ROCK pathways.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Fibrose/tratamento farmacológico , Ácidos Heptanoicos/uso terapêutico , Nefropatias/tratamento farmacológico , Lanosterol/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Animais , Tetracloreto de Carbono , Fibrose/induzido quimicamente , Fibrose/patologia , Janus Quinase 2/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/patologia , Lanosterol/uso terapêutico , Masculino , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Proteína Smad3/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Quinases Associadas a rho/metabolismo
18.
J Biomol Struct Dyn ; 39(12): 4480-4489, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32567497

RESUMO

Antioxidant systems of M. tuberculosis (Mtb) play an important role in providing resistance in the hostile environment of mononuclear phagocytes. Thioredoxin system is a known antioxidant system that consists of three copies of thioredoxins (Trxs) and a single copy of thioredoxin reductase (TrxR). TrxR has been validated as an essential gene known to be involved in the reduction of peroxides, dinitrobenzenes and hydroperoxides, and is crucial in maintaining the survival of Mtb in macrophages. Recently, it has been demonstrated to be a druggable target. In this study, molecular docking was applied to screen more than 20,000 natural compounds from the Traditional Chinese Medicine database. Theoretical calculation of ΔGbinding by the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) methods indicated two top-hit compounds that bind with a high affinity to the allosteric site, consisting of a hinge region, of TrxR. Further, stability and binding analysis of both compounds were carried out with molecular dynamics simulation. An analysis of conformational variation by principal component analysis (PCA) and protein contact network (PCN) uncovered the conformational changes in the compound-bound forms of protein. The NADPH domain formed many new interactions with the FAD domain in the compound-bound form, signifying that the binding may render an effect on the protein structure and function. Our results suggest that these two compounds could potentially be used for structure-based lead inhibitors against TrxR. The inhibitor selected as lead compound will be used further as a scaffold to optimize as novel anti-tuberculosis therapeutic.Communicated by Ramaswamy H. Sarma.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Tuberculose/tratamento farmacológico
19.
Antioxid Redox Signal ; 34(17): 1355-1367, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32517496

RESUMO

Aims: Drug-induced liver injury, especially acetaminophen (APAP)-induced liver injury, is a leading cause of liver failure worldwide. Mouse models were used to evaluate the effect of microelement selenium levels on the cellular redox environment and consequent hepatotoxicity of APAP. Results: APAP treatment affected mouse liver selenoprotein thioredoxin reductase (TrxR) activity and glutathione (GSH) level in a dose- and time-dependent manner. Decrease of mouse liver TrxR activity and glutathione level was an early event, and occurred concurrently with liver damage. The decreases in the GSH/glutathione disulfide form (GSSG) ratio and TrxR activity, and the increase of protein S-glutathionylation were correlated with the APAP-induced hepatotoxicity. Moreover, in APAP-treated mice both mild deprivation and excess supplementation with selenium increased the severity of liver injury compared with those observed in mice with normal dietary selenium levels. An increase in the oxidation state of the TrxR-mediated system, including cytosolic thioredoxin1 (Trx1) and peroxiredoxin1/2 (Prx1/2), and mitochondrial Trx2 and Prx3, was found in the livers from mice reared on selenium-deficient and excess selenium-supplemented diets upon APAP treatment. Innovation: This work demonstrates that both Trx and GSH systems are susceptible to APAP toxicity in vivo, and that the thiol-dependent redox environment is a key factor in determining the extent of APAP-induced hepatotoxicity. Dietary selenium and selenoproteins play critical roles in protecting mice against APAP overdose. Conclusion: APAP treatment in mice interrupts the function of the Trx and GSH systems, which are the main enzymatic antioxidant systems, in both the cytosol and mitochondria. Dietary selenium deficiency and excess supplementation both increase the risk of APAP-induced hepatotoxicity.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Selênio/administração & dosagem , Tiorredoxina Dissulfeto Redutase/metabolismo , Animais , Citosol/metabolismo , Dieta , Relação Dose-Resposta a Droga , Regulação para Baixo , Camundongos , Mitocôndrias/metabolismo , Oxirredução , Selênio/efeitos adversos , Fatores de Tempo
20.
Life Sci ; 259: 118285, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798556

RESUMO

AIMS: Interleukin-1ß (IL-1ß) contributes to the development of bronchopulmonary dysplasia (BPD). Thioredoxin reductase-1 (Txnrd1) inhibition activates nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent responses. Txnrd1 activity is selenium (Se) dependent and Se deficiency is common in prematurity. Auranofin (AFN), a Txnrd1 inhibitor, decreases IL-1ß levels and increases Nrf2 activation in lipopolysaccharide (LPS) treated alveolar macrophages. In lung epithelia, AFN-induced Nrf2 activation is Se dependent. We tested the hypothesis that the effects of Txnrd1 inhibition in alveolar macrophages are Se dependent. MAIN METHODS: To establish Se sufficient (Se+) and deficient (Se-) conditions, alveolar (MH-S) macrophages were cultured in 2.5% fetal bovine serum (FBS) ± 25 nM Na2SeO3. Se- (2.5% FBS) and Se+ (2.5% FBS + 25 nM Na2SeO3) cells were cultured in the presence or absence of 0.05 µg/mL LPS and/or 0.5 µM AFN. Nrf2 activation was determined by measuring NADPH quinone oxidoreductase-1 (Nqo1) and glutathione levels. IL-1ß mRNA (Il1b) and protein levels were measured using qRT-PCR and ELISA. Data were analyzed by ANOVA followed by Tukey's post-hoc. KEY FINDINGS: We detected an independent effect of AFN, but not LPS, on Nqo1 expression and GSH levels in Se+ and Se- cells. LPS significantly increased Il1b and IL-1ß levels in both groups. AFN-mediated attenuation of this effect was not impacted by Se status. SIGNIFICANCE: The beneficial effects of Txnrd1 inhibition in alveolar macrophages are Se-independent and therefore unlikely to be diminished by clinical Se deficiency.


Assuntos
Auranofina/farmacologia , Macrófagos Alveolares/metabolismo , Tiorredoxina Redutase 1/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Auranofina/metabolismo , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/fisiopatologia , Glutationa/metabolismo , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Macrófagos/metabolismo , Macrófagos Alveolares/fisiologia , Camundongos , Cultura Primária de Células , Selênio/metabolismo , Selênio/farmacologia , Tiorredoxina Redutase 1/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA