Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur J Pharmacol ; 899: 174030, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33727059

RESUMO

The cardiac action potential is regulated by several ion channels. Drugs capable to block these channels, in particular the human ether-à-go-go-related gene (hERG) channel, also known as KV11.1 channel, may lead to a potentially lethal ventricular tachyarrhythmia called "Torsades de Pointes". Thus, evaluation of the hERG channel off-target activity of novel chemical entities is nowadays required to safeguard patients as well as to avoid attrition in drug development. Flavonoids, a large class of natural compounds abundantly present in food, beverages, herbal medicines, and dietary food supplements, generally escape this assessment, though consumed in consistent amounts. Continuously growing evidence indicates that these compounds may interact with the hERG channel and block it. The present review, by examining numerous studies, summarizes the state-of-the-art in this field, describing the most significant examples of direct and indirect inhibition of the hERG channel current operated by flavonoids. A description of the molecular interactions between a few of these natural molecules and the Rattus norvegicus channel protein, achieved by an in silico approach, is also presented.


Assuntos
Canal de Potássio ERG1/antagonistas & inibidores , Flavonoides/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Síndrome do QT Longo/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/toxicidade , Torsades de Pointes/induzido quimicamente , Potenciais de Ação , Animais , Canal de Potássio ERG1/química , Canal de Potássio ERG1/metabolismo , Humanos , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Miócitos Cardíacos/metabolismo , Conformação Proteica , Medição de Risco , Fatores de Risco , Relação Estrutura-Atividade , Torsades de Pointes/metabolismo , Torsades de Pointes/fisiopatologia
2.
Heart Vessels ; 35(4): 593-602, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31628538

RESUMO

Torsade de pointes (TdP) occurred in a long QT syndrome type 3 (LQT3) patient after switching perospirone to blonanserin. We studied how their electropharmacological effects had induced TdP in the LQT3 patient. Perospirone hydrochloride (n = 4) or blonanserin (n = 4) of 0.01, 0.1, and 1 mg/kg, i.v. was cumulatively administered to the halothane-anesthetized dogs over 10 min. The low dose of perospirone decreased total peripheral vascular resistance, but increased heart rate and cardiac output, facilitated atrioventricular conduction, and prolonged J-Tpeakc. The middle dose decreased mean blood pressure and prolonged repolarization period, in addition to those observed after the low dose. The high dose further decreased mean blood pressure with the reduction of total peripheral vascular resistance; however, it did not increase heart rate or cardiac output. It tended to delay atrioventricular conduction and further delayed repolarization with the prolongation of Tpeak-Tend, whereas J-Tpeakc returned to its baseline level. Meanwhile, each dose of blonanserin decreased total peripheral vascular resistance, but increased heart rate, cardiac output and cardiac contractility in a dose-related manner. J-Tpeakc was prolonged by each dose, but Tpeak-Tend was shortened by the middle and high doses. These results indicate that perospirone and blonanserin may cause the hypotension-induced, reflex-mediated increase of sympathetic tone, leading to the increase of inward Ca2+ current in the heart except that the high dose of perospirone reversed them. Thus, blonanserin may have more potential to produce intracellular Ca2+ overload triggering early afterdepolarization than perospirone, which might explain the onset of TdP in the LQT3 patient.


Assuntos
Doença do Sistema de Condução Cardíaco/fisiopatologia , Antagonistas de Dopamina/toxicidade , Sistema de Condução Cardíaco/efeitos dos fármacos , Síndrome do QT Longo/fisiopatologia , Antagonistas da Serotonina/toxicidade , Torsades de Pointes/induzido quimicamente , Potenciais de Ação/efeitos dos fármacos , Anestésicos Inalatórios , Animais , Agonistas dos Canais de Cálcio/toxicidade , Delírio/tratamento farmacológico , Cães , Relação Dose-Resposta a Droga , Eletrocardiografia , Feminino , Halotano , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Isoindóis , Pessoa de Meia-Idade , Modelos Animais , Piperazinas , Piperidinas , Bloqueadores dos Canais de Potássio/toxicidade , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Tiazóis , Torsades de Pointes/metabolismo , Torsades de Pointes/fisiopatologia
3.
Prog Biophys Mol Biol ; 149: 86-98, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30826123

RESUMO

The human Ether-à-go-go Related Gene (hERG) encodes the pore forming subunit of the channel that conducts the rapid delayed rectifier potassium current IKr. IKr drives repolarization in the heart and when IKr is dysfunctional, cardiac repolarization delays, the QT interval on the electrocardiogram (ECG) prolongs and the risk of developing lethal arrhythmias such as Torsade de Pointes (TdP) increases. TdP risk is incorporated in drug safety screening for cardiotoxicity where hERG is the main target since the IKr channels appear highly sensitive to blockage. hERG block is also included as an important read-out in the Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative which aims to combine in vitro and in silico experiments on induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to screen for cardiotoxicity. However, the hERG channel has some unique features to consider for drug safety screening, which we will discuss in this study. The hERG channel consists of different isoforms, hERG1a and hERG1b, which individually influence the kinetics of the channel and the drug response in the human heart and in iPSC-CMs. hERG1b is often underappreciated in iPSC-CM studies, drug screening assays and in silico models, and the fact that its contribution might substantially differ between iPSC-CM and healthy but also diseased human heart, adds to this problem. In this study we show that the activation kinetics in iPSC-CMs resemble hERG1b kinetics using Cs+ as a charge carrier. Not including hERG1b in drug safety testing might underestimate the actual role of hERG1b in repolarization and drug response, and might lead to inappropriate conclusions. We stress to focus more on including hERG1b in drug safety testing concerning IKr.


Assuntos
Canal de Potássio ERG1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Arritmias Cardíacas/metabolismo , Linhagem Celular , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Canal de Potássio ERG1/genética , Humanos , Cinética , Potássio/metabolismo , Isoformas de Proteínas , Segurança , Torsades de Pointes/metabolismo
4.
Pharmacol Res ; 131: 150-163, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29477480

RESUMO

Evodiae fructus is a widely used herbal drug in traditional Chinese medicine. Evodia extract was found to inhibit hERG channels. The aim of the current study was to identify hERG inhibitors in Evodia extract and to investigate their potential proarrhythmic effects. Dehydroevodiamine (DHE) and hortiamine were identified as IKr (rapid delayed rectifier current) inhibitors in Evodia extract by HPLC-microfractionation and subsequent patch clamp studies on human embryonic kidney cells. DHE and hortiamine inhibited IKr with IC50s of 253.2±26.3nM and 144.8±35.1nM, respectively. In dog ventricular cardiomyocytes, DHE dose-dependently prolonged the action potential duration (APD). Early afterdepolarizations (EADs) were seen in 14, 67, 100, and 67% of cells after 0.01, 0.1, 1 and 10µM DHE, respectively. The proarrhythmic potential of DHE was evaluated in 8 anesthetized rabbits and in 8 chronic atrioventricular block (cAVB) dogs. In rabbits, DHE increased the QT interval significantly by 12±10% (0.05mg/kg/5min) and 60±26% (0.5mg/kg/5min), and induced Torsade de Pointes arrhythmias (TdP, 0.5mg/kg/5min) in 2 rabbits. In cAVB dogs, 0.33mg/kg/5min DHE increased QT duration by 48±10% (P<0.05*) and induced TdP in 2/4 dogs. A higher dose did not induce TdP. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), methanolic extracts of Evodia, DHE and hortiamine dose-dependently prolonged APD. At 3µM DHE and hortiamine induced EADs. hERG inhibition at submicromolar concentrations, APD prolongation and EADs in hiPSC-CMs and dose-dependent proarrhythmic effects of DHE at micromolar plasma concentrations in cAVB dogs should increase awareness regarding proarrhythmic effects of widely used Evodia extracts.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Alcaloides/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Medicamentos de Ervas Chinesas/efeitos adversos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Evodia , Alcaloides/química , Alcaloides/farmacologia , Animais , Arritmias Cardíacas/metabolismo , Cães , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Evodia/química , Feminino , Células HEK293 , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Coelhos , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/metabolismo , Xenopus
5.
Naunyn Schmiedebergs Arch Pharmacol ; 389(10): 1073-80, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27405774

RESUMO

In several case reports, proarrhythmic effects of antipsychotic drugs have been reported. The aim of the present study was to investigate if application of risperidone or quetiapine has the potential to provoke polymorphic ventricular tachycardia in a sensitive model of proarrhythmia. In 24 isolated rabbit hearts, risperidone (5 and 10 µM, n = 12) or quetiapine (5 and 10 µM, n = 12) was infused after obtaining baseline data. Eight endocardial and epicardial monophasic action potentials and a simultaneously recorded 12-lead ECG showed a significant QT prolongation after application of risperidone as compared with baseline (5 µM: +29 ms, 10 µM: +35 ms, p < 0.01) accompanied by an increase of action potential duration. Administration of risperidone also significantly increased spatial dispersion of repolarization (5 µM: +16 ms, 4 µM: +19 ms; p < 0.05) as well as temporal dispersion of repolarization. Lowering of potassium concentration in bradycardic AV-blocked hearts provoked early afterdepolarizations (EADs) in 8 of 12 hearts and polymorphic ventricular tachycardia resembling torsade de pointes in 6 of 12 hearts (10 µM, 49 episodes). The results were compared with hearts treated with quetiapine (5 and 10 µM). Quetiapine led to an increase in QT interval (5 µM: +10 ms; 10 µM: +28 ms; p < 0.05) and a similar increase of APD90. However, treatment with quetiapine did not result in significant alterations of spatial and temporal dispersion of repolarization. No ventricular arrhythmias were observed in this group. In the present study, quetiapine demonstrated a safe electrophysiologic profile despite significant QT prolongation. In contrast, risperidone led to a more marked prolongation of myocardial repolarization combined with a more marked increase of dispersion of repolarization.


Assuntos
Antipsicóticos/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Fumarato de Quetiapina/toxicidade , Risperidona/toxicidade , Taquicardia Ventricular/induzido quimicamente , Potenciais de Ação/efeitos dos fármacos , Animais , Bloqueio Atrioventricular/fisiopatologia , Bradicardia/fisiopatologia , Estimulação Cardíaca Artificial , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Preparação de Coração Isolado , Potássio/metabolismo , Coelhos , Medição de Risco , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/metabolismo , Torsades de Pointes/fisiopatologia
6.
Circ Arrhythm Electrophysiol ; 6(4): 799-808, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23884198

RESUMO

BACKGROUND: When complete atrioventricular block (AVB) occurs, infranodal escape rhythms are essential to prevent bradycardic death. The role of T-type Ca(2+) channels in pacemaking outside the sinus node is unknown. We investigated the role of T-type Ca(2+) channels in escape rhythms and bradycardia-related ventricular tachyarrhythmias after AVB in mice. METHODS AND RESULTS: Adult male mice lacking the main T-type Ca(2+) channel subunit Cav3.1 (Cav3.1(-/-)) and wild-type (WT) controls implanted with ECG telemetry devices underwent radiofrequency atrioventricular node ablation to produce AVB. Before ablation, Cav3.1(-/-) mice showed sinus bradycardia (mean±SEM; RR intervals, 148±3 versus 128±2 ms WT; P<0.001). Immediately after AVB, Cav3.1(-/-) mice had slower escape rhythms (RR intervals, 650±75 versus 402±26 ms in WT; P<0.01) but a preserved heart-rate response to isoproterenol. Over the next 24 hours, mortality was markedly greater in Cav3.1(-/-) mice (19/31; 61%) versus WT (8/26; 31%; P<0.05), and Torsades de Pointes occurred more frequently (73% Cav3.1(-/-) versus 35% WT; P<0.05). Escape rhythms improved in both groups during the next 4 weeks but remained significantly slower in Cav3.1(-/-). At 4 weeks after AVB, ventricular tachycardia was more frequent in Cav3.1(-/-) than in WT mice (746±116 versus 214±78 episodes/24 hours; P<0.01). Ventricular function remodeling was similar in Cav3.1(-/-) and WT, except for smaller post-AVB fractional-shortening increase in Cav3.1(-/-). Expression changes were seen post-AVB for a variety of genes; these tended to be greater in Cav3.1(-/-) mice, and overexpression of fetal and profibrotic genes occurred only in Cav3.1(-/-). CONCLUSIONS: This study suggests that T-type Ca(2+) channels play an important role in infranodal escape automaticity. Loss of T-type Ca(2+) channels worsens bradycardia-related mortality, increases bradycardia-associated adverse remodeling, and enhances the risk of malignant ventricular tachyarrhythmias complicating AVB.


Assuntos
Bloqueio Atrioventricular/metabolismo , Bradicardia/metabolismo , Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio , Sistema de Condução Cardíaco/metabolismo , Frequência Cardíaca , Periodicidade , Torsades de Pointes/metabolismo , Potenciais de Ação , Animais , Bloqueio Atrioventricular/diagnóstico , Bloqueio Atrioventricular/genética , Bloqueio Atrioventricular/fisiopatologia , Bradicardia/diagnóstico , Bradicardia/genética , Bradicardia/fisiopatologia , Bradicardia/prevenção & controle , Canais de Cálcio Tipo T/deficiência , Canais de Cálcio Tipo T/genética , Modelos Animais de Doenças , Eletrocardiografia Ambulatorial , Técnicas Eletrofisiológicas Cardíacas , Regulação da Expressão Gênica , Sistema de Condução Cardíaco/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Telemetria , Fatores de Tempo , Torsades de Pointes/diagnóstico , Torsades de Pointes/genética , Torsades de Pointes/fisiopatologia , Torsades de Pointes/prevenção & controle , Remodelação Ventricular
7.
Br J Pharmacol ; 165(5): 1424-41, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21838757

RESUMO

BACKGROUND AND PURPOSE: Cardiac toxicity is a major concern in drug development and it is imperative that clinical candidates are thoroughly tested for adverse effects earlier in the drug discovery process. In this report, we investigate the utility of an impedance-based microelectronic detection system in conjunction with mouse embryonic stem cell-derived cardiomyocytes for assessment of compound risk in the drug discovery process. EXPERIMENTAL APPROACH: Beating of cardiomyocytes was measured by a recently developed microelectronic-based system using impedance readouts. We used mouse stem cell-derived cardiomyocytes to obtain dose-response profiles for over 60 compounds, including ion channel modulators, chronotropic/ionotropic agents, hERG trafficking inhibitors and drugs known to induce Torsades de Pointes arrhythmias. KEY RESULTS: This system sensitively and quantitatively detected effects of modulators of cardiac function, including some compounds missed by electrophysiology. Pro-arrhythmic compounds produced characteristic profiles reflecting arrhythmia, which can be used for identification of other pro-arrhythmic compounds. The time series data can be used to identify compounds that induce arrhythmia by complex mechanisms such as inhibition of hERG channels trafficking. Furthermore, the time resolution allows for assessment of compounds that simultaneously affect both beating and viability of cardiomyocytes. CONCLUSIONS AND IMPLICATIONS: Microelectronic monitoring of stem cell-derived cardiomyocyte beating provides a high throughput, quantitative and predictive assay system that can be used for assessment of cardiac liability earlier in the drug discovery process. The convergence of stem cell technology with microelectronic monitoring should facilitate cardiac safety assessment.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Embrionárias/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Animais , Canais de Cálcio/metabolismo , Células Cultivadas , Descoberta de Drogas/métodos , Canal de Potássio ERG1 , Impedância Elétrica , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Canais de Potássio/metabolismo , Canais de Sódio/metabolismo , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/metabolismo , Torsades de Pointes/fisiopatologia
8.
Am J Physiol Heart Circ Physiol ; 295(4): H1414-21, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18676685

RESUMO

Several epidemiologic and clinical studies show that following myocardial infarction, dietary supplements of omega-3 polyunsaturated fatty acids (omega3FA) reduce sudden death. Animal data show that omega3FA have antiarrhythmic properties, but their mechanisms of action require further elucidation. The effects of omega3FA supplementation were studied in female rabbits to analyze whether their antiarrhythmic effects are due to a reduction of triangulation, reverse use-dependence, instability, and dispersion (TRIaD) of the cardiac action potential (TRIaD as a measure of proarrhythmic effects). In Langendorff-perfused hearts challenged by a selective rapidly activating delayed rectifier potassium current inhibitor that has been shown to exhibit proarrhythmic effects (dofetilide; 1 to 100 nM), omega3FA pretreatment (30 days; n=6) prolonged the plateau phase of the monophasic action potential; did not slow the terminal fast repolarization; reduced the dofetilide-induced prolongation of the action potential duration; reduced dofetilide-induced triangulation; and reduced dofetilide-induced reverse use-dependence, instability of repolarization, and dispersion. Dofetilide reduced excitability in omega3FA-pretreated hearts but not in control hearts. Whereas torsades de pointes (TdP) were observed in five out of six in control hearts, none were observed in omega3FA-pretreated hearts. Docosahexaenoic acid (DHA) inhibited the sodium current with ultrafast kinetics. Dietary omega3FA supplementation markedly reduced dofetilide-induced TRIaD and abolished dofetilide-induced TdP. Ultrafast sodium channel block by DHA may account for the antiarrhythmic protection of the dietary supplements of omega3FA against dofetilide-induced proarrhythmia observed in this animal model.


Assuntos
Antiarrítmicos/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Torsades de Pointes/prevenção & controle , Potenciais de Ação , Animais , Antiarrítmicos/administração & dosagem , Dieta , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/administração & dosagem , Feminino , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Cinética , Perfusão , Fenetilaminas , Coelhos , Bloqueadores dos Canais de Sódio/administração & dosagem , Canais de Sódio/metabolismo , Sulfonamidas , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/metabolismo , Torsades de Pointes/fisiopatologia
9.
J Pharmacol Toxicol Methods ; 53(2): 87-105, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16289936

RESUMO

Contemporary preclinical in vitro and in vivo methods have been imperfect in predicting drug-induced Torsades de Pointes (TdP) in humans. A better understanding of additional relevant factors in the genesis of drug-induced TdP is necessary. New sophisticated in vitro techniques, such as arterially perfused ventricular wedge preparations or isolated perfused hearts, potentially offer a better understanding of torsadogenic mechanisms and a refinement of drug testing. Of particular interest are the dispersion of repolarization and the refractoriness of different cell types across the ventricular wall, triangulation of the action potential, reverse use dependence and instability of the action potential duration. In vivo models are currently refined by establishing parameters such as beat-to-beat variability and T-wave morphology as derived from the in vitro proarrhythmia indices. Animal models of proarrhythmia are to date not recommended for routine evaluation. A pharmacodynamic interaction with combinations of torsadogenic compounds is another area to be considered. Little is known about channel/receptor cross talk, although considerable evidence exists that cardiac G protein-coupled receptors can modulate hERG channel function. More investigations are necessary to further evaluate the role of altered gene expression, mutations, and polymorphisms in drug-induced TdP. A novel mechanism of drug-induced torsadogenesis is the reduced expression of hERG channel protein on the plasma membrane due to a trafficking defect. Pharmacokinetic and metabolism data are crucial for calculating the risk of a torsadogenic potential in man. Consideration of intracardiac accumulation can help in delineating pharmacokinetic-pharmacodyamic relationships. In silico virtual screening procedures with new chemical entities to predict hERG block may develop as a promising tool. The role of in silico modeling of TdP arrhythmia is likely to become increasingly important for organizing and integrating the vast amount of generated data. At present, however, in silico methods cannot replace existing preclinical in vitro and in vivo models.


Assuntos
Avaliação Pré-Clínica de Medicamentos/tendências , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Síndrome do QT Longo/induzido quimicamente , Torsades de Pointes/induzido quimicamente , Testes de Toxicidade/tendências , Animais , Modelos Animais de Doenças , Canal de Potássio ERG1 , Humanos , Técnicas In Vitro , Síndrome do QT Longo/fisiopatologia , Modelos Cardiovasculares , Taquicardia Ventricular/induzido quimicamente , Torsades de Pointes/metabolismo , Torsades de Pointes/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA