Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.310
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Behav Res Ther ; 176: 104523, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513424

RESUMO

Previous work has shown that adults suffering from major depressive disorder (MDD) can increase their amygdala reactivity while recalling positive memories via real-time neurofeedback (rt-fMRI-nf) training, which is associated with reduction in depressive symptoms. This study investigated if this intervention could also be considered for patients suffering from MDD who do not respond to standard psychological and pharmacological interventions, i.e., treatment resistant (TR-MDD). 15 participants received 5 neurofeedback sessions. Outcome measures were depressive symptoms assessed by BDI scores up to 12 weeks following acute intervention, and amygdala activity changes from initial baseline to final transfer run during neurofeedback sessions (neurofeedback success). Participants succeeded in increasing their amygdala activity. A main effect of visit on BDI scores indicated a significant reduction in depressive symptomatology. Percent signal change in the amygdala showed a learning curve during the first session only. Neurofeedback success computed by session was significantly positive only during the second session. When examining the baseline amygdala response, baseline activity stabilized/asymptoted by session 3. This proof-of-concept study suggests that only two neurofeedback sessions are necessary to enable those patients to upregulate their amygdala activity, warranting a future RCT. Over the course of the rtfMRI-nf intervention, participants also reported reduced depressive symptomatology. Clinical trial registration number: NCT03428828 on ClinicalTrials.gov.


Assuntos
Transtorno Depressivo Maior , Transtorno Depressivo Resistente a Tratamento , Neurorretroalimentação , Adulto , Humanos , Tonsila do Cerebelo/fisiologia , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Resistente a Tratamento/terapia , Imageamento por Ressonância Magnética , Neurorretroalimentação/fisiologia , Regulação para Cima
2.
Brain Struct Funct ; 229(2): 403-429, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38193917

RESUMO

The influence of novelty on feeding behavior is significant and can override both homeostatic and hedonic drives due to the uncertainty of potential danger. Previous work found that novel food hypophagia is enhanced in a novel environment and that males habituate faster than females. The current study's aim was to identify the neural substrates of separate effects of food and context novelty. Adult male and female rats were tested for consumption of a novel or familiar food in either a familiar or in a novel context. Test-induced Fos expression was measured in the amygdalar, thalamic, striatal, and prefrontal cortex regions that are important for appetitive responding, contextual processing, and reward motivation. Food and context novelty induced strikingly different activation patterns. Novel context induced Fos robustly in almost every region analyzed, including the central (CEA) and basolateral complex nuclei of the amygdala, the thalamic paraventricular (PVT) and reuniens nuclei, the nucleus accumbens (ACB), the medial prefrontal cortex prelimbic and infralimbic areas, and the dorsal agranular insular cortex (AI). Novel food induced Fos in a few select regions: the CEA, anterior basomedial nucleus of the amygdala, anterior PVT, and posterior AI. There were also sex differences in activation patterns. The capsular and lateral CEA had greater activation for male groups and the anterior PVT, ACB ventral core and shell had greater activation for female groups. These activation patterns and correlations between regions, suggest that distinct functional circuitries control feeding behavior when food is novel and when eating occurs in a novel environment.


Assuntos
Tonsila do Cerebelo , Córtex Pré-Frontal , Ratos , Feminino , Masculino , Animais , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/fisiologia , Tálamo/fisiologia , Prosencéfalo , Núcleo Accumbens/fisiologia
3.
Neuropsychologia ; 190: 108699, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37816480

RESUMO

Police officers of the Special Forces are confronted with highly demanding situations in terms of stress, high tension and threats to their lives. Their tasks are specifically high-risk operations, such as arrests of armed suspects and anti-terror interventions. Improving the emotion regulation skills of police officers might be a vital investment, supporting them to stay calm and focused. A promising approach is training emotion regulation by using real-time (rt-) fMRI neurofeedback. Specifically, downregulating activity in key areas of the fronto-limbic emotion regulation network in the presence of threatening stimuli. Thirteen recruits of the Dutch police special forces underwent six weekly rt-fMRI sessions, receiving neurofeedback from individualized regions of their emotion regulation network. Their task was to reduce the image size of threatening images, wherein the image size represented their brain activity. A reduction in image size represented successful downregulation. Participants were free to use their preferred regulation strategy. A control group of fifteen recruits received no neurofeedback. Both groups completed behavioural tests (image rating on evoked valence and arousal, questionnaire) before and after the neurofeedback training. We hypothesized that the neurofeedback group would improve in downregulation and would score better than the control group on the behavioural tests after the neurofeedback training. Neurofeedback training resulted in a significant decrease in image size (t(12) = 2.82, p = .015) and a trend towards decreased activation in the target regions (t(10) = 1.82, p = .099) from the first to the last session. Notably, subjects achieved downregulation below the pre-stimulus baseline in the last two sessions. No relevant differences between groups were found in the behavioural tasks. Through the training of rt-fMRI neurofeedback, participants learned to downregulate the activity in individualized areas of the emotion regulation network, by using their own preferred strategies. The lack of behavioural between-group differences may be explained by floor effects. Tasks that are close to real-life situations may be needed to uncover behavioural correlates of this emotion regulation training.


Assuntos
Regulação Emocional , Neurorretroalimentação , Humanos , Neurorretroalimentação/métodos , Polícia , Tonsila do Cerebelo/fisiologia , Emoções/fisiologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos
4.
Elife ; 122023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526552

RESUMO

Behavioral flexibility and timely reactions to salient stimuli are essential for survival. The subcortical thalamic-basolateral amygdala (BLA) pathway serves as a shortcut for salient stimuli ensuring rapid processing. Here, we show that BLA neuronal and thalamic axonal activity in mice mirror the defensive behavior evoked by an innate visual threat as well as an auditory learned threat. Importantly, perturbing this pathway compromises defensive responses to both forms of threats, in that animals fail to switch from exploratory to defensive behavior. Despite the shared pathway between the two forms of threat processing, we observed noticeable differences. Blocking ß-adrenergic receptors impairs the defensive response to the innate but not the learned threats. This reduced defensive response, surprisingly, is reflected in the suppression of the activity exclusively in the BLA as the thalamic input response remains intact. Our side-by-side examination highlights the similarities and differences between innate and learned threat-processing, thus providing new fundamental insights.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Medo , Camundongos , Animais , Medo/fisiologia , Tonsila do Cerebelo/fisiologia , Aprendizagem , Complexo Nuclear Basolateral da Amígdala/fisiologia , Tálamo
5.
Int Immunopharmacol ; 119: 110208, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37150016

RESUMO

Increasing evidence indicates that an altered immune system is closely linked to the pathophysiology of anxiety disorders, and inhibition of neuroinflammation may represent an effective therapeutic strategy to treat anxiety disorders. Harmine, a beta-carboline alkaloid in various medicinal plants, has been widely reported to display anti-inflammatory and potentially anxiolytic effects. However, the exact underlying mechanisms are not fully understood. Our recent study has demonstrated that dysregulation of neuroplasticity in the basolateral amygdala (BLA) contributes to the pathological processes of inflammation-related anxiety. In this study, using a mouse model of anxiety challenged with Escherichia coli lipopolysaccharide (LPS), we found that harmine alleviated LPS-induced anxiety-like behaviors in mice. Mechanistically, harmine significantly prevented LPS-induced neuroinflammation by suppressing the expression of pro-inflammatory cytokines including IL-1ß and TNF-α. Meanwhile, ex vivo whole-cell slice electrophysiology combined with optogenetics showed that LPS-induced increase of medial prefrontal cortex (mPFC)-driven excitatory but not inhibitory synaptic transmission onto BLA projection neurons, thereby alleviating LPS-induced shift of excitatory/inhibitory balance towards excitation. In addition, harmine attenuated the increased intrinsic neuronal excitability of BLA PNs by reducing the medium after-hyperpolarization. In conclusion, our findings provide new evidence that harmine may exert its anxiolytic effect by downregulating LPS-induced neuroinflammation and restoring the changes in neuronal plasticity in BLA PNs.


Assuntos
Ansiolíticos , Complexo Nuclear Basolateral da Amígdala , Humanos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Tonsila do Cerebelo/fisiologia , Harmina/farmacologia , Harmina/uso terapêutico , Doenças Neuroinflamatórias , Lipopolissacarídeos/farmacologia , Plasticidade Neuronal
6.
Transl Psychiatry ; 13(1): 177, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230984

RESUMO

Hyperactivation of amygdala is a neural marker for post-traumatic stress disorder (PTSD) and improvement in control over amygdala activity has been associated with treatment success in PTSD. In this randomized, double-blind clinical trial we evaluated the efficacy of a real-time fMRI neurofeedback intervention designed to train control over amygdala activity following trauma recall. Twenty-five patients with PTSD completed three sessions of neurofeedback training in which they attempted to downregulate the feedback signal after exposure to personalized trauma scripts. For subjects in the active experimental group (N = 14), the feedback signal was from a functionally localized region of their amygdala associated with trauma recall. For subjects in the control group (N = 11), yoked-sham feedback was provided. Changes in control over the amygdala and PTSD symptoms served as the primary and secondary outcome measurements, respectively. We found significantly greater improvements in control over amygdala activity in the active group than in the control group 30-days following the intervention. Both groups showed improvements in symptom scores, however the symptom reduction in the active group was not significantly greater than in the control group. Our finding of greater improvement in amygdala control suggests potential clinical application of neurofeedback in PTSD treatment. Thus, further development of amygdala neurofeedback training in PTSD treatment, including evaluation in larger samples, is warranted.


Assuntos
Neurorretroalimentação , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/terapia , Imageamento por Ressonância Magnética , Neurorretroalimentação/fisiologia , Regulação para Baixo , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia
7.
J Neurosci ; 43(20): 3696-3707, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37045604

RESUMO

During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial EEG in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that, in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial EEG, we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of intracranial EEG responses to sounds: cortical electrodes with fast timescales also show fast- and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses.


Assuntos
Córtex Auditivo , Lobo Temporal , Humanos , Feminino , Lobo Temporal/fisiologia , Percepção Auditiva/fisiologia , Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Eletrocorticografia , Córtex Auditivo/fisiologia , Estimulação Acústica
8.
Psychopharmacology (Berl) ; 240(3): 477-499, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36522481

RESUMO

RATIONALE: The basolateral amygdala (BLA) and medial geniculate nucleus of the thalamus (MGN) have both been shown to be necessary for the formation of associative learning. While the role that the BLA plays in this process has long been emphasized, the MGN has been less well-studied and surrounded by debate regarding whether the relay of sensory information is active or passive. OBJECTIVES: We seek to understand the role the MGN has within the thalamoamgydala circuit in the formation of associative learning. METHODS: Here, we use optogenetics and in vivo electrophysiological recordings to dissect the MGN-BLA circuit and explore the specific subpopulations for evidence of learning and synthesis of information that could impact downstream BLA encoding. We employ various machine learning techniques to investigate function within neural subpopulations. We introduce a novel method to investigate tonic changes across trial-by-trial structure, which offers an alternative approach to traditional trial-averaging techniques. RESULTS: We find that the MGN appears to encode arousal but not valence, unlike the BLA which encodes for both. We find that the MGN and the BLA appear to react differently to expected and unexpected outcomes; the BLA biased responses toward reward prediction error and the MGN focused on anticipated punishment. We uncover evidence of tonic changes by visualizing changes across trials during inter-trial intervals (baseline epochs) for a subset of cells. CONCLUSION: We conclude that the MGN-BLA projector population acts as both filter and transferer of information by relaying information about the salience of cues to the amygdala, but these signals are not valence-specified.


Assuntos
Tonsila do Cerebelo , Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo/fisiologia , Tálamo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Nível de Alerta
9.
J Adolesc ; 95(1): 181-189, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36281743

RESUMO

INTRODUCTION: Adolescence is a time of increased emotional reactivity and improving cognitive control. Mindfulness meditation training may foster adolescents' cognitive control and emotional regulation skills; however little is known about the impact of mindfulness training in adolescents compared to adults. We examined the effect of mindfulness meditation versus a closely matched active control condition (relaxation training) on behavioral and neural measures of cognitive control and emotional reactivity in a small group of adolescents and adults. METHODS: Structural and functional magnetic resonance imaging data were collected before and after 8 weeks of training in 26 adolescent (12-14 years) and 17 adult (23-33 years) female participants in the United Kingdom while they completed an n-back task with emotional face distractors and an attentional control task. Participants of each group chose a class date/time and the classes were then randomly allocated to mindfulness or relaxation conditions. RESULTS: Compared to relaxation training, mindfulness training led to an increase in the speed of reorienting attention across age groups. In addition, there was preliminary evidence for reduced amygdala response to emotional face distractors in adolescents after mindfulness training. CONCLUSIONS: An 8-week mindfulness program showed similar facilitative effects in adolescent and adult females on the reorienting of attention, a skill that is repeatedly practiced during mindfulness meditation. Mindfulness also reduced left amygdala reactivity to emotional face distractors in adolescents only. Mindfulness meditation practice can therefore have a facilitative effect on female adolescents' attentional control, and possibly attenuate their emotional reactivity.


Assuntos
Meditação , Atenção Plena , Adolescente , Adulto , Feminino , Humanos , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Atenção , Meditação/métodos , Meditação/psicologia , Atenção Plena/métodos , Neuroimagem
10.
Nature ; 608(7924): 741-749, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922505

RESUMO

Mating and aggression are innate social behaviours that are controlled by subcortical circuits in the extended amygdala and hypothalamus1-4. The bed nucleus of the stria terminalis (BNSTpr) is a node that receives input encoding sex-specific olfactory cues from the medial amygdala5,6, and which in turn projects to hypothalamic nuclei that control mating7-9 (medial preoptic area (MPOA)) and aggression9-14 (ventromedial hypothalamus, ventrolateral subdivision (VMHvl)), respectively15. Previous studies have demonstrated that male aromatase-positive BNSTpr neurons are required for mounting and attack, and may identify conspecific sex according to their overall level of activity16. However, neural representations in BNSTpr, their function and their transformations in the hypothalamus have not been characterized. Here we performed calcium imaging17,18 of male BNSTprEsr1 neurons during social behaviours. We identify distinct populations of female- versus male-tuned neurons in BNSTpr, with the former outnumbering the latter by around two to one, similar to the medial amygdala and MPOA but opposite to VMHvl, in which male-tuned neurons predominate6,9,19. Chemogenetic silencing of BNSTprEsr1 neurons while imaging MPOAEsr1 or VMHvlEsr1 neurons in behaving animals showed, unexpectedly, that the male-dominant sex-tuning bias in VMHvl was inverted to female-dominant whereas a switch from sniff- to mount-selective neurons during mating was attenuated in MPOA. Our data also indicate that BNSTprEsr1 neurons are not essential for conspecific sex identification. Rather, they control the transition from appetitive to consummatory phases of male social behaviours by shaping sex- and behaviour-specific neural representations in the hypothalamus.


Assuntos
Comportamento Sexual Animal , Comportamento Social , Agressão/fisiologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Cálcio/análise , Cálcio/metabolismo , Feminino , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Neurônios/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia
11.
Neuroimage ; 260: 119502, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35878727

RESUMO

The emotional status of a speaker is an important non-linguistic cue carried by human voice and can be perceived by a listener in vocal communication. Understanding the neural circuits involved in processing emotions carried by human voice is crucial for understanding the neural basis of social interaction. Previous studies have shown that human insula and amygdala responded more selectively to emotional sounds than non-emotional sounds. However, it is not clear whether the neural selectivity to emotional sounds in these brain structures is determined by the emotion presented by a speaker which is associated with the acoustic properties of the sounds or by the emotion perceived by a listener. In this study, we recorded intracranial electroencephalography (iEEG) responses to emotional human voices while subjects performed emotion recognition tasks. We found that the iEEG responses of Heschl's gyrus (HG) and posterior insula were determined by the presented emotion, whereas the iEEG responses of anterior insula and amygdala were driven by the perceived emotion. These results suggest that the anterior insula and amygdala play a crucial role in conscious perception of emotions carried by human voice.


Assuntos
Emoções , Voz , Estimulação Acústica/métodos , Tonsila do Cerebelo/fisiologia , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Emoções/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos
12.
Proc Biol Sci ; 289(1976): 20220799, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703050

RESUMO

In nature, confrontations between conspecifics are recurrent and related, in general, due to the lack of resources such as food and territory. Adequate defence against a conspecific aggressor is essential for the individual's survival and the group integrity. However, repeated social defeat is a significant stressor promoting several behavioural changes, including social defence per se. What would be the neural basis of these behavioural changes? To build new hypotheses about this, we here investigate the effects of repeated social stress on the neural circuitry underlying motivated social defence behaviour in male mice. We observed that animals re-exposed to the aggressor three times spent more time in passive defence during the last exposure than in the first one. These animals also show less activation of the amygdalar and hypothalamic nuclei related to the processing of conspecific cues. In turn, we found no changes in the activation of the hypothalamic dorsal pre-mammillary nucleus (PMD) that is essential for passive defence. Therefore, our data suggest that the balance between the activity of circuits related to conspecific processing and the PMD determines the pattern of social defence behaviour. Changes in this balance may be the basis of the adaptations in social defence after repeated social defeat.


Assuntos
Comportamento Animal , Comportamento Social , Tonsila do Cerebelo/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo , Hipotálamo , Masculino , Camundongos , Estresse Psicológico
13.
Neurosci Biobehav Rev ; 138: 104694, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623447

RESUMO

Amygdala NeuroFeedback (NF) have the potential of being a valuable non-invasive intervention tool in many psychiatric disporders. However, the feasibility and best practices of this method have not been systematically examined. The current article presents a review of amygdala-NF studies, an analytic summary of study design parameters, and examination of brain mechanisms related to successful amygdala-NF performance. A meta-analysis of 33 publications showed that real amygdala-NF facilitates learned modulation compared to control conditions. In addition, while variability in study dsign parameters is high, these design choices are implicitly organized by the targeted valence domain (positive or negative). However, in most cases the neuro-behavioral effects of targeting such domains were not directly assessed. Lastly, re-analyzing six data sets of amygdala-fMRI-NF revealed that successful amygdala down-modulation is coupled with deactivation of the posterior insula and nodes in the Default-Mode-Network. Our findings suggest that amygdala self-modulation can be acquired using NF. Yet, additional controlled studies, relevant behavioral tasks before and after NF intervention, and neural 'target engagement' measures are critically needed to establish efficacy and specificity. In addition, the fMRI analysis presented here suggest that common accounts regarding the brain network involved in amygdala NF might reflect unsuccessful modulation attempts rather than successful modulation.


Assuntos
Neurorretroalimentação , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/métodos
14.
Prog Neurobiol ; 214: 102286, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537572

RESUMO

There is a large unmet need for improved treatment for temporal lobe epilepsy (TLE); circuit-specific manipulation that disrupts the initiation and propagation of seizures is promising in this regard. The midline thalamus, including the mediodorsal nucleus (MD) is a critical distributor of seizure activity, but its afferent and efferent pathways that mediate seizure activity are unknown. Here, we used chemogenetics to silence input and output projections of the MD to discrete regions of the frontal cortex in the kindling model of TLE in rats. Chemogenetic inhibition of the projection from the amygdala to the MD abolished seizures, an effect that was replicated using optogenetic inhibition. Chemogenetic inhibition of projections from the MD to the prelimbic cortex likewise abolished seizures. By contrast, inhibition of projections from the MD to other frontal regions produced partial (orbitofrontal cortex, infralimbic cortex) or no (cingulate, insular cortex) attenuation of behavioral or electrographic seizure activity. These results highlight the particular importance of projections from MD to prelimbic cortex in the propagation of amygdala-kindled seizures.


Assuntos
Excitação Neurológica , Tálamo , Tonsila do Cerebelo/fisiologia , Animais , Lobo Frontal/fisiologia , Humanos , Excitação Neurológica/fisiologia , Ratos , Convulsões , Tálamo/fisiologia
15.
Brain Connect ; 12(9): 812-822, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35438535

RESUMO

Background: The basic functional organization of the resting brain, assessed as resting-state functional connectivity (rsFC), can be affected by previous stress experience and it represents the basis on which subsequent stress experience develops. Notably, the rsFC between the amygdala and the cortical regions associated with emotion regulation and anxiety are affected during stress. The multicomponent drug Neurexan® (Nx4) has previously demonstrated a reduction in amygdala activation in an emotional face matching task and it ameliorated stress-related symptoms. We, thus, investigated the effect of Nx4 on rsFC of the amygdala before stress induction compared with baseline in mildly to moderately stressed participants. Methods: In a randomized, placebo-controlled, double-blind, crossover trial 39 participants received a single dose of placebo or Nx4. Resting-state functional magnetic resonance imaging scans were performed pre-dose and 40 to 60 min post-dose, before any stress induction. First, highly connected functional hubs were identified by global functional connectivity density (gFCD) analysis. Second, by using a seed-based approach, rsFC maps of the left centromedial amygdala (CeMA) were created. The effect of Nx4 on both was evaluated. Results: The medial prefrontal cortex was identified as a relevant functional hub affected by Nx4 in an explorative whole brain gFCD analysis. Using the seed-based approach, we then demonstrated that Nx4 significantly enhanced the negative connectivity between the left CeMA and two cortical regions: the dorsolateral and medial prefrontal cortices. Conclusions: In a resting-state condition, Nx4 reduced the prefrontal cortex gFCD and strengthened the functional coupling between the amygdala and the prefrontal cortex that is relevant for emotion regulation and the stress response. Further studies should elaborate whether this mechanism represents enhanced regulatory control of the amygdala at rest and, consequently, to a diminished susceptibility to stress. ClinicalTrials.gov ID: NCT02602275.


Assuntos
Tonsila do Cerebelo , Encéfalo , Humanos , Estudos Cross-Over , Vias Neurais/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Imageamento por Ressonância Magnética
16.
Conscious Cogn ; 98: 103264, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35026688

RESUMO

Awareness theory posits that individuals connected to a brain-computer interface can learn to estimate and discriminate their brain states. We used the amygdala Electrical Fingerprint (amyg-EFP) - a functional Magnetic Resonance Imaging-inspired Electroencephalogram surrogate of deep brain activation - to investigate whether participants could accurately estimate their own brain activation. Ten participants completed up to 20 neurofeedback runs and estimated their amygdala-EFP activation (depicted as a thermometer) and confidence in this rating during each trial. We analysed data using multilevel models, predicting the real thermometer position with participant rated position and adjusted for activation during the previous trial. Hypotheses on learning regulation and improvement of estimation were not confirmed. However, participant ratings were significantly associated with the amyg-EFP signal. Higher rating accuracy also predicted higher subjective confidence in the rating. This proof-of-concept study introduces an approach to study awareness with fMRI-informed neurofeedback and provides initial evidence for metacognition in neurofeedback.


Assuntos
Metacognição , Neurorretroalimentação , Tonsila do Cerebelo/fisiologia , Mapeamento Encefálico , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Neurorretroalimentação/fisiologia
17.
Hum Brain Mapp ; 43(2): 647-664, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738276

RESUMO

Music is known to induce emotions and activate associated memories, including musical memories. In adults, it is well known that music activates both working memory and limbic networks. We have recently discovered that as early as during the newborn period, familiar music is processed differently from unfamiliar music. The present study evaluates music listening effects at the brain level in newborns, by exploring the impact of familiar or first-time music listening on the subsequent resting-state functional connectivity in the brain. Using a connectome-based framework, we describe resting-state functional connectivity (RS-FC) modulation after music listening in three groups of newborn infants, in preterm infants exposed to music during their neonatal-intensive-care-unit (NICU) stay, in control preterm, and full-term infants. We observed modulation of the RS-FC between brain regions known to be implicated in music and emotions processing, immediately following music listening in all newborn infants. In the music exposed group, we found increased RS-FC between brain regions known to be implicated in familiar and emotionally arousing music and multisensory processing, and therefore implying memory retrieval and associative memory. We demonstrate a positive correlation between the occurrence of the prior music exposure and increased RS-FC in brain regions implicated in multisensory and emotional processing, indicating strong engagement of musical memories; and a negative correlation with the Default Mode Network, indicating disengagement due to the aforementioned cognitive processing. Our results describe the modulatory effect of music listening on brain RS-FC that can be linked to brain correlates of musical memory engrams in preterm infants.


Assuntos
Tonsila do Cerebelo/fisiologia , Percepção Auditiva/fisiologia , Córtex Cerebral/fisiologia , Conectoma , Rede de Modo Padrão/fisiologia , Emoções/fisiologia , Recém-Nascido Prematuro/fisiologia , Música , Reconhecimento Psicológico/fisiologia , Tálamo/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Tálamo/diagnóstico por imagem
18.
Neurobiol Learn Mem ; 185: 107526, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562619

RESUMO

Heightened fear responding is characteristic of fear- and anxiety-related disorders, including post-traumatic stress disorder. Neural plasticity in the amygdala is essential for both initial fear learning and fear expression, and strengthening of synaptic connections between the medial geniculate nucleus (MgN) and amygdala is critical for auditory fear learning. However, very little is known about what happens in the MgN-amygdala pathway during fear recall and extinction, in which conditional fear decreases with repeated presentations of the auditory stimulus alone. In the present study, we found that optogenetic inhibition of activity in the MgN-amygdala pathway during fear retrieval and extinction reduced expression of conditional fear. While this effect persisted for at least two weeks following pathway inhibition, it was specific to the context in which optogenetic inhibition occurred, linking MgN-BLA inhibition to facilitation of extinction-like processes. Reduced fear expression through inhibition of the MgN-amygdala pathway was further characterized by similar synaptic expression of GluA1 and GluA2 AMPA receptor subunits compared to what was seen in controls. Inhibition also decreased CREB phosphorylation in the amygdala, similar to what has been reported following auditory fear extinction. We then demonstrated that this effect was reduced by inhibition of GluN2B-containing NMDA receptors. These results demonstrate a new and important role for the MgN-amygdala pathway in extinction-like processes, and show that suppressing activity in this pathway results in a persistent decrease in fear behavior.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Corpos Geniculados/fisiologia , Vias Neurais/fisiologia , Estimulação Acústica , Animais , Condicionamento Clássico/efeitos dos fármacos , Extinção Psicológica/fisiologia , Imunofluorescência , Hylobatidae , Masculino , Optogenética , Piperidinas/farmacologia , Ratos , Ratos Long-Evans , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia
19.
J Neurosci ; 41(44): 9177-9191, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34561233

RESUMO

Sex steroid hormones act on hypothalamic kisspeptin neurons to regulate reproductive neural circuits in the brain. Kisspeptin neurons start to express estrogen receptors in utero, suggesting steroid hormone action on these cells early during development. Whether neurosteroids are locally produced in the embryonic brain and impinge onto kisspeptin/reproductive neural circuitry is not known. To address this question, we analyzed aromatase expression, a key enzyme in estrogen synthesis, in male and female mouse embryos. We identified an aromatase neuronal network comprising ∼6000 neurons in the hypothalamus and amygdala. By birth, this network has become sexually dimorphic in a cluster of aromatase neurons in the arcuate nucleus adjacent to kisspeptin neurons. We demonstrate that male arcuate aromatase neurons convert testosterone to estrogen to regulate kisspeptin neuron activity. We provide spatiotemporal information on aromatase neuronal network development and highlight a novel mechanism whereby aromatase neurons regulate the activity of distinct neuronal populations expressing estrogen receptors.SIGNIFICANCE STATEMENT Sex steroid hormones, such as estradiol, are important regulators of neural circuits controlling reproductive physiology in the brain. Embryonic kisspeptin neurons in the hypothalamus express steroid hormone receptors, suggesting hormone action on these cells in utero Whether neurosteroids are locally produced in the brain and impinge onto reproductive neural circuitry is insufficiently understood. To address this question, we analyzed aromatase expression, a key enzyme in estradiol synthesis, in mouse embryos and identified a network comprising ∼6000 neurons in the brain. By birth, this network has become sexually dimorphic in a cluster of aromatase neurons in the arcuate nucleus adjacent to kisspeptin neurons. We demonstrate that male aromatase neurons convert testosterone to estradiol to regulate kisspeptin neuron activity.


Assuntos
Tonsila do Cerebelo/metabolismo , Aromatase/metabolismo , Estrogênios/biossíntese , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Aromatase/genética , Feminino , Hipotálamo/citologia , Hipotálamo/fisiologia , Kisspeptinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia
20.
Sci Rep ; 11(1): 14565, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267273

RESUMO

This study was aimed at establishing the subcorticals substrates of the cognitive and visceromotor circuits of the A32 and A25 cortices of the medial prefrontal cortex and their projections and interactions with subcortical complexes in the common marmoset monkey (Callithrix jacchus). The study was primarily restricted to the nuclei of the diencephalon and amygdala. The common marmoset is a neotropical primate of the new world, and the absence of telencephalic gyrus favors the mapping of neuronal fibers. The biotinylated dextran amine was employed as an anterograde tracer. There was an evident pattern of rostrocaudal distribution of fibers within the subcortical nuclei, with medial orientation. Considering this distribution, fibers originating from the A25 cortex were found to be more clustered in the diencephalon and amygdala than those originating in the A32 cortex. Most areas of the amygdala received fibers from both cortices. In the diencephalon, all regions received projections from the A32, while the A25 fibers were restricted to the thalamus, hypothalamus, and epithalamus at different densities. Precise deposits of neuronal tracers provided here may significantly contribute to expand our understanding of specific connectivity among the medial prefrontal cortex with limbic regions and diencephalic areas, key elements to the viscerocognitive process.


Assuntos
Callithrix , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Biotina/análogos & derivados , Biotina/farmacocinética , Mapeamento Encefálico , Dextranos/farmacocinética , Feminino , Hipotálamo/fisiologia , Masculino , Vias Neurais/fisiologia , Córtex Pré-Frontal/anatomia & histologia , Técnicas Estereotáxicas , Tálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA