Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(7): 3314-3324, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38331717

RESUMO

Fusarium species produce a secondary metabolite known as T-2 toxin, which is the primary and most harmful toxin found in type A trichothecenes. T-2 toxin is widely found in food and grain-based animal feed and endangers the health of both humans and animals. T-2 toxin exposure in humans and animals occurs primarily through food administration; therefore, the first organ that T-2 toxin targets is the gut. In this overview, the research progress, toxicity mechanism, and detoxification of the toxin T-2 were reviewed, and future research directions were proposed. T-2 toxin damages the intestinal mucosa and destroys intestinal structure and intestinal barrier function; furthermore, T-2 toxin disrupts the intestinal microbiota, causes intestinal flora disorders, affects normal intestinal metabolic function, and kills intestinal epidermal cells by inducing oxidative stress, inflammatory responses, and apoptosis. The primary harmful mechanism of T-2 toxin in the intestine is oxidative stress. Currently, selenium and plant extracts are mainly used to exert antioxidant effects to alleviate the enterotoxicity of T-2 toxin. In future studies, the use of genomic techniques to find upstream signaling molecules associated with T-2 enterotoxin toxicity will provide new ideas for the prevention of this toxicity. The purpose of this paper is to review the progress of research on the intestinal toxicity of T-2 toxin and propose new research directions for the prevention and treatment of T-2 toxin toxicity.


Assuntos
Enteropatias , Toxina T-2 , Tricotecenos , Humanos , Animais , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Tricotecenos/toxicidade , Tricotecenos/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo
2.
Biol Trace Elem Res ; 202(3): 1020-1030, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37326932

RESUMO

The aim of this study was to construct rat models of environmental risk factors for Kashin-Beck disease (KBD) with low selenium and T-2 toxin levels and to screen the differentially expressed genes (DEGs) between the rat models exposed to environmental risk factors. The Se-deficient (SD) group and T-2 toxin exposure (T-2) group were constructed. Knee joint samples were stained with hematoxylin-eosin, and cartilage tissue damage was observed. Illumina high-throughput sequencing technology was used to detect the gene expression profiles of the rat models in each group. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis were performed and five differential gene expression results were verified by quantitative real-time polymerase chain reaction (qRT‒PCR). A total of 124 DEGs were identified from the SD group, including 56 upregulated genes and 68 downregulated genes. A total of 135 DEGs were identified in the T-2 group, including 68 upregulated genes and 67 downregulated genes. The DEGs were significantly enriched in 4 KEGG pathways in the SD group and 9 KEGG pathways in the T-2 group. The expression levels of Dbp, Pc, Selenow, Rpl30, and Mt2A were consistent with the results of transcriptome sequencing by qRT‒PCR. The results of this study confirmed that there were some differences in DEGs between the SD group and the T-2 group and provided new evidence for further exploration of the etiology and pathogenesis of KBD.


Assuntos
Cartilagem Articular , Doença de Kashin-Bek , Selênio , Toxina T-2 , Ratos , Animais , Condrócitos/metabolismo , Selênio/metabolismo , Toxina T-2/toxicidade , Cartilagem Articular/metabolismo , Articulação do Joelho/metabolismo , Doença de Kashin-Bek/metabolismo
3.
Ecotoxicol Environ Saf ; 269: 115748, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029582

RESUMO

As common pathogenic agents in the world and widely distributed globally, T-2 toxin and selenium deficiency might exacerbate toxic effects by combined exposure, posing a dramatic health hazard to humans and animals. In this study, we aim to elucidate the underlying mechanisms of renal fibrosis triggered by T-2 toxin and selenium deficiency exposure. A total of thirty-two rats are randomly divided into the normal control, T-2 toxin, selenium deficiency, and combined intervention groups. T-2 toxin (100 ng/g) is intragastric gavaged to the rats in compliance with the body weight. Both the standard (containing selenium 0.20 mg/Kg) and selenium-deficient (containing selenium 0.02 mg/Kg) diets were manufactured adhering to the AIN-93 formula. After 12 weeks of intervention, renal tissue ultrastructural and pathological changes, inflammatory infiltration, epithelial mesenchymal transition (EMT), and extracellular matrix (ECM) deposition are evaluated, respectively. Metabolomics analysis is conducted to explore the underlying pathology of renal fibrosis, followed by the validation of potential mechanisms at gene and protein levels. T-2 toxin and selenium deficiency exposure results in podocyte foot process elongation or fusion, tubular vacuolization and dilatation, and collagen deposition in the kidneys. Additionally, it also increases inflammatory infiltration, EMT conversion, and ECM deposition. Metabolomics analysis suggests that T-2 toxin and selenium deficiency influence amino acid and cholesterol metabolism, respectively, and the estrogen signaling pathway is probably engaged in renal fibrosis progression. Moreover, T-2 toxin and selenium deficiency are found to regulate the expressions of the ERα/PI3K/Akt signaling pathway. In conclusion, T-2 toxin and selenium deficiency synergistically exacerbate renal fibrosis through regulating the ERα/PI3K/Akt signaling pathway, and inflammatory infiltration, EMT and ECM deposition are involved in this process.


Assuntos
Nefropatias , Selênio , Toxina T-2 , Animais , Ratos , Receptor alfa de Estrogênio/metabolismo , Fibrose , Nefropatias/induzido quimicamente , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selênio/farmacologia , Selênio/toxicidade , Transdução de Sinais , Toxina T-2/toxicidade
4.
Nutrients ; 15(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38140286

RESUMO

The aim of this study was to analyze the differences in gut microbiota between selenium deficiency and T-2 toxin intervention rats. Knee joint and fecal samples of rats were collected. The pathological characteristics of knee cartilage were observed by safranin O/fast green staining. DNA was extracted from fecal samples for PCR amplification, and 16S rDNA sequencing was performed to compare the gut microbiota of rats. At the phylum level, Firmicutes (81.39% vs. 77.06%) and Bacteroidetes (11.11% vs. 14.85%) were dominant in the Se-deficient (SD) group and T-2 exposure (T-2) groups. At the genus level, the relative abundance of Ruminococcus_1 (12.62%) and Ruminococcaceae_UCG-005 (10.31%) in the SD group were higher. In the T-2 group, the relative abundance of Lactobacillus (11.71%) and Ruminococcaceae_UCG-005 (9.26%) were higher. At the species level, the high-quality bacteria in the SD group was Ruminococcus_1_unclassified, and Ruminococcaceae_UCG-005_unclassified in the T-2 group. Lactobacillus_sp__L_YJ and Lactobacillus_crispatus were the most significant biomarkers in the T-2 group. This study analyzed the different compositions of gut microbiota in rats induced by selenium deficiency and T-2 toxin, and revealed the changes in gut microbiota, so as to provide a certain basis for promoting the study of the pathogenesis of Kashin-Beck disease (KBD).


Assuntos
Microbioma Gastrointestinal , Desnutrição , Selênio , Toxina T-2 , Ratos , Animais , Ratos Sprague-Dawley , Toxina T-2/toxicidade , Cartilagem
5.
Toxins (Basel) ; 15(8)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37624253

RESUMO

T-2 toxin and selenium deficiency are considered important etiologies of Kashin-Beck disease (KBD), although the exact mechanism is still unclear. To identify differentially expressed microRNAs (DE-miRNAs) in the articular cartilage of rats exposed to T-2 toxin and selenomethionine (SeMet) supplementation, thirty-six 4-week-old Sprague Dawley rats were divided into a control group (gavaged with 4% anhydrous ethanol), a T-2 group (gavaged with 100 ng/g·bw/day T-2 toxin), and a T-2 + SeMet group (gavaged with 100 ng/g·bw/day T-2 toxin and 0.5 mg/kg·bw/day SeMet), respectively. Toluidine blue staining was performed to detect the pathological changes of articular cartilage. Three rats per group were randomly selected for high-throughput sequencing of articular cartilage. Target genes of DE-miRNAs were predicted using miRanda and RNAhybrid databases, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway were enriched. The network map of miRNA-target genes was constructed using Cytoscape software. The expression profiles of miRNAs associated with KBD were obtained from the Gene Expression Omnibus database. Additionally, the DE-miRNAs were selected for real-time quantitative PCR (RT-qPCR) verification. Toluidine blue staining demonstrated that T-2 toxin damaged articular cartilage and SeMet effectively alleviated articular cartilage lesions. A total of 50 DE-miRNAs (28 upregulated and 22 downregulated) in the T-2 group vs. the control group, 18 DE-miRNAs (6 upregulated and 12 downregulated) in the T-2 + SeMet group vs. the control group, and 25 DE-miRNAs (5 upregulated and 20 downregulated) in the T-2 + SeMet group vs. the T-2 group were identified. Enrichment analysis showed the target genes of DE-miRNAs were associated with apoptosis, and in the MAPK and TGF-ß signaling pathways in the T-2 group vs. the control group. However, the pathway of apoptosis was not significant in the T-2 + SeMet group vs. the control group. These results indicated that T-2 toxin induced apoptosis, whereas SeMet supplementation antagonized apoptosis. Apoptosis and autophagy occurred simultaneously in the T-2 + SeMet group vs. T-2 group, and autophagy may inhibit apoptosis to protect cartilage. Compared with the GSE186593 dataset, the evidence of miR-133a-3p involved in apoptosis was more abundant. The results of RT-qPCR validation were consistent with RNA sequencing results. Our findings suggested that apoptosis was involved in articular cartilage lesions induced by T-2 toxin, whereas SeMet supplementation antagonized apoptosis, and that miR-133a-3p most probably played a central role in the apoptosis process.


Assuntos
Cartilagem Articular , Doença de Kashin-Bek , MicroRNAs , Toxina T-2 , Ratos , Animais , Toxina T-2/toxicidade , Selenometionina/farmacologia , Cloreto de Tolônio , Ratos Sprague-Dawley , Doença de Kashin-Bek/genética , MicroRNAs/genética
6.
Poult Sci ; 102(8): 102795, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327744

RESUMO

The present study was conducted to determine the ability of multicomponent mycotoxin detoxifying agent (MMDA) in feed to prevent the gastrointestinal absorption of aflatoxin B1 (AFB1) and T2-toxin supplemented via spiked maize. For comparisons, hens were fed with uncontaminated basal diet without or with addition of MMDA at 2 g/kg feed. The trial consisted of 105 laying hens (Lohmann Brown) without obvious signs of disease allocated to 7 treatment groups in 35 pens. Responses were demonstrated on laying performance and health status throughout the 42 d experimental period. The results of laying performance indicated significantly decreased egg mass with increasing mycotoxin (AFB1 and T2-toxin) levels up to the maximum tolerated dosage, however simultaneous presence of MMDA laying performance was slightly modified linearly to increasing application. Dose-dependent pathological changes in liver and kidneys and their relative weights, changes in blood parameters and reduced eggshell weights were observed in the hens fed AFB1 and T2-toxin. The pathological changes in the hens fed with diets containing AFB1 and T2-toxin without MMDA were significantly higher as compared with the control group, but eggshell stability was not affected. The contents of AFB1, T2-toxin and their metabolites in liver and kidney tissues were significantly decreased in the hens supplemented with MMDA at 2 and 3 g/kg in feed. MMDA supplementation significantly reduced the deposition of AFB1, T2-toxin and their metabolites in liver and kidneys at the maximum tolerated dosage (2 and 3 g/kg) indicating specific binding to AFB1 and T2-toxin in the digestive tract as compared to the corresponding diets without MMDA. Exposure of AFB1 and T2-toxin indicated significantly decreased egg mass with increasing mycotoxin levels up to the maximum tolerated dosage because of the significantly reduced egg production. Therefore, in this study, MMDA could reduce negative effects of feeding AFB1 and T-2 to laying hens.


Assuntos
Micotoxinas , Toxina T-2 , Animais , Feminino , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Ração Animal/análise , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Micotoxinas/toxicidade , Óvulo/química , Toxina T-2/toxicidade
7.
Arch Toxicol ; 97(3): 805-817, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36695871

RESUMO

T-2 toxin is a worldwide problem for feed and food safety, leading to livestock and human health risks. The objective of this study was to explore the mechanism of T-2 toxin-induced small intestine injury in broilers by integrating the advanced microbiomic, metabolomic and transcriptomic technologies. Four groups of 1-day-old male broilers (n = 4 cages/group, 6 birds/cage) were fed a control diet and control diet supplemented with T-2 toxin at 1.0, 3.0, and 6.0 mg/kg, respectively, for 2 weeks. Compared with the control, dietary T-2 toxin reduced feed intake, body weight gain, feed conversion ratio, and the apparent metabolic rates and induced histopathological lesions in the small intestine to varying degrees by different doses. Furthermore, the T-2 toxin decreased the activities of glutathione peroxidase, thioredoxin reductase and total antioxidant capacity but increased the concentrations of protein carbonyl and malondialdehyde in the duodenum in a dose-dependent manner. Moreover, the integrated microbiomic, metabolomic and transcriptomic analysis results revealed that the microbes, metabolites, and transcripts were primarily involved in the regulation of nucleotide and glycerophospholipid metabolism, redox homeostasis, inflammation, and apoptosis were related to the T-2 toxin-induced intestinal damage. In summary, the present study systematically elucidated the intestinal toxic mechanisms of T-2 toxin, which provides novel ideas to develop a detoxification strategy for T-2 toxin in animals.


Assuntos
Galinhas , Toxina T-2 , Humanos , Animais , Masculino , Galinhas/metabolismo , Toxina T-2/toxicidade , Suplementos Nutricionais , Dieta , Antioxidantes/metabolismo , Oxirredução , Apoptose , Inflamação , Homeostase , Ração Animal/análise
8.
J Agric Food Chem ; 71(5): 2590-2599, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36693005

RESUMO

The T-2 toxin is one of the most frequent contaminants in the environment and agricultural production globally. It exerts a wide range of toxic effects. Selenium (Se), as an antioxidant, has the potential to be widely used to antagonize mycotoxin toxicity. To investigate the protective effects of Se on bone microenvironment (BM)-related hematopoiesis and immunity after T-2 toxin exposure, 36 male mice were treated with the T-2 toxin (1 mg/kg) and/or Se (0.2 mg/kg) by intragastric administration for 28 days. The results showed that Se alleviated T-2 toxin-induced cytopenia and splenic extramedullary hematopoiesis. Se also significantly relieved T-2 toxin-induced immunosuppression, as assessed by immune factors and lymphocytes. Furthermore, Se also attenuated oxidative stress and apoptosis and improved the BM in T-2 toxin-exposed mice. Therefore, Se improves BM-related hematopoiesis and immunity after T-2 toxin exposure. This study provides references for identifying the toxic mechanism and screening potential therapeutic drugs of the T-2 toxin.


Assuntos
Selênio , Toxina T-2 , Animais , Camundongos , Masculino , Selênio/farmacologia , Toxina T-2/toxicidade , Antioxidantes/metabolismo , Estresse Oxidativo , Hematopoese
9.
Biol Trace Elem Res ; 201(10): 4850-4860, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36645617

RESUMO

The single and combined effects of short-term selenium (Se) deficiency and T-2 toxin-induced kidney pathological injury through the MMPs/TIMPs system were investigated. Forty-eight rats were randomly divided into control, 10 ng/g T-2 toxin, 100 ng/g T-2 toxin, Se-deficient, 10 ng/g T-2 toxin and Se deficiency combined, and 100 ng/g T-2 toxin and Se deficiency combined groups for a 4-week intervention. The kidney Se concentration was measured to evaluate the construction of animal models of Se deficiency. Kidney tissues were analyzed by hematoxylin-eosin staining, Masson staining, and transmission electron microscope to observe the pathological changes, the severity of kidney fibrosis, and ultrastructural changes, respectively. Meanwhile, quantitative polymerase chain reaction and immunohistochemical staining were used to analyze the gene and protein expression levels of matrix metallopeptidase 2/3 (MMP2/3) and tissue inhibitor of metalloproteinase 1 (TIMP1). The results showed that short-term Se deficiency and T-2 toxin exposure can cause kidney injury through tubular degeneration and even lead to kidney fibrosis. And the combination of T-2 toxin and Se deficiency had a synergistic effect on the kidney. A dose-response effect of the T-2 toxin was also observed. At the gene and protein levels, the expression of MMP2/3 in the intervention group increased, while the expression of TIMP1 decreased compared with the control group. In conclusion, short-term Se deficiency and T-2 toxin exposure might lead to injury and even the development of fibrosis in the kidneys, and combined intervention can increase the severity with a dose-dependent trend. MMP2/3 and TIMP1 likely play a significant role in the development of kidney fibrosis.


Assuntos
Nefropatias , Selênio , Toxina T-2 , Ratos , Animais , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Toxina T-2/toxicidade , Selênio/metabolismo , Metaloproteinase 2 da Matriz/genética , Rim/metabolismo , Nefropatias/metabolismo , Fibrose
10.
Theriogenology ; 189: 255-261, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809359

RESUMO

The objective of this study was to explore the protective mechanism of Vitamin E (VE) and selenium (Se) against T-2 toxin-induced oxidative damage of bovine Leydig cells. Leydig cells were isolated, cultured and divided into five treatment groups such as: control, T-2, Se + T-2, VE + T-2 and VE + Se + T-2. After treatment for 24 h, the cells and supernatants were harvested to examine the cell viability, the activities and mRNA expression of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT), the content of malondialdehyde (MDA) and DNA damage. Results showed that T-2 toxin exposure significantly reduced the cell viability, increased the MDA level, reduced GSH-Px, SOD and CAT activities and increased DNA damage (P < 0.05). Meanwhile, T-2 toxin was attributed to the down-regulation of the mRNA expression of GSH-Px, SOD and CAT (P < 0.05). However, VE and Se reduced T-2 toxin-induced oxidative damage and tended to maintain normal levels (P < 0.05). Furthermore, VE and Se substantially up-regulated the activities and mRNA expressions of the GSH-Px, SOD and CAT. In conclusion, VE and Se, due to its anti-oxidative ability, could ameliorate T-2 toxin-induced cytotoxicities by regulating oxidative stress in bovine Leydig cells.


Assuntos
Selênio , Toxina T-2 , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Bovinos , Dano ao DNA , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Selênio/farmacologia , Superóxido Dismutase/metabolismo , Toxina T-2/toxicidade , Vitamina E/farmacologia
11.
Food Chem Toxicol ; 167: 113262, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35792220

RESUMO

T-2 toxin is one of the most toxic and common trichothecene mycotoxins, and can cause various cardiovascular diseases. In this review, we summarized the current knowledge-base and challenges as it relates to T-2 toxin related cardiotoxicity. The molecular mechanisms and potential treatment approaches were also discussed. Pathologically, T-2 toxin-induced cardiac toxicity is characterized by cell injury and death in cardiomyocyte, increased capillary permeability, necrosis of cardiomyocyte, hemorrhage, and the infiltration of inflammatory cells in the heart. T-2 toxin exposure can cause cardiac fibrosis and finally lead to cardiac dysfunction. Mechanistically, T-2 toxin exposure-induced cardiac damage involves the production of ROS, mitochondrial dysfunction, peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling pathway, endoplasmic reticulum (ER stress), transforming growth factor beta 1 (TGF-ß1)/smad family member 2/3 (Smad2/3) signaling pathway, and autophagy and inflammatory responses. Antioxidant supplementation (e.g., catalase, vitamin C, and selenium), induction of autophagy (e.g., rapamycin), blockade of inflammatory signaling (e.g., methylprednisolone) or treatment with PPAR-γ agonists (e.g., pioglitazone) may provide protective effects against these detrimental cardiac effects caused by T-2 toxin. We believe that our review provides new insights in understanding T-2 toxin exposure-induced cardiotoxicity and fuels effective prevention and treatment strategies against this important food-borne toxin-induced health problems.


Assuntos
Toxina T-2 , Autofagia , Cardiotoxicidade , Humanos , Miócitos Cardíacos/metabolismo , PPAR gama/metabolismo , Toxina T-2/toxicidade
12.
J Sci Food Agric ; 102(11): 4883-4891, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35244220

RESUMO

BACKGROUND: Quercetin (Q), tea polyphenols (TP), and rutin (R) are widely used plant-derived active ingredients. They possess antioxidant, anti-inflammatory, and anti-tumor properties, and can reduce the muscle damage caused by mycotoxins. However, few studies have examined the protective mechanisms of quercetin, tea polyphenols, and rutin on muscle quality. To elucidate their protective mechanisms, shrimp were exposed to both T-2 toxin and these three antioxidants for 20 days in a dose-escalating trial. The changes in the protein composition of shrimp muscle were measured. The target proteins associated with T-2 and antioxidants were screened and identified by non-labeled quantitative proteomics. RESULTS: The T-2 toxin induced abnormal expression of 21 target proteins, leading to the deterioration of muscle proteins in shrimp. The three antioxidants ameliorated the T-2 toxin-induced damage to muscle proteins by increasing the sarcoplasmic and myofibrillar protein content and decreasing the alkali-soluble protein content. Quercetin had the strongest protective effect. The protective processes of these antioxidants involved the upregulation of target proteins involved in carbohydrate metabolism (enolase, malate dehydrogenase), protein translation (elongation factor 1-alpha and eukaryotic translation initiation factor 2 subunit alpha), and cytoskeleton component (actin 2, fast-type skeletal muscle actin 1). Quercetin regulated the largest number of target proteins, making it the best protective agent against T-2 toxin. CONCLUSION: The T-2 toxin (4.80-24.30 mg/kg feed) induced changes in target proteins and muscle composition of shrimp, leading to a deterioration in muscle proteins. Quercetin (2.00-32.00 g/kg feed) had significant protective effects against this deterioration in muscle protein in shrimp. © 2022 Society of Chemical Industry.


Assuntos
Penaeidae , Toxina T-2 , Actinas/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Proteínas Musculares/química , Penaeidae/química , Quercetina/metabolismo , Quercetina/farmacologia , Rutina , Toxina T-2/metabolismo , Toxina T-2/toxicidade , Chá/metabolismo
13.
Biol Trace Elem Res ; 200(1): 172-182, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33682074

RESUMO

T-2 toxin is a trichothecene mycotoxin produced by fusarium species, which is mainly prevalent in grain and livestock feed. One of the main effects of this toxin is immunodepression. Previous studies have shown that T-2 toxin can cause damage to immune organs and impaired immune function in animals. However, selenomethionine (SeMet) as an organic selenium source can not only promote the growth and development of the body but also effectively improve the body's immune function. In this study, rabbits were exposed to 0.4-mg/kg T-2 toxin, and abnormal blood routine indicators were found in the rabbits. HE staining also showed obvious lesions in the spleen and thymus tissue structures, accompanied by a large number of bleeding points. In addition, rabbits showed strong oxidative stress and inflammatory response after T-2 toxin action. 0.2 mg/kg, 0.4 mg/kg, and 0.6 mg/kg organic selenium were added to the feed. However, it was found that 0.2 mg/kg selenium can effectively improve the abnormal changes of blood routine and spleen and thymus tissue of rabbits. On the other hand, it can significantly increase the expression of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) in the spleen and thymus, and downregulate the expression of reactive oxygen species (ROS) and malondialdehyde (MDA). In addition, inflammatory factors interleukin-1 beta (IL-1ß) and interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in blood were also significantly inhibited; the expression of proliferating cell nuclear antigen (PCNA) in the spleen and thymus was also significantly increased after low-dose selenium treatment. Surprisingly, 0.4 mg/kg and 0.6 mg/kg of selenium did not effectively alleviate the immunotoxic effects caused by T-2 toxin, and cause damage to a certain extent. In summary, our results show that 0.2 mg/kg of SeMet can effectively alleviate the immunotoxicity caused by T-2 toxin. Selenium may protect rabbits from T-2 toxin by improving its antioxidant and anti-inflammatory capabilities.


Assuntos
Selênio , Toxina T-2 , Animais , Antioxidantes/farmacologia , Malondialdeído , Estresse Oxidativo , Coelhos , Selenometionina/metabolismo , Selenometionina/toxicidade , Toxina T-2/toxicidade
14.
BMC Vet Res ; 17(1): 153, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836763

RESUMO

BACKGROUND: T-2 toxin is a mycotoxin produced by Fusarium species that is highly toxic to animals. Recent studies have indicated that Selenomethionine (SeMet) have protective effect against mycotoxins-induced toxicity. The aim of the present study was to investigate the protective effect of SeMet on T-2-toxin-induced liver injury in rabbit and explore its molecular mechanism. Fifty rabbits (30 d, 0.5 ± 0.1 kg) were randomly divided into 5 groups: control group, T-2 toxin group, low, medium and high dose SeMet treatment group. The SeMet-treated group was orally pretreated with SeMet (containing selenium 0.2 mg/kg, 0.4 mg/kg and 0.6 mg/kg) for 21 days. On the 17th day, T-2 toxin group and SeMet-treated group were orally administered with T-2 toxin (0.4 mg/kg body weight) for 5 consecutive days. RESULTS: The results showed that low-dose SeMet significantly improved T-2 toxin-induced liver injury. We found that low-dose SeMet can reduce the level of oxidative stress and the number of hepatocyte apoptosis. Moreover, the levels of Bax, caspase-3 and caspase-9 were significantly reduced and the levels of Bcl-2 were increased. CONCLUSIONS: Therefore, we confirmed that low-dose SeMet may protect rabbit hepatocytes from T-2 toxin by inhibiting the mitochondrial-caspase apoptosis pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Selenometionina/farmacologia , Toxina T-2/toxicidade , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Coelhos , Distribuição Aleatória , Espécies Reativas de Oxigênio , Selenometionina/administração & dosagem
15.
Cartilage ; 12(1): 121-131, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-30596260

RESUMO

OBJECTIVE: Both selenium (Se) deficiency and mycotoxin T2 lead to epiphyseal plate lesions, similar to Kashin-Beck disease (KBD). However, regulation of selenoproteins synthesis mediated by SECISBP2, in response to these 2 environmental factors, remained unclear. The present study proposed to explore the mechanism behind the cartilage degradation resulting from Se deficiency and mycotoxin T2 exposure. DESIGN: Deep chondrocyte necrosis and epiphyseal plate lesions were replicated in Dark Agouti (DA) rats by feeding them T2 toxin/Se deficiency artificial synthetic diet for 2 months. RESULTS: Se deficiency led to decreased expression of COL2α1, while T2 treatment reduced the heparan sulfate 6-O-sulfotransferase 2 (HS6ST2) expression, both of which affected the cartilage extracellular matrix metabolism in the rat models. The expression of Col2α1, Acan, Hs6st2, Secisbp2, Gpx1, and Gpx4 were all significantly decreased in cartilage tissues from DA rats, fed a Se-deficient diet or exposed to T2 toxin, contrary to Adamts4, whose expression was increased in both conditions. In addition, T2 treatment led to the decreased expression of SBP2, GPX1, GPX4, and total GPXs activity in C28/I2 cells. CONCLUSION: DA rats exposed to T2 toxin and/or Se-deficient conditions serve as the perfect model of KBD. The 2 environmental risk factors of KBD, which serve as a "double whammy," can intensify the extracellular matrix metabolic imbalance and the antioxidant activity of chondrocytes, leading to articular cartilage degradation and epiphyseal plate abnormalities similar to those observed in KBD.


Assuntos
Lâmina de Crescimento/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Selênio/deficiência , Selenoproteínas/metabolismo , Toxina T-2/toxicidade , Animais , Cartilagem Articular/metabolismo , Modelos Animais de Doenças , Doença de Kashin-Bek/genética , Ratos
16.
Biol Trace Elem Res ; 199(3): 944-954, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32591934

RESUMO

Recent evidence suggests a role of type II collagen in Kashin-Beck disease (KBD) degeneration. We aimed to assess the abnormal expression of heat shock protein 47 (HSP47) which is associated with a decrease in type II collagen and an increase in cartilage degradation in KBD. Hand phalange cartilages were collected from KBD and healthy children. Rats were administered with T-2 toxin under the selenium (Se)-deficient diet. ATDC5 cells were seeded on bone matrix gelatin to construct engineered cartilaginous tissue. C28/I2 and ATDC5 cells and engineered tissue were exposed to different concentrations of T-2 toxin with or without Se. Cartilage degeneration was determined through histological evaluation. The distribution and expression of type II collagen and HSP47 were investigated through immunohistochemistry, western blotting, and real-time PCR. KBD cartilages showed increased chondronecrosis and extracellular matrix degradation in deep zone with decreased type II collagen and HSP47 expression. The low-Se + T-2 toxin animal group showed a significantly lower type II collagen expression along with decreased HSP47 expression. Decreased type II collagen and HSP47 in C28/I2 and ATDC5 cells induced by T-2 toxin showed a dose-dependent manner. Hyaline-like cartilage with zonal layers was developed in engineered cartilaginous tissues, with decreased type II collagen and HSP47 expression found in T-2 toxin-treated group. Se-supplementation partially antagonized the inhibitory effects of T-2 toxin in chondrocytes and cartilages. HSP47 plays a role in the degenerative changes of KBD and associated with T-2 toxin-induced decreased type II collagen expression, further promoting matrix degradation.


Assuntos
Cartilagem Articular , Doença de Kashin-Bek , Selênio , Toxina T-2 , Animais , Condrócitos , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP47/genética , Ratos , Selênio/farmacologia , Toxina T-2/toxicidade
17.
Biol Trace Elem Res ; 199(5): 1833-1842, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32656676

RESUMO

T-2 toxin is a member of a class of mycotoxins produced by a variety of Fusarium species under appropriate temperature and humidity conditions and is a common contaminant in food and feedstuffs of cereal origin. Selenium is an indispensable element in animals, regulates a variety of biological functions of the body, and can antagonize metal and mycotoxin poisoning to a certain extent. However, the effect of selenium on kidney injury induced by T-2 toxin has not been reported. In this study, 50 New Zealand rabbits were divided into 5 groups (the control group, T-2 toxin group, low-dose Se + T-2 toxin group, medium-dose Se + T-2 toxin group, and high-dose Se + T-2 toxin group). Rabbits were examined after oral administration of different doses of selenomethionine (SeMet) for 21 days and after perfusion with 0.4 mg/kg T-2 toxin (or the same dose of olive oil in the control group) for 5 days. We found that T-2 toxin induced kidney function damage and increased the levels of ROS and the contents of inflammatory factors. Renal structure was pathologically damaged. However, we found that after pretreatment with 0.2 mg/kg SeMet, oxidative stress, the inflammatory response, and pathological damage induced by T-2 toxin were attenuated. The results indicate that a low dose (0.2 mg/kg) of SeMet effectively reversed T-2 toxin-induced kidney injury in rabbits.


Assuntos
Selênio , Toxina T-2 , Animais , Rim/metabolismo , Estresse Oxidativo , Coelhos , Selênio/metabolismo , Selenometionina/metabolismo , Selenometionina/farmacologia , Toxina T-2/toxicidade
18.
Hum Exp Toxicol ; 40(5): 869-881, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33233966

RESUMO

LncRNA myocardial infarction associated transcript (MIAT) has been shown to be involved in osteoarthritis (OA), but its role in Kashin-Beck Disease (KBD) has rarely been reported. In this study, rats were administered with low selenium and/or T-2 toxin for 4 weeks to establish a KBD animal model. The serum selenium level, TNF-α and IL-1ß contents, phosphorylated p65 (p-p65) and MIAT expression were increased in each intervention group. Next, we isolated the primary epiphyseal chondrocytes, and found that selenium treatment reversed the effects of T-2 toxin on chondrocyte injury, p-p65 and MIAT expression. In addition, MIAT overexpression or T-2 toxin treatment led to increased cell death, apoptosis, inflammation, NF-κB-p65 pathway activation and MIAT expression, which was rescued by selenium treatment or MIAT siRNA transfection. Our results suggested that lncRNA MIAT regulated by selenium and T-2 toxin increased the activation of NF-κB-p65, thus being involved in the progress of KBD.


Assuntos
Doença de Kashin-Bek/induzido quimicamente , Doença de Kashin-Bek/genética , NF-kappa B/efeitos dos fármacos , RNA Longo não Codificante/efeitos dos fármacos , Selênio/toxicidade , Toxina T-2/toxicidade , Animais , Modelos Animais de Doenças , Humanos , Interleucina-1beta/efeitos dos fármacos , Doença de Kashin-Bek/fisiopatologia , Masculino , NF-kappa B/genética , Ratos , Ratos Sprague-Dawley , Selênio/sangue , Toxina T-2/sangue , Toxina T-2/genética , Fator de Necrose Tumoral alfa/efeitos dos fármacos
19.
Toxins (Basel) ; 12(8)2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824220

RESUMO

Zearalenone (ZEN) and metabolites were measured in livers of turkeys and broilers fed a control diet free of mycotoxins, a diet that contained 0.5 mg/kg ZEN (ZEN diet), and a diet that contained 0.5, 5, and 20 mg/kg of ZEN, fumonisins, and deoxynivalenol, respectively (ZENDONFB diet). The feed was individually distributed to male Grade Maker turkeys from the 55th to the 70th day of age and to male Ross chickens from the 1st to the 35th day of age, without any signs of toxicity. Together, the free and conjugated forms of ZEN, α- and ß-zearalenols (ZOLs), zearalanone (ZAN), and α- and ß-zearalanols (ZALs) were measured by UHPLC-MS/MS with [13C18]-ZEN as an internal standard and immunoaffinity clean-up of samples. ZAN and ZALs were not detected. ZEN and ZOLs were mainly found in their conjugated forms. α-ZOL was the most abundant and was found at a mean concentration of 2.23 and 1.56 ng/g in turkeys and chickens, respectively. Consuming the ZENDONFB diet significantly increased the level of total metabolites in the livers of chickens. Furthermore, this increase was more pronounced for the free forms of α-ZOL than for the conjugated forms. An investigation of the presence of ZEN and metabolites in muscle with the methods validated for the liver failed to reveal any traces of these contaminants in this tissue. These results suggest that concomitant dietary exposure to deoxynivalenol (DON) and fumonisins (FB) may alter the metabolism and persistence of ZEN and its metabolites in the liver.


Assuntos
Ração Animal , Galinhas/metabolismo , Toxina T-2/metabolismo , Perus/metabolismo , Zearalenona/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Fumonisinas/metabolismo , Fígado/química , Fígado/metabolismo , Masculino , Toxina T-2/toxicidade , Espectrometria de Massas em Tandem , Tricotecenos/metabolismo , Tricotecenos/toxicidade , Zearalenona/toxicidade , Zeranol/análogos & derivados , Zeranol/metabolismo , Zeranol/toxicidade
20.
Res Vet Sci ; 132: 439-447, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32777540

RESUMO

T-2 toxin is the most toxic as a type A trichothecenes, which could contaminate grains, especially in wheat and corn. It can cause immune suppression, neurotoxicity, the apoptosis of cells and even induce tumorigenesis. Recent studies have indicated that selenium (Se) have protective effect against mycotoxins-induced toxicity. The present studies was designed to investigate the protective role of Selenomethionine (SeMet) on T-2 toxin-induced toxicity in rabbit's jejunum. 50 New Zealand rabbits were divided into five group (Control group, T-2 group, low-dose Se + T-2 group, medium-dose + T-2 group and high-dose Se + T-2 group). New Zealand rabbits were orally administered with SeMet (0.2, 0.4 and 0.6 mg/kg, Adding diet) for 21 days. On 17th days, each group began to take 0.4 mg/kg of T-2 toxin orally every day for 5 days. We found that rabbit exposed to T-2 toxin could increase the levels of ROS, and decrease activities of antioxidant enzymes and the expression of Occludin and ZO-1. In addition, T-2 toxin could trigger jejunal inflammatory response and enhance the expression of IL-1ß, IL-6 and TNF-α. After SeMet pretreatment, our results indicated that Se attenuated the T-2 toxin-induced oxidative stress, decreasing the level of ROS, MDA and enhancing the activity of SOD and GSH-Px. Moreover, SeMet can alleviate jejunal inflammatory response, and protect the integrity of the intestinal barrier through up-regulating the expression of ZO-1 and Occludin. In the present research, supplementation of 0.2 mg/kg SeMet in the diet could effectively alleviate the T-2 toxin poisoning in rabbits.


Assuntos
Jejuno/patologia , Substâncias Protetoras/farmacologia , Selenometionina/farmacologia , Toxina T-2/toxicidade , Ração Animal/análise , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Jejuno/efeitos dos fármacos , Masculino , Substâncias Protetoras/administração & dosagem , Coelhos , Distribuição Aleatória , Selenometionina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA