Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 351: 141261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244873

RESUMO

Rapid industrial growth and urbanization have resulted in a significant rise in environmental pollution issues, particularly indoor air pollutants. As a result, it is crucial to design and develop technologies and/or catalysts that are not only cost-effective but also promising high performance and practical applicability. However, achieving this goal has been so far remained a challenging task. Herein, a series of transition metal M - TiO2 (M = W, Fe, Mn) nanocrystals was prepared for photocatalytic degradation of volatile organic compounds (VOCs), i.e., toluene. Of the nanocomposites tested, W-TiO2 showed significantly improved photocatalytic activity for VOC degradation under UV irradiation compared to the others. In particular, the optimized W dopant amount of 0.5 wt% resulted in the outstanding degradation performance of toluene (96%) for the obtained W-TiO2(0.5%) nanocomposite. Moreover, W-TiO2(0.5%) nanocomposite exhibited good stability for 32 h working under high toluene concentration (10 ppm) compared to the pristine TiO2. The current work demonstrates the potential usage of M - TiO2 nanocrystals, particularly W-TiO2(0.5%), as a promising photocatalyst for efficient VOCs degradation.


Assuntos
Poluentes Atmosféricos , Nanocompostos , Titânio/química , Raios Ultravioleta , Tolueno/química , Nanocompostos/química , Catálise , Poluentes Atmosféricos/química
2.
Chemosphere ; 351: 141251, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253084

RESUMO

This study presents the catalytic pyrolysis of microalgae, Chlorella vulgaris (C. vulgaris), using pure CH4 and H2-rich gas evolved from CH4 decomposition on three different HZSM-5 catalysts loaded with Zn, Ga, and Pt, aimed specifically at producing high-value mono-aromatics such as benzene, toluene, ethylbenzene, and xylene (BTEX). In comparison with that for the typical inert N2 environment, a pure CH4 environment increased the bio-oil yield from 32.4 wt% to 37.4 wt% probably due to hydrogen and methyl radical insertion in the bio-oil components. Furthermore, the addition of bimetals further increased bio-oil yield. For example, ZnPtHZ led to a bio-oil yield of 47.7 wt% in pure CH4. ZnGaHZ resulted in the maximum BTEX yield (6.68 wt%), which could be explained by CH4 activation, co-aromatization, and hydrodeoxygenation. The BTEX yield could be further increased to 7.62 wt% when pyrolysis was conducted in H2-rich gas evolved from CH4 decomposition over ZnGaHZ, as rates of aromatization and hydrodeoxygenation were relatively high under this condition. This study experimentally validated that the combination of ZnGaHZ and CH4 decomposition synergistically increases BTEX production using C. vulgaris.


Assuntos
Chlorella vulgaris , Microalgas , Óleos de Plantas , Polifenóis , Temperatura Alta , Pirólise , Tolueno , Benzeno , Xilenos , Catálise , Zinco , Biocombustíveis
3.
Environ Pollut ; 343: 123224, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159633

RESUMO

Diluted bitumen (DB), one of the most transported unconventional crude oils in Canada's pipelines, raises public concerns due to its potential spillage into freshwater environments. This study aimed to compare the fate and behaviour of DB versus conventional crude (CC) in a simulated warm freshwater environment. An equivalent of 10 L of either DB or CC was spilled into 1200 L of North Saskatchewan River (NSR) water containing natural NSR sediment (2.4 kg) in a mesoscale spill tank and its fate and behaviour at air/water temperatures of 18 °C/24 °C were monitored for 56 days. Oil mass distribution analysis showed that 42.3 wt % of CC and 63.6 wt% of DB resided in the oil slicks at the end of 56-day tests, consisting mainly high molecular weight (HMW) compounds (i.e., resins and asphaltenes). The lost oil contained mainly low molecular weight (LMW) compounds (i.e., light saturates and some aromatics) into the atmosphere, water column, and sediment through collective weathering processes. Notably, weathered CC emulsified with water and remained floating until the end, while the weathered DB mat started to lose its buoyancy after 24 days under quiescent conditions and resurfaced once waves were applied. Analysis of the microbial communities of water pre- and post-spills revealed the replacement of indigenous microbial communities with hydrocarbon-degrading species. Exposure to CC reduced the microbial diversity by 12%, while exposure to DB increased the diversity by 10%. During the early stages of the spill (up to Day 21), most dominant species were positively correlated with the benzene, toluene, ethylbenzene, and xylenes (BTEX) content or polycyclic aromatic hydrocarbon (PAH) content of the water column, while the dominant species at the later stages (Days 21-56) of the spill were negatively correlated with BTEX or PAH content and positively correlated with the total organic carbon (TOC) content in waters.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluição por Petróleo/análise , Hidrocarbonetos/análise , Petróleo/análise , Água Doce/análise , Água/análise , Benzeno/análise , Tolueno/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 913: 169730, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160834

RESUMO

Bisphenol A (BPA) is a phenolic organic synthetic compound that is used as the raw material of polycarbonate plastics, and its safety issues have recently attracted wide attention. Selenium (Se) deficiency has gradually developed into a global disease affecting intestinal function via oxidative stress and apoptosis. However, the toxic effects and potential mechanisms of BPA exposure and Se deficiency in the chicken intestines have not been studied. In this study, BPA exposure and/or Se deficiency models were established in vivo and in vitro to investigate the effects of Se deficiency and BPA on chicken jejunum. The results showed that BPA exposure and/or Se deficiency increased jejunum oxidative stress and DNA damage, activated P53 pathway, led to mitochondrial dysfunction, and induced apoptosis and cell cycle arrest. Using protein-protein molecular docking, we found a strong binding ability between P53 and peroxisome proliferator-activated receptor γ coactivator-1, thereby regulating mitochondrial dysfunctional apoptosis. In addition, we used N-acetyl-L-cysteine and pifithrin-α for in vitro intervention and found that N-acetyl-L-cysteine and pifithrin-α intervention reversed the aforementioned adverse effects. This study clarified the potential mechanism by which Se deficiency exacerbates BPA induced intestinal injury in chickens through reactive oxygen species/P53, which provides a new idea for the study of environmental combined toxicity of Se deficiency, and insights into animal intestinal health from a new perspective.


Assuntos
Compostos Benzidrílicos , Benzotiazóis , Fenóis , Selênio , Tolueno/análogos & derivados , Animais , Espécies Reativas de Oxigênio/metabolismo , Selênio/toxicidade , Selênio/metabolismo , Galinhas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilcisteína/farmacologia , Simulação de Acoplamento Molecular , Estresse Oxidativo , Intestinos , Apoptose , Pontos de Checagem do Ciclo Celular
5.
Neurotoxicology ; 99: 244-253, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944760

RESUMO

Misused volatile solvents typically contain toluene (TOL) as the main psychoactive ingredient. Cyclohexane (CHX) can also be present and is considered a safer alternative. Solvent misuse often occurs at early stages of life, leading to permanent neurobehavioral impairment and growth retardation. However, a comprehensive examination of the effects of TOL and CHX on stress regulation and energy balance is lacking. Here, we compared the effect of a binge-pattern exposure to TOL or CHX (4,000 or 8,000 ppm) on body weight, food intake, the hypothalamus-pituitary-adrenal (HPA) and hypothalamus-pituitary-thyroid (HPT) axes in male adolescent Wistar rats. At 8,000 ppm, TOL decreased body weight gain without affecting food intake. In addition, TOL and CHX altered the HPA and HPT axes' function in a solvent- and concentration-dependent manner. The highest TOL concentration produced HPA axis hyperactivation in animals not subjected to stress, which was evidenced by increased corticotropin-releasing-factor (CRF) release from the median eminence (ME), elevated adrenocorticotropin hormone (ACTH) and corticosterone serum levels, and decreased CRF mRNA levels in the hypothalamic paraventricular nucleus (PVN). TOL (8,000 ppm) also increased triiodothyronine (T3) serum levels, decreased pro-thyrotropin-releasing-hormone (pro-TRH) mRNA transcription in the PVN, pro-TRH content in the ME, and serum thyroid stimulating hormone (TSH) levels. CHX did not affect the HPA axis. We propose that the increased HPT axis activity induced by TOL can be related to the impaired body weight gain associated with inhalant misuse. These findings may contribute to a better understanding of the effects of the misused solvents TOL and CHX.


Assuntos
Hormônio Liberador da Corticotropina , Sistema Hipotálamo-Hipofisário , Ratos , Masculino , Animais , Ratos Wistar , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Tolueno/toxicidade , Sistema Hipófise-Suprarrenal/metabolismo , Hipotálamo/metabolismo , Peso Corporal , RNA Mensageiro , Solventes/toxicidade , Corticosterona
6.
Environ Sci Technol ; 57(44): 17087-17098, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37823365

RESUMO

The identification and in situ cultivation of functional yet uncultivable microorganisms are important to confirm inferences regarding their ecological functions. Here, we developed a new method that couples Raman-activated cell sorting (RACS), stable-isotope probing (SIP), and genome-directed cultivation (GDC)─namely, RACS-SIP-GDC─to identify, sort, and cultivate the active toluene degraders from a complex microbial community in petroleum-contaminated soil. Using SIP, we successfully identified the active toluene degrader Pigmentiphaga, the single cells of which were subsequently sorted and isolated by RACS. We further successfully assembled the genome of Pigmentiphaga based on the metagenomic sequencing of 13C-DNA and genomic sequencing of sorted cells, which was confirmed by gyrB gene comparison and average nucleotide identity determination. Additionally, the genotypes and phenotypes of this degrader were directly linked at the single-cell level, and its complete toluene metabolic pathways in petroleum-contaminated soil were reconstructed. Based on its unique metabolic properties uncovered by genome sequencing, we modified the traditional cultivation medium with antibiotics, amino acids, carbon sources, and growth factors (e.g., vitamins and metals), achieving the successful cultivation of RACS-sorted active degrader Pigmentiphaga sp. Our results implied that RACS-SIP-GDC is a state-of-the-art approach for the precise identification, targeted isolation, and cultivation of functional microbes from complex communities in natural habitats. RACS-SIP-GDC can be used to explore specific and targeted organic-pollution-degrading microorganisms at the single-cell level and provide new insights into their biodegradation mechanisms.


Assuntos
Petróleo , Solo , Isótopos/química , Tolueno/metabolismo , DNA , Biodegradação Ambiental , Microbiologia do Solo
7.
Bull Environ Contam Toxicol ; 111(5): 56, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874406

RESUMO

This study analyzed total organic carbon (TOC), petroleum products (PP), suspended materials (SM), volatile aromatic hydrocarbons (toluene, o-xylene, etc.) and n-alkanes in the snow cover of Bol'shekhekhtsirsky, Zeysky state natural reserves and Khabarovsk, on 4, 5 and 9 stations in the south of the Russian Far East in March 2020. In Bol'shekhekhtsirsky reserve, the concentrations of TOC, PP, and SM in snow samples were in the range of 1.5-2.4, 0.06-0.11, and 11.4-1.9 mg/L, 1.4-1.9, 0.02-0.05, and 11-23 mg/L in Zeysky reserve, while in Khabarovsk were 1.7-23.7, 0.12-1.26, and 25-294 mg/L, respectively. In addition, the benzene, toluene, and o-xylene concentrations of snow samples ranges from not detected (ND) to 2.4, ND-3.1, and 1.1-2.7 µg/L in Khabarovsk, ND-1.3, ND-2.1, and ND-2.7 µg/L, respectively in Bol'shekhekhtsirsky reserve. Carbon preference index values of n-alkanes were consistent with anthropogenic sources for stations 7, 8 and 2 in Khabarovsk (Heat Power Plants 1, 2 and city roads). The snow of the Zeysky Reserve is not contaminated with organic pollutants, and can be used as a conditional background for the south of the Russian Far East.


Assuntos
Petróleo , Neve , Hidrocarbonetos , Alcanos , Tolueno , Federação Russa , Ásia Oriental , Carbono
8.
Environ Res ; 238(Pt 1): 117176, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729962

RESUMO

Although nonthermal plasma (NTP) technology has high removal efficiency for volatile organic compounds (VOCs), it has limited carbon dioxide (CO2) selectivity, which hinders its practical application. In this study, α-MnO2 nanorods with tunable oxygen vacancies and hydroxyl groups were synthesized by two-step hydrothermal process to enhance their activity for deep oxidation of toluene. Hydrochloric acid (HCl) was used to assist in synthesis of α-MnO2 nanorods with tunable oxygen vacancies, furtherly, more hydroxyl groups were introduced to HCl-assisted synthesized α-MnO2 by K+ supplement. The results showed that the as-synthesized nanorods exhibited superior activity, improved by nearly 30% removal efficiency of toluene compared to pristine MnO2 at SIE = 339 J/L, and reaching high COx selectivity of 72% at SIE = 483 J/L, successfully promoting the deep oxidation of toluene. It was affirmed that oxygen vacancies played an important role in toluene conversion, improving the conversion of ozone (O3) and resulting in higher mobility of surface lattice oxygen species. Besides, the enhancement of deep oxidation performance was caused by the increase of hydroxyl groups concentration. In-situ DRIFTS experiments revealed that the adsorbed toluene on catalyst surface was oxidized to benzyl alcohol by surface lattice oxygen, and hydroxyl groups were also found participating in toluene adsorption. Overall, this study provides a new approach to designing catalysts for deep oxidation of VOCs.


Assuntos
Nanotubos , Compostos Orgânicos Voláteis , Oxigênio , Óxidos , Compostos de Manganês , Tolueno , Catálise
9.
Reprod Domest Anim ; 58(11): 1595-1603, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37732358

RESUMO

The action of buckwheat, rooibos and vitex on healthy female reproductive systems, as well as their ability to mitigate the reproductive toxicity of environmental contaminant toluene have not yet been examined. We analysed the influence of toluene (0, 10, 100 or 1000 ng/mL) with and without these plant extracts (10 µg/mL) on cultured porcine ovarian granulosa cells. Cell viability, proliferation (PCNA accumulation), apoptosis (accumulation of bax) and release of progesterone (P) and oestradiol (E) were measured. Toluene reduced ovarian cell viability and proliferation, increased apoptosis and suppressed E but not P release. Plant extracts, given alone, were also able to directly suppress some ovarian cell functions. The addition of buckwheat promoted toluene action on cell viability, proliferation and P release, but it did not modify other toluene effects. Rooibos mitigated toluene action on cell viability, proliferation and apoptosis but promoted its action on P and E. The addition of vitex mitigated all the tested toluene effects. These observations: (1) demonstrate the direct toxic influence of toluene on ovarian cells, (2) demonstrate the ability of food/medicinal plants to either promote or mitigate toluene effects and (3) suggest that vitex could be a natural protector against the suppressive effect of toluene on female reproduction.


Assuntos
Plantas Medicinais , Tolueno , Feminino , Suínos , Animais , Tolueno/toxicidade , Proliferação de Células , Células Cultivadas , Células da Granulosa , Progesterona/farmacologia , Extratos Vegetais/farmacologia , Apoptose
10.
Environ Geochem Health ; 45(8): 6407-6433, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37316652

RESUMO

This report presents the findings of the concentrations, distributions and health risks assessment of heavy metals (HMs) and volatile organic compounds (VOCs) in topsoils of two typical automobile mechanic villages (MVs) situated within Ogun State, Nigeria. One of the MVs is located in basement complex terrain (Abeokuta), while the second is in the sedimentary formation (Sagamu). Ten composite samples were collected at depth of 0-30 cm with the aid of soil auger from spent oil-contaminated spots within the two MVs. The chemical parameters of interest were Pb, Cd, benzene, ethylbenzene, toluene, total petroleum hydrocarbon (TPH) as well as oil and grease (O&G). In addition, soil pH, cation exchange capacity (CEC), electrical conductivity (EC) and particle size distribution were also evaluated in order to find out their impacts on assessed soil pollutants. Results revealed that the soils in both MVs are of sandy loam texture, slight acidic to neutral pH, mean CEC < 15 cmol/kg and mean EC > 100 µS/cm. The mean concentration of each of analyzed HMs and VOCs in soils from the two MVs was < 5 mg/kg, while the mean values of TPH and O&G content were > 50 mg/kg. The mean Cd values in soils of both MVs were higher than the national soil screening level of 0.8 mg/kg, but lower than the Canadian and Italian guidelines. There is no significant correlation between each of HMs/VOCs and any of assessed soil physicochemical variables. The non-cancer risk expressed in terms of hazard index (HI) was > 1 via oral ingestion route for adults and children at the two MVs, indicating adverse non-carcinogenic health risk. The HI > 1 value was obtained for adults only through the dermal absorption pathway in Abeokuta MV. However, HI values for the two age groups at the two MVs via inhalation route were < 1, indicating no likelihood of any non-carcinogenic effects via the breathing exposure. The potential of non-cancer risk via oral ingestion route in both MVs was derived from the contributive ratios of HMs and VOCs in the order: Cd > benzene > Pb > toluene. The carcinogenic risk (CR) values due to ingested Cd, benzene and Pb for both age groups at the two MVs exceed the safe limit range of 10-6 to 10-4. Cadmium, benzene and lead made considerable contributions to the estimation of CR through dermal exposure for adults only in Abeokuta MV. The CR values via inhalation pathway for adults and children in both MVs were within the threshold range. Artisans and children should circumvent accidental ingestion of contaminated soils in addition to wearing of protective clothes during routine vehicle maintenance activities.


Assuntos
Metais Pesados , Petróleo , Poluentes do Solo , Compostos Orgânicos Voláteis , Adulto , Criança , Humanos , Cádmio , Automóveis , Solo/química , Nigéria , Benzeno , Chumbo , Monitoramento Ambiental/métodos , Canadá , Metais Pesados/análise , Poluentes do Solo/análise , Tolueno , Indicadores Básicos de Saúde , Medição de Risco , China
11.
Theriogenology ; 208: 178-184, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37354861

RESUMO

The aim of this in vitro study was to examine the potential effect of functional food plant extracts, namely, extracts of flaxseed (Linum usitatissimum L.), chia (Salvia hispanica) and puncture vine (Tribulus terrestris L.), on basic mare ovarian cell functions and their response to the environmental contaminant toluene. Mare granulosa cells were incubated with and without toluene (0, 0.02, 0.2 or 2.0 µg/mL) in the presence or absence of flaxseed, chia and puncture vine extracts (10 µg/mL). Markers of cell proliferation (accumulation of proliferating cell nuclear antigen, PCNA) and apoptosis (accumulation of bax), viability (Trypan blue extrusion) and the release of progesterone (P), oxytocin (OT) and prostaglandin F 2 alpha (PGF) were measured. Toluene reduced all other measured parameters except OT release. All the tested plants were able to reduce cell viability and the release of P and PGF, but they did not influence other indexes. Moreover, flaxseed mitigated toluene action on ovarian cell proliferation, apoptosis, OT and PGF, whilst puncture vine prevented and inverted toluene action on P and PGF ourput. Chia extract did not modify toluene action on any parameter. On the other hand, toluene was able to promote the inhibitory action of flaxseed on cell viability and P release and to prevent the inhibitory action of all the plant extracts on PGF release. The present study (1) is the first demonstration, that flaxseed, chia and puncture vine can directly suppress mare ovarian cell functions, (2) shows that toluene can suppress basic ovarian cell functions and modify the reproductive effect of food plants and (3) demonstrates the ability of flaxseed and puncture vine, but not of chia, to prevent some toxic effect of toluene on mare ovarian cell functions.


Assuntos
Linho , Tribulus , Animais , Feminino , Cavalos , Tolueno/farmacologia , Ovário/fisiologia , Progesterona/farmacologia , Células da Granulosa/fisiologia , Ocitocina/farmacologia , Proliferação de Células , Extratos Vegetais/farmacologia , Células Cultivadas , Apoptose
12.
Environ Pollut ; 332: 121963, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37286027

RESUMO

The risks posed by petroleum spills to coral reefs are poorly understood and quantifying acute toxicity thresholds for aromatic hydrocarbons to reef-building corals is required to assess their sensitivity relative to other taxa. In this study, we exposed Acropora millepora to toluene, naphthalene and 1-methylnaphthalene (1-MN) in a flow-through system and assessed survivorship and sublethal responses including growth, colour and the photosynthetic performance of symbionts. Median 50% lethal concentrations (LC50s) decreased over the 7-d exposure period, reaching asymptotic values of 22,921, 5,268, 1167 µg L-1 for toluene, naphthalene and 1-MN, respectively. Corresponding toxicokinetic parameters (εLC50) defining the time progression of toxicity were 0.830, 0.692, and 0.256 d-1, respectively. Latent effects after an additional 7-d recovery in uncontaminated seawater were not observed. Effect concentrations (EC50s) for 50% growth inhibition were 1.9- to 3.6-fold lower than the LC50s for each aromatic hydrocarbon. There were no observed effects of aromatic hydrocarbon exposure on colour score (a proxy for bleaching) or photosynthetic efficiency. Acute and chronic critical target lipid body burdens (CTLBBs) of 70.3 ± 16.3 and 13.6 ± 18.4 µmol g-1 octanol (± standard error) were calculated for survival and growth inhibition based on 7-d LC50 and EC10 values, respectively. These species-specific constants indicate adult A. millepora is more sensitive than other corals reported so far but is of average sensitivity in comparison with other aquatic taxa in the target lipid model database. These results advance our understanding of acute hazards of petroleum contaminants to key habitat-building tropical coral reef species.


Assuntos
Antozoários , Petróleo , Animais , Antozoários/fisiologia , Naftalenos/toxicidade , Tolueno , Petróleo/toxicidade , Lipídeos
13.
J Chromatogr A ; 1696: 463980, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37060855

RESUMO

Locating underground pipeline leaks can be challenging due to their hidden nature and variable terrain conditions. To sample soil gas, solid-phase microextraction (SPME) was employed, and a portable gas chromatography/mass spectrometry (GC/MS) was used to detect the presence and concentrations of petroleum hydrocarbon volatile organic compounds (pH-VOCs), including benzene, toluene, ethylbenzene, and xylene (BTEX). We optimized the extraction method through benchtop studies using SPME. The appropriate fibre materials and exposure time were selected for each BTEX compound. Before applying SPME, we preconditioned the soil vapour samples by keeping the temperature at around 4 °C and using ethanol as a desorbing agent and moisture filters to minimize the impact of moisture. To conduct this optimisation, airbags were applied to condition the soil vapour samples and SPME sampling. By conditioning the samples using this method, we were able to improve analytical efficiency and accuracy while minimizing environmental impacts, resulting in more reliable research data in the field. The study employed portable GC/MS data to assess the concentration distribution of BTEX in soil vapour samples obtained from 1.5 m below the ground surface at 10 subsurface vapour monitoring locations at the leak site. After optimization, the detection limits of BTEX were almost 100 µg/m3, and the measurement repeatabilities were approximately 5% and 15% for BTEX standards in the laboratory and soil vapour samples in the field, respectively. The soil vapour samples showed a hotspot region with high BTEX concentrations, reaching 30 mg/m3, indicating a diesel return pipeline leak caused by a gasket failure in a flange. The prompt detection of the leak source was critical in minimizing environmental impact and worker safety hazards.


Assuntos
Petróleo , Microextração em Fase Sólida , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Petróleo/análise , Derivados de Benzeno/análise , Tolueno/análise , Benzeno/análise , Xilenos/análise , Solo , Medição de Risco
14.
Bioresour Technol ; 379: 129057, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059341

RESUMO

This paper demonstrates a sequential partitioning method for isolating bioactive compounds from Chrysochromulina rotalis using a polarity gradient, replacing classic and hazardous solvents with greener alternatives. Seventeen solvents were evaluated based on their Hansen solubility parameters and for having a similar polarity to the solvents they would replace, four of which were selected as substitutes in the classic fractionation process. Considering the fatty acid and carotenoid recovery yields obtained for each of the solvents, it has been proposed to replace hexane (HEX), toluene (TOL), dichloromethane (DCM) and n-butanol (BUT) with cyclohexane, chlorobenzene, isobutyl acetate and isoamyl alcohol, respectively. In addition, cytotoxic activity was observed when the TOL and DCM solvent extracts were tested against tumour cell lines, demonstrating the antiproliferative potential of compounds containing, for example, fucoxanthin, fatty acids, peptides, isoflavonoids or terpenes, among others.


Assuntos
Ácidos Graxos , Tolueno , Solventes/química , Fracionamento Químico , Extratos Vegetais/farmacologia
15.
Chemosphere ; 325: 138405, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36931401

RESUMO

Cold regions are warming much faster than the global average, resulting in more frequent and intense freeze-thaw cycles (FTCs) in soils. In hydrocarbon-contaminated soils, FTCs modify the biogeochemical and physical processes controlling petroleum hydrocarbon (PHC) biodegradation and the associated generation of methane (CH4) and carbon dioxide (CO2). Thus, understanding the effects of FTCs on the biodegradation of PHCs is critical for environmental risk assessment and the design of remediation strategies for contaminated soils in cold regions. In this study, we developed a diffusion-reaction model that accounts for the effects of FTCs on toluene biodegradation, including methanogenic biodegradation. The model is verified against data generated in a 215 day-long batch experiment with soil collected from a PHC contaminated site in Ontario, Canada. The fully saturated soil incubations with six different treatments were exposed to successive 4-week FTCs, with temperatures oscillating between -10 °C and +15 °C, under anoxic conditions to stimulate methanogenic biodegradation. We measured the headspace concentrations and 13C isotope compositions of CH4 and CO2 and analyzed the porewater for pH, acetate, dissolved organic and inorganic carbon, and toluene. The numerical model represents solute diffusion, volatilization, sorption, as well as a reaction network of 13 biogeochemical processes. The model successfully simulates the soil porewater and headspace concentration time series data by representing the temperature dependencies of microbial reaction and gas diffusion rates during FTCs. According to the model results, the observed increases in the headspace concentrations of CH4 and CO2 by 87% and 136%, respectively, following toluene addition are explained by toluene fermentation and subsequent methanogenesis reactions. The experiment and the numerical simulation show that methanogenic degradation is the primary toluene attenuation mechanism under the electron acceptor-limited conditions experienced by the soil samples, representing 74% of the attenuation, with sorption contributing to 11%, and evaporation contributing to 15%. Also, the model-predicted contribution of acetate-based methanogenesis to total produced CH4 agrees with that derived from the 13C isotope data. The freezing-induced soil matrix organic carbon release is considered as an important process causing DOC increase following each freezing period according to the calculations of carbon balance and SUVA index. The simulation results of a no FTC scenario indicate that, in the absence of FTCs, CO2 and CH4 generation would decrease by 29% and 26%, respectively, and that toluene would be biodegraded 23% faster than in the FTC scenario. Because our modeling approach represents the dominant processes controlling PHC biodegradation and the associated CH4 and CO2 fluxes, it can be used to analyze the sensitivity of these processes to FTC frequency and duration driven by temperature fluctuations.


Assuntos
Dióxido de Carbono , Petróleo , Congelamento , Hidrocarbonetos/metabolismo , Metano , Petróleo/análise , Tolueno , Solo/química , Ontário
16.
Reprod Biol ; 23(1): 100736, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36773449

RESUMO

Experimental studies have documented the toxic effects of toluene on the mammalian female reproductive processes. The aim of this in vitro study was to examine the potential of functional food plant extracts, namely, of ginkgo, fennel, and flaxseed, in modifying the toluene-induced effects on ovarian hormone release. Porcine granulosa cells were incubated with ginkgo, fennel, or flaxseed extracts (0, 1, 10, or 100 µg/mL) and/or toluene (10 µg/mL). Enzyme immunoassays were used in order to measure the release of progesterone (P), oxytocin (OT), and prostaglandin F (PGF) in the culture media. Toluene suppressed the release of P and enhanced the release of OT and PGF. All tested plant extracts reduced P and increased OT release, while the PGF output was found inhibited by ginkgo and stimulated by fennel and flaxseed. When the cells were incubated with toluene and each one of the plant extracts, toluene was able to prevent their action on P release, as well as those of fennel and flaxseed on OT and PGF release. Moreover, ginkgo enhanced but fennel or flaxseed prevented the toluene-induced effects on OT and PGF release. These observations (i) document novel aspects of the toluene-induced toxicity; (ii) demonstrate the direct influence of ginkgo, fennel, and flaxseed extracts on the ovarian secretory activity; (iii) inform our understanding of the interrelationship between toluene and the tested plant extracts with regard to their effects on ovarian hormone release; (iiii) demonstrate the ability of fennel and flaxseed to prevent adverse effect of toluene on ovarian hormones.


Assuntos
Linho , Foeniculum , Feminino , Suínos , Animais , Ginkgo biloba , Tolueno , Progesterona/farmacologia , Células da Granulosa , Extratos Vegetais/farmacologia , Ocitocina , Células Cultivadas , Mamíferos
17.
Curr Microbiol ; 80(3): 94, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36737549

RESUMO

Benzene, toluene, ethylbenzene and xylene (BTEX) are toxic petroleum hydrocarbons pollutants that can affect the central nervous system and even cause cancer. For that reason, studies regarding BTEX degradation are extremely important. Our study aimed evaluate the microorganism Bacillus subtilis as a tool for degrading petroleum hydrocarbons pollutants. Assays were run utilizing water or soil distinctly contaminated with gasoline and diesel oil, with and without B. subtilis. The ability of B. subtilis to degrade hydrophobic compounds was analyzed by Fourier-Transform Infrared Spectroscopy (FTIR) and gas chromatography. The FTIR results indicated, for water assays, that B. subtilis utilized the gasoline and diesel oil to produce the biosurfactant, and, as a consequence, performed a biodegradation process. In the same way, for soil assay, B. subtilis biodegraded the diesel oil. The gas chromatography results indicated, for gasoline in soil assay, the B. subtilis removed BTEX. So, B. subtilis was capable of degrading BTEX, producing biosurfactant and it can also be used for other industrial applications. Bioremediation can be an efficient, economical, and versatile alternative for BTEX contamination.


Assuntos
Poluentes Ambientais , Petróleo , Poluentes do Solo , Gasolina , Bacillus subtilis/metabolismo , Solo/química , Hidrocarbonetos/metabolismo , Benzeno/química , Benzeno/metabolismo , Tolueno/metabolismo , Petróleo/metabolismo , Xilenos/metabolismo , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Poluentes Ambientais/metabolismo , Microbiologia do Solo
18.
J Air Waste Manag Assoc ; 73(5): 362-373, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36809316

RESUMO

The chemical industry releases various types of volatile organic compounds (VOCs) into the atmosphere, and the concentration of VOCs emitted from chimneys is regulated worldwide. However, some VOCs such as benzene are highly carcinogenic, while others such as ethylene and propylene may cause secondary air pollution, owing to their high ozone-generating ability. Accordingly, the US EPA(United State, Environment Protect Agency) introduced a fenceline monitoring system that regulates the concentration of VOCs at the boundary of a facility, away from the chimney source. This system was first introduced in the petroleum refining industry, which simultaneously emits benzene, affecting the local community because of its high carcinogenicity, and ethylene, propylene, xylene, and toluene, which have a high photochemical ozone creation potential (POCP). These emissions contribute to air pollution. In Korea, the concentration at the chimney is regulated; however, the concentration at the plant boundary is not considered. In accordance with the EPA regulations, Korea's petroleum refining industries were identified and the limitations of the Clean Air Conservation Act were studied. The average concentration of benzene at the research facility examined in this study was 8.53 µg/m3, which complied with the benzene action level of 9 µg/m3. However, this value was exceeded at some points along the fenceline, in proximity to the benzene-toluene-xylene (BTX) manufacturing process. The composition ratios of toluene and xylene were 27% and 16%, respectively, which were higher than those of ethylene or propylene. These results suggest that reduction measures in the BTX manufacturing process are necessary. This study shows that legal regulations should enforce reduction measures through continuous monitoring at the fenceline of petroleum refineries in Korea.Implications: Although volatile organic compounds(VOCs) are essential in various industrial sites, they adversely affect the health of people in the near community. Benzene is highly carcinogenic, so it is dangerous if exposed continuously. In addition, there are various types of VOCs, which combine with atmospheric ozone to generate smog. Globally, VOCs are managed as Total VOCs. However, through this study, VOCs have priority, and in the case of the petroleum refining industry, it is suggested that VOCs should be preemptively measured and analyzed to be regulated. In addition, it is necessary to minimize the impact on the local community by regulating the concentration at the fenceline beyond the chimney measurement.


Assuntos
Poluentes Atmosféricos , Ozônio , Petróleo , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Benzeno , Xilenos/análise , Conservação dos Recursos Naturais , Estudos de Viabilidade , Monitoramento Ambiental/métodos , Tolueno/análise , Etilenos , China
19.
Environ Sci Pollut Res Int ; 30(16): 46147-46158, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36715795

RESUMO

Petioles of betel leaf (BLP) are the major industrial by-products of betel leaf industries sold at throwaway prices or used as cattle feed. The present work was taken up to evaluate suitable solvent based on yield, antioxidant, and antimicrobial properties to isolate extract of BLP using the Shannon entropy-TOPSIS method. Four solvents were chosen for the extraction process: hexane, toluene + ethanol (2:1), acetone, and ethanol. The findings showed that ethanol-based BLP extract had the highest TPC value, measuring 2193.71 ± 0.17 mg of gallic acid equivalence/g of dry extract, while acetone-based extracts had the highest TFC value, measuring 8.03 mg of quercetin equivalent/g of dry extract. Radical scavenging activities like DPPH (IC50 = 52.44 µg/mL), ABTS (IC50 = 62.41 µg/mL), and FRAP (8.03 mg QE/g of dry extract) were found best for acetone extract. The antibacterial study of the extracts revealed that acetone extract was more sensitive to Gram-positive and Gram-negative bacterial strains followed by ethanol, toluene + ethanol, and hexane extracts. Among five foodborne bacteria, B. subtilis showed the highest susceptibility against all extracts. GC-MS analysis showed that acetoxychavicol acetate (31.27%) (PubChem ID: 119,104), germacrene D (7.24%) (PubChem Id: 531,750), isoxylic acid (22.56%) (PubChem ID: 11,892), and cis-1,2-indandiol (43.92%) (PubChem ID: 20,758) are four major compounds among 22 components. TOPSIS analysis revealed that acetone extract had the highest relative closeness value (0.71) followed by ethanol (0.65), toluene + ethanol (0.53), and hexane (0.32). These results indicate that acetone extract of BLP can be considered an alternative to synthetic active ingredients in the future. These results indicated that TOPSIS method has computational robustness for selecting a solvent comparing yield, antioxidant, and antimicrobial activities of extract of a plant part.


Assuntos
Anti-Infecciosos , Piper betle , Animais , Bovinos , Antioxidantes/química , Piper betle/química , Hexanos , Solventes/química , Acetona/análise , Antibacterianos/análise , Anti-Infecciosos/química , Folhas de Planta/química , Etanol/análise , Tolueno/análise , Extratos Vegetais/química
20.
Environ Technol ; 44(24): 3698-3709, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35451932

RESUMO

The effects of two microelements, zinc and copper, on the aerobic co-metabolic removal of trichloroethylene (10 mg/L) by the isolate Pseudomonas plecoglossicida were investigated. The strain was previously isolated from a petroleum-contaminated site using toluene (150 mg/L) as substrate. Different concentrations (1, 10 and 100 mg/L) of microelements provided with SO42- and Cl- were tested. The results showed the supplement of Zn2+ and Cu2+ at the low concentration (1 mg/L) significantly enhanced cell growth. The removal efficiencies for toluene and trichloroethylene were also enhanced at the low concentration (1 mg/L) of Zn2+ and Cu2+. Compared to the control without zinc supplement, higher concentrations of zinc (10 and 100 mg/L) enhanced the removal efficiencies for both toluene and trichloroethylene in the first three days but showed some inhibitory effect afterward. However, the higher concentrations of Cu2+ (10 and 100 mg/L) always showed inhibitory to the toluene removal while showing inhibitory to the TCE removal after three days. For both Zn2+ and Cu2+, the anions SO42- and Cl- did not show significant difference in their effects on the toluene removal. A possible mechanism for Zn2+ and Cu2+ to enhance the removal of toluene and trichloroethylene would be their involvement in toluene oxygenase-based transformation processes. In addition, high concentrations of Zn2+ and Cu2+ ions could be removed from the liquid by the cells accordingly. The results imply a potential of supplementing low concentrations of zinc and copper to enhance bioremediation of the sites co-contaminated with toluene and trichloroethylene.


Assuntos
Tricloroetileno , Cobre , Água , Zinco , Tolueno , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA