Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 326: 117908, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38367931

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Goiters are enlargements of the thyroid gland and are a global public issue. Quemeiteng granule (QMTG) is a traditional Chinese medicine (TCM) formula used to treat goiter in Yunnan Province. However, the effectiveness and underlying mechanism of these treatments have not been fully elucidated. AIM OF THE STUDY: This study aimed to investigate the therapeutic effects of QMTG on goiter and the downstream regulatory mechanisms. MATERIALS AND METHODS: In this study, we first evaluated the antigoiter efficacy of QMTG through biochemical indices [body weight, thyroid coefficient, triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4), and thyroid stimulating hormone (TSH)] and hematoxylin-eosin (HE) staining in a Propylthiouracil (PTU)-induced model. Based on microRNA sequencing (miRNA-seq) and bioinformatics analysis, key miRNA was screened out. A dual-luciferase reporter assay was performed to confirm the transcriptional regulation of the target gene by the miRNA. The viability of rat thyroid microvascular endothelial cells (RTMECs) and human thyroid microvascular endothelial cells (HTMECs) was assessed using the CCK-8 assays. The migration and angiogenesis of RTMECs and HTMECs were visualized through tube formation and wound scratch assays. Proteins involved in angiogenesis and the ERK pathway were assessed via Western blotting. RESULTS: QMTG significantly increased body weight, decreased the thyroid coefficient, increased the levels of T3, T4, FT3 and FT4 and reduced TSH levels in rats with goiter. QMTG also promoted the morphological recovery of thyroid follicles. MiR-217-5p was identified as a key miRNA. Our studies revealed that miR-217-5p directly targets FGF2 and that QMTG promotes the recovery of thyroid hormone (TH) levels and morphological changes in the thyroid, suppresses thyroid microvascular endothelial cell vitality, tube formation and migration, and reduces the expression of VEGF, Ang-1 and VCAM-1 triggered by miR-217-5p, thereby inhibiting the Ras/MEK/ERK cascade through FGF2. CONCLUSIONS: Our experiments demonstrated that the QMTG had therapeutic effects on goiter. These effects were attributed to the inhibition of ERK pathway-induced proliferation and angiogenesis through the targeting of FGF2 by miR-217-5p.


Assuntos
Bócio , MicroRNAs , Humanos , Ratos , Animais , Sistema de Sinalização das MAP Quinases , Fator 2 de Crescimento de Fibroblastos/metabolismo , Tri-Iodotironina/farmacologia , Tiroxina , Células Endoteliais/metabolismo , Angiogênese , China , MicroRNAs/genética , MicroRNAs/metabolismo , Hormônios Tireóideos , Bócio/tratamento farmacológico , Proliferação de Células , Tireotropina/metabolismo , Peso Corporal
2.
Curr Biol ; 34(3): 632-640.e6, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38218183

RESUMO

In mammals, maternal photoperiodic programming (MPP) provides a means whereby juvenile development can be matched to forthcoming seasonal environmental conditions.1,2,3,4 This phenomenon is driven by in utero effects of maternal melatonin5,6,7 on the production of thyrotropin (TSH) in the fetal pars tuberalis (PT) and consequent TSH receptor-mediated effects on tanycytes lining the 3rd ventricle of the mediobasal hypothalamus (MBH).8,9,10 Here we use LASER capture microdissection and transcriptomic profiling to show that TSH-dependent MPP controls the attributes of the ependymal region of the MBH in juvenile animals. In Siberian hamster pups gestated and raised on a long photoperiod (LP) and thereby committed to a fast trajectory for growth and reproductive maturation, the ependymal region is enriched for tanycytes bearing sensory cilia and receptors implicated in metabolic sensing. Contrastingly, in pups gestated and raised on short photoperiod (SP) and therefore following an over-wintering developmental trajectory with delayed sexual maturation, the ependymal region has fewer sensory tanycytes. Post-weaning transfer of SP-gestated pups to an intermediate photoperiod (IP), which accelerates reproductive maturation, results in a pronounced shift toward a ciliated tanycytic profile and formation of tanycytic processes. We suggest that tanycytic plasticity constitutes a mechanism to tailor metabolic development for extended survival in variable overwintering environments.


Assuntos
Células Ependimogliais , Melatonina , Cricetinae , Animais , Células Ependimogliais/metabolismo , Estações do Ano , Hipotálamo/metabolismo , Ritmo Circadiano , Phodopus/metabolismo , Fotoperíodo , Tireotropina/metabolismo
3.
Physiol Behav ; 273: 114401, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939828

RESUMO

AIM: The present study aimed to investigate the effect of the intracerebroventricular (icv) administration of spexin on the hypothalamus-pituitary-thyroid (HPT) axis (TRH, TSH, T4 and T3 hormones) and energy expenditure (PGC-1α and UCP1 genes) in white adipose (WAT) and brown adipose tissues (BAT) in rats. Furthermore, the study aimed to determine the effects of spexin on food-water consumption and body weight of rats. MATERIAL AND METHOD: The study was conducted with 40 male rats that were divided into 4 groups: Control, Sham, Spexin 30 and Spexin 100 (n = 10). Spexin (1 µl/hour) was administered to rats other than those in the control group for 7 days with osmotic minipumps intracerebroventricularly, artificial cerebrospinal fluid (vehicle) was administered to the Sham group, and 30 nMol and 100 nMol spexin was infused to the Spexin 30 and Spexin 100 groups, respectively. Food-water consumption and body weight of the rats were monitored during the experiments. After the seven-day infusion, the rats were decapitated and serum TSH, fT4 and fT3 levels were determined with ELISA on rat blood samples. Also, TRH gene expression levels from the hypothalamus tissues and PGC-1α and UCP1 expression levels from WAT and BAT were determined by real-time PCR. FINDINGS: It was determined that icv spexin infusion reduced daily food consumption and body weight without leading to a significant change in water consumption (p < 0.05). Icv spexin infusion significantly decreased serum TSH, and increased fT4 and fT3 levels when compared to control and sham groups (p < 0.05). Moreover, icv spexin infusion increased the TRH expressions in the hypothalamus tissues and PGC-1α UCP1 in the WAT and BAT (p < 0.05). CONCLUSION: Icv Spexin infusion may have effects on food consumption and body weight as well as, thyroid hormones and energy metabolism.


Assuntos
Glândula Tireoide , Tiroxina , Ratos , Masculino , Animais , Glândula Tireoide/metabolismo , Tri-Iodotironina , Adipócitos Marrons , Biogênese de Organelas , Hipotálamo/metabolismo , Peso Corporal , Tireotropina/metabolismo , Tireotropina/farmacologia
4.
Ecotoxicol Environ Saf ; 259: 114985, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178612

RESUMO

Excessive antibiotics transferred into the aquatic environment may affect the development of amphibians. Previous studies on the aquatic ecological risk of ofloxacin generally ignored its enantiomers. The purpose of this study was to compare the effects and mechanisms of ofloxacin (OFL) and levofloxacin (LEV) on the early development of Rana nigromaculata. After 28-day exposure at environmental levels, we found that LEV exerted more severe inhibitory effects on the development of tadpoles than OFL. According to the enrichment results of differentially expressed genes in the LEV and OFL treatments, LEV and OFL had different effects on the thyroid development of tadpoles. dio2 and trh were affected by the regulation of dexofloxacin instead of LEV. At the protein level, LEV was the main component that affected thyroid development-related protein, while dexofloxacin in OFL had little effect on thyroid development. Furthermore, molecular docking results further confirmed that LEV was a major component affecting thyroid development-related proteins, including DIO and TSH. In summary, OFL and LEV regulated the thyroid axis by differential binding to DIO and TSH proteins, thereby exerting differential effects on the thyroid development of tadpoles. Our research is of great significance for comprehensive assessment of chiral antibiotics aquatic ecological risk.


Assuntos
Levofloxacino , Ofloxacino , Animais , Ofloxacino/toxicidade , Ofloxacino/metabolismo , Levofloxacino/farmacologia , Levofloxacino/metabolismo , Larva , Glândula Tireoide , Simulação de Acoplamento Molecular , Antibacterianos/toxicidade , Antibacterianos/metabolismo , Ranidae/metabolismo , Hipotálamo , Tireotropina/metabolismo
5.
Thyroid ; 33(7): 867-876, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37166378

RESUMO

Background: Thyrotropin-releasing hormone (TRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) have been identified as direct regulators of thyrotropin (TSH) and thyroid hormone (TH) levels. They play a significant role in context of negative feedback by TH at the level of TRH gene expression and during fasting when TH levels fall due, in part, to suppression of TRH gene expression. Methods: To test these functions directly for the first time, we used a chemogenetic approach and activated PVN TRH neurons in both fed and fasted mice. Next, to demonstrate the signals that regulate the fasting response in TRH neurons, we activated or inhibited agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons in the arcuate nucleus of the hypothalamus of fed or fasted mice, respectively. To determine if the same TRH neurons responsive to melanocortin signaling mediate negative feedback by TH, we disrupted the thyroid hormone receptor beta (TRß) in all melanocortin 4 receptor (MC4R) neurons in the PVN. Results: Activation of TRH neurons led to increased TSH and TH levels within 2 hours demonstrating the specific role of PVN TRH neurons in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. Moreover, activation of PVN TRH neurons prevented the fall in TH levels in fasting mice. Stimulation of AgRP/NPY neurons led to a fall in TH levels despite increasing feeding. Inhibition of these same neurons prevented the fall in TH levels during a fast presumably via their ability to directly regulate PVN TRH neurons via, in part, the MC4R. Surprisingly, TH-mediated feedback was not impaired in mice lacking TRß in MC4R neurons. Conclusions: TRH neurons are major regulators of the HPT axis and the fasting-induced suppression of TH levels. The latter relies, at least in part, on the activation of AgRP/NPY neurons in the arcuate nucleus. Interestingly, present data do not support an important role for TRß signaling in regulating MC4R neurons in the PVN. Thus, it remains possible that different subsets of TRH neurons in the PVN mediate responses to energy balance and to TH feedback.


Assuntos
Hormônio Liberador de Tireotropina , Tireotropina , Camundongos , Animais , Hormônio Liberador de Tireotropina/metabolismo , Tireotropina/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Glândula Tireoide/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/metabolismo , Hipotálamo , Hormônios Tireóideos/metabolismo , Núcleo Hipotalâmico Paraventricular , Neurônios/metabolismo
6.
Ann N Y Acad Sci ; 1525(1): 61-69, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37199228

RESUMO

Seasonal changes in food intake and adiposity in many animal species are triggered by changes in the photoperiod. These latter changes are faithfully transduced into a biochemical signal by melatonin secreted by the pineal gland. Seasonal variations, encoded by melatonin, are integrated by third ventricular tanycytes of the mediobasal hypothalamus through the detection of the thyroid-stimulating hormone (TSH) released from the pars tuberalis. The mediobasal hypothalamus is a critical brain region that maintains energy homeostasis by acting as an interface between the neural networks of the central nervous system and the periphery to control metabolic functions, including ingestive behavior, energy homeostasis, and reproduction. Among the cells involved in the regulation of energy balance and the blood-hypothalamus barrier (BHB) plasticity are tanycytes. Increasing evidence suggests that anterior pituitary hormones, specifically TSH, traditionally considered to have unitary functions in targeting single endocrine sites, display actions on multiple somatic tissues and central neurons. Notably, modulation of tanycytic TSH receptors seems critical for BHB plasticity in relation to energy homeostasis, but this needs to be proven.


Assuntos
Melatonina , Animais , Melatonina/fisiologia , Células Ependimogliais/metabolismo , Hipotálamo/fisiologia , Encéfalo/metabolismo , Tireotropina/metabolismo , Estações do Ano , Homeostase
7.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047811

RESUMO

The bony skeleton, as a structural foundation for the human body, is essential in providing mechanical function and movement. The human skeleton is a highly specialized and dynamic organ that undergoes continuous remodeling as it adapts to the demands of its environment. Advances in research over the last decade have shone light on the various hormones that influence this process, modulating the metabolism and structural integrity of bone. More recently, novel and non-traditional functions of hypothalamic, pituitary, and adipose hormones and their effects on bone homeostasis have been proposed. This review highlights recent work on physiological bone remodeling and discusses our knowledge, as it currently stands, on the systemic interplay of factors regulating this interaction. In this review, we provide a summary of the literature on the relationship between bone physiology and hormones including kisspeptin, neuropeptide Y, follicle-stimulating hormone (FSH), prolactin (PRL), adrenocorticotropic hormone (ACTH), thyroid-stimulating hormone (TSH), growth hormone (GH), leptin, and adiponectin. The discovery and understanding of this new functionality unveils an entirely new layer of physiologic circuitry.


Assuntos
Hipotálamo , Hipófise , Humanos , Hipófise/metabolismo , Hipotálamo/metabolismo , Hormônio do Crescimento/metabolismo , Prolactina/metabolismo , Tireotropina/metabolismo , Tecido Adiposo/metabolismo
8.
J Periodontal Res ; 58(3): 668-678, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807238

RESUMO

BACKGROUND AND OBJECTIVE: Periodontal ligament stem cells (PDLSCs) are derived from the periodontal ligament and have the characteristics of pluripotent differentiation, including osteogenesis, and are one of the important seed cells in oral tissue engineering. Thyrotropin (TSH) has been shown to regulate bone metabolism independently of thyroid hormone, including the fate of osteoblasts and osteoclasts, but whether it affects osteogenic differentiation of PDLSCs is unknown. MATERIALS AND METHODS: PDLSCs were isolated and cultured from human periodontal ligament and grown in osteogenic medium (containing sodium ß-glycerophosphate, ascorbic acid, and dexamethasone). Recombinant human TSH was added to the culture medium. Osteogenic differentiation of PDLSCs was assessed after 14 days by staining with alkaline phosphatase and alizarin red and by detection of osteogenic differentiation genes. Differentially expressed genes (DEGs) in PDLSCs under TSH were detected by high-throughput sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyzed the biological functions and signaling pathways involved in DEGs. RESULTS: We found that osteogenic differentiation of PDLSCs was significantly inhibited in the presence of TSH: including decreased calcium nodule formation, decreased alkaline phosphatase levels, and decreased collagen synthesis. Using high-throughput sequencing, we found changes in the expression of some osteogenesis-related genes, which may be the reason that TSH inhibits osteogenic differentiation of PDLSCs. CONCLUSION: Unless TSH is ≥10 mU/L, patients with subclinical hypothyroidism usually do not undergo thyroxine supplementation therapy. However, in this work, we found that elevated TSH inhibited the osteogenic differentiation of PDLSCs. Therefore, correction of TSH levels in patients with subclinical hypothyroidism may be beneficial to improve orthodontic, implant, and periodontitis outcomes in these patients.


Assuntos
Hipotireoidismo , Osteogênese , Humanos , Osteogênese/fisiologia , Tireotropina/metabolismo , Ligamento Periodontal , Fosfatase Alcalina/metabolismo , Células-Tronco , Diferenciação Celular/fisiologia , Hipotireoidismo/metabolismo , Células Cultivadas , Proliferação de Células
9.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142613

RESUMO

Radioactive iodine (RAI) plays an important role in the diagnosis and treatment of papillary thyroid cancer (PTC). The curative effects of RAI therapy are not only related to radiosensitivity but also closely related to the accumulation of radionuclides in the lesion in PTC. Sinomenine hydrochloride (SH) can suppress tumor growth and increase radiosensitivity in several tumor cells, including PTC. The aim of this research was to investigate the therapeutic potential of SH on PTC cell redifferentiation. In this study, we treated BCPAP and TPC-1 cells with SH and tested the expression of thyroid differentiation-related genes. RAI uptake caused by SH-pretreatment was also evaluated. The results indicate that 4 mM SH significantly inhibited proliferation and increased the expression of the thyroid iodine-handling gene compared with the control group (p < 0.005), including the sodium/iodide symporter (NIS). Furthermore, SH also upregulated the membrane localization of NIS and RAI uptake. We further verified that upregulation of NIS was associated with the activation of the thyroid-stimulating hormone receptor (TSHR)/cyclic adenosine monophosphate (cAMP) signaling pathway. In conclusion, SH can inhibit proliferation, induce apoptosis, promote redifferentiation, and then increase the efficacy of RAI therapy in PTC cells. Thus, our results suggest that SH could be useful as an adjuvant therapy in combination with RAI therapy in PTC.


Assuntos
Iodo , Simportadores , Neoplasias da Glândula Tireoide , Monofosfato de Adenosina , Humanos , Iodetos/metabolismo , Iodo/metabolismo , Radioisótopos do Iodo/metabolismo , Radioisótopos do Iodo/uso terapêutico , Morfinanos , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Sódio/metabolismo , Simportadores/genética , Simportadores/metabolismo , Câncer Papilífero da Tireoide/tratamento farmacológico , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Tireotropina/metabolismo
10.
Zhongguo Zhen Jiu ; 42(5): 525-32, 2022 May 12.
Artigo em Chinês | MEDLINE | ID: mdl-35543943

RESUMO

OBJECTIVE: To observe the effect of wheat-grain moxibustion on behavior, 5-hydroxytryptamine (5-HT) and cortisol in the serum, mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hippocampus in rats with hypothyroidism complicated with depression, and to explore the possible mechanism of wheat-grain moxibustion on improving depression in rats with hypothyroidism. METHODS: A total of 32 SPF SD rats were randomly divided into a blank group, a model group, a medication group and a wheat-grain moxibustion group, 8 rats in each group. Except for the blank group, the rats in the remaining groups were treated with intragastric administration of 0.1% propylthiouracil (PTU) suspension at 1 mL/100 g, once a day for 4 weeks to establish the rat model of hypothyroidism, and whether the rats were accompanied with depression-like behavior determined through behavioristics evaluation. The rats in the medication group were intervened with euthyrox at 0.9 mL/100 g, once a day, for 4 weeks; the rats in the wheat-grain moxibustion group were treated with wheat-grain moxibustion at "Dazhui" (GV 14), "Mingmen" (GV 4), "Shenshu" (BL 23) and "Pishu" (BL 20), 7 cones each acupoint, once a day, six times a week for 4 weeks. After the intervention, the depression status was observed by behavioristics test; the contents of thyroid stimulating hormone (TSH), total thyroxine (TT4), 5-HT and cortisol in the serum were detected by ELISA; the protein expressions of MR and GR in hippocampus were detected by Western blot; the expressions of MR mRNA and GR mRNA in the hippocampus were detected by real-time PCR. RESULTS: Before the intervention, compared with the blank group, the scores of open field test (OFT) were decreased and the immobility time of tail suspension test (TST) was prolonged (P<0.05); the serum TSH contents were increased and TT4 contents were decreased (P<0.01) in the other three groups. After the intervention, compared with the model group, the vertical score of OFT was increased and the immobility time of forced swimming test (FST) was prolonged in the medication group (P<0.05), while the scores of three items of OFT were increased (P<0.05, P<0.01), and the immobility time of FST and TST was shortened in the wheat-grain moxibustion group (P<0.01, P<0.05). Compared with the medication group, the immobility time of TST and FST in the wheat-grain moxibustion group was shorter (P<0.05, P<0.01). Compared with the blank group, in the model group, the contents of serum TSH and cortisol were increased (P<0.01, P<0.001), while the contents of serum TT4 and 5-HT were decreased (P<0.01, P<0.001). Compared with the model group, the contents of serum TT4 and 5-HT were increased, while the contents of serum TSH and cortisol were decreased in the medication group and wheat-grain moxibustion group (P<0.01, P<0.05). Compared with the blank group, the protein and mRNA expression of MR, GR in the hippocampus in the model group was decreased (P<0.01, P<0.05, P<0.001); compared with the model group, the protein and mRNA expression of MR in the hippocampus in the medication group were increased (P<0.05), and the protein expression of MR, GR and mRNA expression of MR in the hippocampus in the wheat-grain moxibustion group were increased (P<0.05, P<0.01). Compared with the medication group, the expression of MR mRNA in the wheat-grain moxibustion group was increased (P<0.05). CONCLUSION: Wheat-grain moxibustion could significantly improve thyroid function and depression in rats with hypothyroidism. Its mechanism may be related to up-regulating the protein and mRNA expression of MR and GR in the hippocampus, and then affecting the expression of serum cortisol and 5-HT.


Assuntos
Hipotireoidismo , Moxibustão , Pontos de Acupuntura , Animais , Depressão/genética , Depressão/terapia , Hipocampo/metabolismo , Hidrocortisona/metabolismo , Hipotireoidismo/complicações , Hipotireoidismo/metabolismo , Hipotireoidismo/terapia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Serotonina , Tireotropina/metabolismo , Triticum/metabolismo
11.
Artigo em Chinês | WPRIM | ID: wpr-927418

RESUMO

OBJECTIVE@#To observe the effect of wheat-grain moxibustion on behavior, 5-hydroxytryptamine (5-HT) and cortisol in the serum, mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hippocampus in rats with hypothyroidism complicated with depression, and to explore the possible mechanism of wheat-grain moxibustion on improving depression in rats with hypothyroidism.@*METHODS@#A total of 32 SPF SD rats were randomly divided into a blank group, a model group, a medication group and a wheat-grain moxibustion group, 8 rats in each group. Except for the blank group, the rats in the remaining groups were treated with intragastric administration of 0.1% propylthiouracil (PTU) suspension at 1 mL/100 g, once a day for 4 weeks to establish the rat model of hypothyroidism, and whether the rats were accompanied with depression-like behavior determined through behavioristics evaluation. The rats in the medication group were intervened with euthyrox at 0.9 mL/100 g, once a day, for 4 weeks; the rats in the wheat-grain moxibustion group were treated with wheat-grain moxibustion at "Dazhui" (GV 14), "Mingmen" (GV 4), "Shenshu" (BL 23) and "Pishu" (BL 20), 7 cones each acupoint, once a day, six times a week for 4 weeks. After the intervention, the depression status was observed by behavioristics test; the contents of thyroid stimulating hormone (TSH), total thyroxine (TT4), 5-HT and cortisol in the serum were detected by ELISA; the protein expressions of MR and GR in hippocampus were detected by Western blot; the expressions of MR mRNA and GR mRNA in the hippocampus were detected by real-time PCR.@*RESULTS@#Before the intervention, compared with the blank group, the scores of open field test (OFT) were decreased and the immobility time of tail suspension test (TST) was prolonged (P<0.05); the serum TSH contents were increased and TT4 contents were decreased (P<0.01) in the other three groups. After the intervention, compared with the model group, the vertical score of OFT was increased and the immobility time of forced swimming test (FST) was prolonged in the medication group (P<0.05), while the scores of three items of OFT were increased (P<0.05, P<0.01), and the immobility time of FST and TST was shortened in the wheat-grain moxibustion group (P<0.01, P<0.05). Compared with the medication group, the immobility time of TST and FST in the wheat-grain moxibustion group was shorter (P<0.05, P<0.01). Compared with the blank group, in the model group, the contents of serum TSH and cortisol were increased (P<0.01, P<0.001), while the contents of serum TT4 and 5-HT were decreased (P<0.01, P<0.001). Compared with the model group, the contents of serum TT4 and 5-HT were increased, while the contents of serum TSH and cortisol were decreased in the medication group and wheat-grain moxibustion group (P<0.01, P<0.05). Compared with the blank group, the protein and mRNA expression of MR, GR in the hippocampus in the model group was decreased (P<0.01, P<0.05, P<0.001); compared with the model group, the protein and mRNA expression of MR in the hippocampus in the medication group were increased (P<0.05), and the protein expression of MR, GR and mRNA expression of MR in the hippocampus in the wheat-grain moxibustion group were increased (P<0.05, P<0.01). Compared with the medication group, the expression of MR mRNA in the wheat-grain moxibustion group was increased (P<0.05).@*CONCLUSION@#Wheat-grain moxibustion could significantly improve thyroid function and depression in rats with hypothyroidism. Its mechanism may be related to up-regulating the protein and mRNA expression of MR and GR in the hippocampus, and then affecting the expression of serum cortisol and 5-HT.


Assuntos
Animais , Ratos , Pontos de Acupuntura , Depressão/terapia , Hipocampo/metabolismo , Hidrocortisona/metabolismo , Hipotireoidismo/terapia , Moxibustão , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Serotonina , Tireotropina/metabolismo , Triticum/metabolismo
12.
Folia Morphol (Warsz) ; 81(3): 594-605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34018174

RESUMO

BACKGROUND: The aim of the current work was to clarify the modulation role of green tea extract (GTE) over structural and functional affection of the thyroid gland after long term use of lithium carbonate (LC). The suggested underlying mechanisms participating in thyroid affection were researched. MATERIALS AND METHODS: Twenty-four Sprague-Dawley adult albino rats were included in the work. They were divided into three groups (control, LC, and concomitant LC + GTE). The work was sustained for 8 weeks. Biochemical assays were performed (thyroid hormone profile, interleukin 6 [Il-6]). Histological, histochemical (Periodic Acid Schiff [PAS]) and immunohistochemical (caspase-3, tumour necrosis factor alpha [TNF-α], proliferating cell nuclear antigen [PCNA]) evaluations were done. Oxidative/antioxidative markers (malondialdehyde [MDA]/gluthathione [GSH], superoxide dismutase [SOD]) and Western blot evaluation of the Bcl2 family were done. RESULTS: Lithium carbonate induced hypothyroidism (decreased T3, T4/increased thyroid-stimulating hormone [TSH]). The follicles were distended, others were involuted. Some follicles were disorganised, others showed detached follicular cells. Apoptotic follicular cells were shown (BAX and caspase-3 increased, Bcl2 decreased, BAX/Bcl2 ratio increased). The collagen fibres' content and proinflammatory markers (TNF-α and IL-6) increased. The proliferative nuclear activity was supported by increased expression of PCNA. Oxidative stress was established (increased MDA/decreased GSH, SOD). With the use of GTE, the thyroid hormone levels increased, while the TSH level decreased. Apoptosis was improved as BAX decreased, Bcl2 increased, and BAX/Bcl2 ratio was normal. The collagen fibres' content and proinflammatory markers (TNF-α and IL-6) decreased. The expression of PCNA and caspase-3 were comparable to the control group. The oxidative markers were improved (decreased MDA/increased GSH, SOD). CONCLUSIONS: In conclusion, prolonged use of LC results in hypothyroidism, which is accompanied by structural thyroid damage. LC induced thyroid damage through oxidative stress that prompted sterile inflammation and apoptosis. With the use of GTE, the thyroid gland regained its structure and function. The protecting role of GTE is through antioxidant, antifibrotic, anti-inflammatory, and antiproliferative effects.


Assuntos
Hipotireoidismo , Células Epiteliais da Tireoide , Animais , Antioxidantes/farmacologia , Caspase 3/metabolismo , Colágeno/metabolismo , Glutationa/metabolismo , Hipotireoidismo/induzido quimicamente , Interleucina-6/metabolismo , Lítio/farmacologia , Carbonato de Lítio/farmacologia , Estresse Oxidativo , Extratos Vegetais/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Chá/química , Células Epiteliais da Tireoide/metabolismo , Hormônios Tireóideos/farmacologia , Tireotropina/metabolismo , Tireotropina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia
13.
J Neuroendocrinol ; 33(5): e12972, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33896057

RESUMO

Chronic stress exerts multiple negative effects on the physiology and health of an individual. In the present study, we examined hypothalamic, pituitary and endocrine responses to 14 days of chronic variable stress (CVS) in male and female C57BL/6J mice. In both sexes, CVS induced a significant decrease in body weight and enhanced the acute corticosterone stress response, which was accompanied by a reduction in thymus weight only in females. However, single-point blood measurements of basal prolactin, thyroid-stimulating hormone, luteinising hormone, growth hormone and corticosterone levels taken at the end of the CVS were not different from those of controls. Similarly, pituitary mRNA expression of Fshb, Lhb, Prl and Gh was unchanged by CVS, although Pomc and Tsh were significantly elevated. Within the adrenal medulla, mRNA for Th, Vip and Gal were elevated following CVS. Avp transcript levels within the paraventricular nucleus of the hypothalamus were increased by CVS; however, levels of Gnrh1, Crh, Oxt, Sst, Trh, Ghrh, Th and Kiss1 remained unchanged. Oestrous cycles were lengthened slightly by CVS and ovarian histology revealed a reduction in the number of preovulatory follicles and corpora lutea. Taken together, these observations indicate that 14 days of CVS induces an up-regulation of the neuroendocrine stress axis and creates a mild disruption of female reproductive function. However, the lack of changes in other neuroendocrine axes controlling anterior and posterior pituitary secretion suggest that most neuroendocrine axes are relatively resilient to CVS.


Assuntos
Hipotálamo/metabolismo , Folículo Ovariano/metabolismo , Hipófise/metabolismo , Pró-Opiomelanocortina/metabolismo , Estresse Psicológico/metabolismo , Animais , Corpo Lúteo/metabolismo , Corticosterona/metabolismo , Feminino , Hormônio do Crescimento/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Prolactina/metabolismo , Tireotropina/metabolismo
14.
Nutrients ; 12(6)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545596

RESUMO

A healthy gut microbiota not only has beneficial effects on the activity of the immune system, but also on thyroid function. Thyroid and intestinal diseases prevalently coexist-Hashimoto's thyroiditis (HT) and Graves' disease (GD) are the most common autoimmune thyroid diseases (AITD) and often co-occur with Celiac Disease (CD) and Non-celiac wheat sensitivity (NCWS). This can be explained by the damaged intestinal barrier and the following increase of intestinal permeability, allowing antigens to pass more easily and activate the immune system or cross-react with extraintestinal tissues, respectively. Dysbiosis has not only been found in AITDs, but has also been reported in thyroid carcinoma, in which an increased number of carcinogenic and inflammatory bacterial strains were observed. Additionally, the composition of the gut microbiota has an influence on the availability of essential micronutrients for the thyroid gland. Iodine, iron, and copper are crucial for thyroid hormone synthesis, selenium and zinc are needed for converting T4 to T3, and vitamin D assists in regulating the immune response. Those micronutrients are often found to be deficient in AITDs, resulting in malfunctioning of the thyroid. Bariatric surgery can lead to an inadequate absorption of these nutrients and further implicates changes in thyroid stimulating hormone (TSH) and T3 levels. Supplementation of probiotics showed beneficial effects on thyroid hormones and thyroid function in general. A literature research was performed to examine the interplay between gut microbiota and thyroid disorders that should be considered when treating patients suffering from thyroid diseases. Multifactorial therapeutic and preventive management strategies could be established and more specifically adjusted to patients, depending on their gut bacteria composition. Future well-powered human studies are warranted to evaluate the impact of alterations in gut microbiota on thyroid function and diseases.


Assuntos
Microbioma Gastrointestinal , Doenças da Glândula Tireoide/epidemiologia , Cirurgia Bariátrica/efeitos adversos , Doença Celíaca/epidemiologia , Disbiose/epidemiologia , Feminino , Doença de Graves/epidemiologia , Doença de Hashimoto/epidemiologia , Humanos , Iodo/metabolismo , Ferro/metabolismo , Masculino , Estado Nutricional , Probióticos/metabolismo , Selênio/metabolismo , Doenças da Glândula Tireoide/microbiologia , Glândula Tireoide/fisiopatologia , Neoplasias da Glândula Tireoide/epidemiologia , Tireotropina/metabolismo , Tri-Iodotironina/metabolismo , Vitamina D/metabolismo
15.
Bioelectromagnetics ; 41(2): 91-103, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31828821

RESUMO

The neuroendocrine system can be modulated by a magnetic field and cerebral ischemia as external and internal stressors, respectively. This study deals with the separate or combined effects of an extremely low frequency (ELF) magnetic field (50 Hz, average magnetic field of 0.5 mT) for 7 days and global cerebral ischemia for 10 min on the morpho-functional features of pituitary adrenocorticotrophic (ACTH) and thyrotrophic (TSH) cells in 3-month-old gerbils. To determine the immediate and delayed effects of the applied stressors, measurements were made on the 7th and 14th days after the onset of the experiment. The ELF magnetic field and 10-min global cerebral ischemia, separately and particularly in combination, decreased (P < 0.05) the volume density of ACTH cells, while only in combination were intracellular ACTH content and plasma ACTH concentration increased (P < 0.05) on day 7. The ELF magnetic field elevated serum TSH concentration on day 7 and intracellular TSHß content on day 14 (P < 0.05). Also, 10-min global cerebral ischemia alone increased serum TSH concentration (P < 0.05), while in combination with the ELF magnetic field it elevated (P < 0.05) intracellular TSHß content on day 14. In conclusion, an ELF magnetic field and/or 10-min global cerebral ischemia can induce immediate and delayed stimulation of ACTH and TSH synthesis and secretion. Bioelectromagnetics. 2020;41:91-103. © 2019 Bioelectromagnetics Society.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Isquemia Encefálica/metabolismo , Campos Magnéticos/efeitos adversos , Hipófise/citologia , Tireotropina/metabolismo , Hormônio Adrenocorticotrópico/sangue , Animais , Gerbillinae , Masculino , Hipófise/metabolismo , Tireotropina/sangue
16.
J Int Med Res ; 48(5): 300060519888401, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31774013

RESUMO

OBJECTIVE: Variations in hormone levels are a direct effect of epileptic discharges in both animals and humans, and seizure can affect the hypothalamus-pituitary-thyroid axis. The purpose of this study was to determine which parameters could affect the alternation of thyroid hormones in children experiencing seizure. METHODS: We retrospectively reviewed the medical records of 181 pediatric patients with seizure and compared three thyroid hormones (serum thyroid-stimulating hormone [TSH], free thyroxine [fT4], and triiodothyronine [T3]) between initial (admission to hospital) and follow-up (2 weeks later) testing. RESULTS: Multivariable logistic regression models were used to determine which six parameters (gender, age, seizure accompanying with fever, seizure type, seizure duration, and anti-epileptic drug medication) could help to explain the higher initial TSH levels in pediatric seizure. Only seizure duration in patients with an increase in TSH levels was significantly longer compared with patients with normal TSH at the time of initial testing. CONCLUSION: Neuronal excitability by seizure can cause thyroid hormonal changes, which likely reflects changes in hypothalamic function.


Assuntos
Excitabilidade Cortical/fisiologia , Epilepsia/fisiopatologia , Glândula Tireoide/metabolismo , Tireotropina/sangue , Adolescente , Anticonvulsivantes/uso terapêutico , Criança , Pré-Escolar , Epilepsia/sangue , Epilepsia/tratamento farmacológico , Feminino , Seguimentos , Humanos , Hipotálamo/fisiopatologia , Lactente , Masculino , Estudos Retrospectivos , Testes de Função Tireóidea , Glândula Tireoide/inervação , Tireotropina/metabolismo , Tiroxina/sangue , Tiroxina/metabolismo , Fatores de Tempo , Tri-Iodotironina/sangue , Tri-Iodotironina/metabolismo
17.
Math Biosci Eng ; 16(6): 8069-8091, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31698655

RESUMO

Hashimoto's thyroiditis (HT) is an autoimmune disorder that drives the function of thyroid gland to the sequential clinical states:euthyroidism (normal condition), subclinical hypothyroidism (asymptomatic period) and overt hypothyroidism (symptomatic period). In this disease, serum thyroidstimulating hormone (TSH) levels increase monotonically, stimulating the thyroid follicular cells chronically and initiating benign (non-cancerous) thyroid nodules at various sites of the thyroid gland. This process can also encourage growth of papillary thyroid microcarcinoma. Due to prolonged TSH stimulation, thyroid nodules may grow and become clinically relevant without the administration of treatment by thyroid hormone replacement. Papillary thyroid cancer (80% of thyroid cancer) whose incidence is increasing worldwide, is associated with Hashimoto's thyroiditis. A stochastic model is developed here to produce the statistical distribution of thyroid nodule sizes and growth by taking serum TSH value as the continuous input to the model using TSH values from the output of the patientspecific deterministic model developed for the clinical progression of Hashimoto's thyroiditis.


Assuntos
Doença de Hashimoto/complicações , Câncer Papilífero da Tireoide/complicações , Neoplasias da Glândula Tireoide/complicações , Tempo para o Tratamento , Biópsia por Agulha Fina , Simulação por Computador , Progressão da Doença , Doença de Hashimoto/fisiopatologia , Humanos , Hipotálamo/patologia , Incidência , Modelos Teóricos , Receptores da Tireotropina/metabolismo , Risco , Processos Estocásticos , Tireoglobulina/metabolismo , Câncer Papilífero da Tireoide/fisiopatologia , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/fisiopatologia , Nódulo da Glândula Tireoide/complicações , Nódulo da Glândula Tireoide/fisiopatologia , Tireotropina/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo
18.
PLoS One ; 14(7): e0220040, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31318940

RESUMO

BACKGROUND: Maternal iodine deficiency is related to high neonatal thyroid-stimulating hormone (TSH) values, with the threshold of 5 mIU/L recommended as an indicator of iodine nutrition status. The objective of this study was to analyse possible risk factors for increased TSH that could distort its validity as a marker of iodine status. The clinical relevance of this research question is that if the factors associated with iodine deficiency are known, iodine supplementation can be introduced in risk groups, both during pregnancy and in newborns. METHODS: A case-control study was carried out in a sample of 46,622 newborns in 2002-2015 in Spain. Of these, 45,326 had a neonatal TSH value ≥5 mIU/L. The main variable was having TSH ≥5 mIU/L and the secondary variables were: sex, gestational age, day of sample extraction and maternal origin. Associated factors were analysed through a logistic regression model, calculating the odds ratio (OR). RESULTS: The factors associated with this outcome were: male sex (OR = 1.34, 95% CI: 1.20-1.50, p<0.001), originating from an Asian/Oceanic country (OR = 0.80, 95% CI: 0.54-1.20, p = 0.536) or Europe (OR = 0.80, 95% CI: 0.66-0.96, p = 0.285) (including Spain, OR = 1) [p<0.001 for America (OR = 0.54, 95% CI: 0.44-0.68) and p = 0.025 for Africa (OR = 0.78, 95% CI: 0.62-0.97)] and fewer days from birth to sampling (OR = 0.80, 95% CI: 0.77-0.82, p<0.001). CONCLUSIONS: The risk of high neonatal TSH without congenital hypothyroidism is higher in males, decreases with a greater number of days from birth to extraction, and is dependent on maternal ethnicity but not on gestational age.


Assuntos
Hipertireoxinemia/diagnóstico , Hipertireoxinemia/etiologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Hipertireoxinemia/metabolismo , Recém-Nascido , Doenças do Recém-Nascido , Masculino , Triagem Neonatal , Razão de Chances , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Tireotropina/metabolismo
19.
Sci Rep ; 9(1): 5570, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944403

RESUMO

We aimed to determine whether recombinant human thyrotropin (rhTSH) plus 3.7 GBq could replace thyroid hormone withdrawal (THW) plus 5.55 GBq for adjuvant radioactive iodine (RAI) therapy in differentiated thyroid cancer (DTC) patients with T4 or N1b disease. This study was a retrospective study comparing ablation success rate, response to initial therapy, and recurrence-free survival (RFS) of patients with rhTSH plus 3.7 GBq versus those with THW plus 5.55 GBq in 253 DTC patients with T4 or N1b disease. There were no differences in the TSH-stimulated thyroglobulin level, rate of incomplete response after initial treatment, or the RFS between the two treatment strategies. However, thyroid bed uptake on follow-up diagnostic RAI whole-body scanning (WBS) was more frequently observed in the group treated with rhTSH plus 3.7 GBq than in the group with THW plus 5.55 GBq. Adjuvant RAI therapy with rhTSH plus 3.7 GBq had comparable results in the absence of persistent tumor, compared with that with THW plus 5.55 GBq. Although thyroid bed uptake was more frequently observed, rhTSH plus 3.7 GBq may be used instead of THW plus 5.55 GBq for adjuvant RAI therapy in patients with T4 or N1b disease.


Assuntos
Radioisótopos do Iodo/uso terapêutico , Neoplasias da Glândula Tireoide/radioterapia , Diferenciação Celular/efeitos da radiação , Terapia Combinada/métodos , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/radioterapia , Estadiamento de Neoplasias/métodos , Proteínas Recombinantes/metabolismo , Estudos Retrospectivos , Tireoglobulina/metabolismo , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Glândula Tireoide/efeitos da radiação , Hormônios Tireóideos/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Tireotropina/metabolismo , Imagem Corporal Total/métodos
20.
Food Chem Toxicol ; 126: 1-6, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30735751

RESUMO

Sulforaphane is a redox-active natural product present in cruciferous vegetables like broccoli. Broccoli sprout-derived products are promising agents for the prevention of oxidative stress-related diseases, but some have long been suspected of thyroidal toxicity. Recent findings also raise the possibility that long-term exposure to sulforaphane, or to other natural substances or drugs that modulate the activity of the transcription factor Nrf2 (NFE2-related factor 2) may lead to thyroid dysfunction or thyroid autoimmune disease, questioning the safety of trials with sulforaphane-containing products. Previous studies addressing possible effects of sulforaphane-related compounds from natural product extracts on the thyroid were quite short and/or inconsistent. To investigate whether long-term exposure to a beverage enriched with sulforaphane and its precursor glucoraphanin may affect thyroid function, we analyzed biochemical measures of thyroid function and thyroid autoimmunity in 45 female participants in a randomized clinical trial at baseline and after 84 days of beverage administration. Serum levels of thyroid-stimulating hormone, free thyroxine and thyroglobulin were not affected by the treatment, and neither was the thyroid autoimmunity status of participants. These results provide evidence in favor of the safety of chemoprevention strategies that target the activation of Nrf2 to protect against environmental exposures and other oxidative stress-related pathologies.


Assuntos
Autoimunidade , Brassica/metabolismo , Sucos de Frutas e Vegetais/análise , Fator 2 Relacionado a NF-E2/metabolismo , Glândula Tireoide/metabolismo , Tri-Iodotironina/metabolismo , Adulto , Idoso , Brassica/química , Feminino , Humanos , Isotiocianatos/metabolismo , Masculino , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/genética , Preparações de Plantas/química , Preparações de Plantas/metabolismo , Estudos Retrospectivos , Sulfóxidos , Tireotropina/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA