Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Evol Biol ; 36(11): 1582-1586, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37975503

RESUMO

Illustration of life-histories of phages and plasmids through horizontal and vertical transmission (see Figure 1 for more information).


Assuntos
Cebolas , Vírus , Cebolas/genética , Transferência Genética Horizontal , Plasmídeos , Vírus/genética , Sequências Repetitivas Dispersas
2.
J Antimicrob Chemother ; 78(9): 2209-2216, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37486104

RESUMO

OBJECTIVES: Resistance genes can be genetically transmitted and exchanged between commensal and pathogenic bacterial species, and in different compartments including the environment, or human and animal guts (One Health concept). The aim of our study was to evaluate whether subdosages of antibiotics administered in veterinary medicine could enhance plasmid transfer and, consequently, resistance gene exchange in gut microbiota. METHODS: Conjugation frequencies were determined with Escherichia coli strains carrying IncL- (blaOXA-48) or IncI1-type (blaCTX-M-1) plasmids subjected to a series of subinhibitory concentrations of antibiotics used in veterinary medicine, namely amoxicillin, ceftiofur, apramycin, neomycin, enrofloxacin, colistin, erythromycin, florfenicol, lincomycin, oxytetracycline, sulfamethazine, tiamulin and the ionophore narasin. Treatments with subinhibitory dosages were performed with and without supplementation with the antioxidant edaravone, known as a mitigator of the inducibility effect of several antibiotics on plasmid conjugation frequency (PCF). Expression of SOS-response associated genes and fluorescence-based reactive oxygen species (ROS) detection assays were performed to evaluate the stress oxidative response. RESULTS: Increased PCFs were observed for both strains when treating with florfenicol and oxytetracycline. Increased expression of the SOS-associated recA gene also occurred concomitantly, as well as increased ROS production. Addition of edaravone to the treatments reduced their PCF and also showed a decreasing effect on SOS and ROS responses for both plasmid scaffolds. CONCLUSIONS: We showed here that some antibiotics used in veterinary medicine may induce transfer of plasmid-encoded resistance and therefore may contribute to the worldwide spread of antibiotic resistance genes.


Assuntos
Antibacterianos , Oxitetraciclina , Animais , Humanos , Antibacterianos/farmacologia , Oxitetraciclina/farmacologia , Edaravone/farmacologia , Espécies Reativas de Oxigênio , Escherichia coli/genética , Plasmídeos/genética , Resistência Microbiana a Medicamentos , Transferência Genética Horizontal
3.
Proc Natl Acad Sci U S A ; 119(40): e2205857119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161953

RESUMO

Horizontal gene transfer (HGT) provides an evolutionary shortcut for recipient organisms to gain novel functions. Although reports of HGT in higher eukaryotes are rapidly accumulating, in most cases the evolutionary trajectory, metabolic integration, and ecological relevance of acquired genes remain unclear. Plant cell wall degradation by HGT-derived enzymes is widespread in herbivorous insect lineages. Pectin is an abundant polysaccharide in the walls of growing parts of plants. We investigated the significance of horizontally acquired pectin-digesting polygalacturonases (PGs) of the leaf beetle Phaedon cochleariae. Using a CRISPR/Cas9-guided gene knockout approach, we generated a triple knockout and a quadruple PG-null mutant in order to investigate the enzymatic, biological, and ecological effects. We found that pectin-digestion 1) is exclusively linked to the horizontally acquired PGs from fungi, 2) became fixed in the host genome by gene duplication leading to functional redundancy, 3) compensates for nutrient-poor diet by making the nutritious cell contents more accessible, and 4) facilitates the beetles development and survival. Our analysis highlights the selective advantage PGs provide to herbivorous insects and demonstrate the impact of HGT on the evolutionary success of leaf-feeding beetles, major contributors to species diversity.


Assuntos
Besouros , Transferência Genética Horizontal , Poligalacturonase , Animais , Besouros/enzimologia , Besouros/genética , Técnicas de Inativação de Genes , Pectinas/metabolismo , Filogenia , Plantas/química , Poligalacturonase/genética
4.
J Antibiot (Tokyo) ; 75(3): 164-171, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35058576

RESUMO

The use of livestock manure is an important way for antibiotic resistance genes (ARGs) to enter the environment, and composting is an effective method for removing ARGs from livestock manure. In this study, different volume ratios of Chinese medicinal herbal residues (CMHRs) were added to laboratory-scale chicken manure composting to evaluate their effects, if any, on the behavior of ARGs, mobile genetic elements (MGEs), and the bacterial community. At the end of the composting period, the composition of the microbial community changed. Firmicutes decreased and Bacteroidetes increased. The most striking effect was that the relative abundance of the 21 ARGs and 5 MGEs detected decreased by varying degrees in the different treatments (except for sulI and intI1). The removal rate of the ARGs increased with the increased addition of CMHRs. The correlations between transferase genes (tnpA and tnpA-02) and ARGs were significant (p < 0.05); therefore, transposons play an important role in the horizontal gene transfer of ARGs in chicken manure. The results imply that CMHRs would be an effective bulking agent for the removal of ARGs from chicken manure composting.


Assuntos
Antibacterianos/efeitos adversos , Compostagem/métodos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Medicamentos de Ervas Chinesas/farmacologia , Genes Bacterianos/efeitos dos fármacos , Esterco/microbiologia , Microbiota/efeitos dos fármacos , Animais , Bactérias/genética , Galinhas , Transferência Genética Horizontal/genética , Genes Bacterianos/genética , Gado/microbiologia , Medicina Tradicional Chinesa/métodos , Microbiota/genética
5.
Int J Mol Sci ; 22(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916499

RESUMO

Valeriana sambucifolia f. dageletiana (Nakai. ex Maekawa) Hara is a broad-leaved valerian endemic to Ulleung Island, a noted hot spot of endemism in Korea. However, despite its widespread pharmacological use, this plant remains comparatively understudied. Plant cells generally contain two types of organellar genomes (the plastome and the mitogenome) that have undergone independent evolution, which accordingly can provide valuable information for elucidating the phylogenetic relationships and evolutionary histories of terrestrial plants. Moreover, the extensive mega-data available for plant genomes, particularly those of plastomes, can enable researchers to gain an in-depth understanding of the transfer of genes between different types of genomes. In this study, we analyzed two organellar genomes (the 155,179 bp plastome and the 1,187,459 bp mitogenome) of V. sambucifolia f. dageletiana and detected extensive changes throughout the plastome sequence, including rapid structural mutations associated with inverted repeat (IR) contraction and genetic variation. We also described features characterizing the first reported mitogenome sequence obtained for a plant in the order Dipsacales and confirmed frequent gene transfer in this mitogenome. We identified eight non-plastome-originated regions (NPRs) distributed within the plastome of this endemic plant, for six of which there were no corresponding sequences in the current nucleotide sequence databases. Indeed, one of these unidentified NPRs unexpectedly showed certain similarities to sequences from bony fish. Although this is ostensibly difficult to explain, we suggest that this surprising association may conceivably reflect the occurrence of gene transfer from a bony fish to the plastome of an ancestor of V. sambucifolia f. dageletiana mediated by either fungi or bacteria.


Assuntos
Transferência Genética Horizontal , Genoma de Cloroplastos , Genoma Mitocondrial , Filogenia , Valeriana/genética , Mutação
6.
Crit Rev Microbiol ; 47(5): 543-561, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33899656

RESUMO

Antibiotic resistance in bacterial pathogens is a growing problem for both human and veterinary medicine. Mobile genetic elements (MGEs) such as plasmids, transposons, and integrons enable the spread of antibiotic resistance genes (ARGs) among bacteria, and the overuse of antibiotics drives this process by providing the selection pressure for resistance genes to establish and persist in bacterial populations. Because bacteria, MGEs, and resistance genes can readily spread between different ecological compartments (e.g. soil, plants, animals, humans, wastewater), a "One Health" approach is needed to combat this problem. The equine hindgut is an understudied but potentially significant reservoir of ARGs and MGEs, since horses have close contact with humans, their manure is used in agriculture, they have a dense microbiome of both bacteria and fungi, and many antimicrobials used for equine treatment are also used in human medicine. Here, we collate information to date about resistance genes, plasmids, and class 1 integrons from equine-derived bacteria, we discuss why the equine hindgut deserves increased attention as a potential reservoir of ARGs, and we suggest ways to minimize the selection for ARGs in horses, in order to prevent their spread to the wider community.


Assuntos
Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal , Genes Bacterianos , Cavalos/microbiologia , Sequências Repetitivas Dispersas , Intestino Grosso/microbiologia , Ração Animal , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Suplementos Nutricionais , Transferência Genética Horizontal , Plasmídeos , Solo
7.
BMC Plant Biol ; 21(1): 25, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413130

RESUMO

BACKGROUND: Pilea is a genus of perennial herbs from the family Urticaceae, and some species are used as courtyard ornamentals or for medicinal purposes. At present, there is no information about the plastid genome of Pilea, which limits our understanding of this genus. Here, we report 4 plastid genomes of Pilea taxa (Pilea mollis, Pilea glauca 'Greizy', Pilea peperomioides and Pilea serpyllacea 'Globosa') and performed comprehensive comparative analysis. RESULTS: The four plastid genomes all have a typical quartile structure. The lengths of the plastid genomes ranged from 150,398 bp to 152,327 bp, and each genome contained 113 unique genes, including 79 protein-coding genes, 4 rRNA genes, and 30 tRNA genes. Comparative analysis showed a rather high level of sequence divergence in the four genomes. Moreover, eight hypervariable regions were identified (petN-psbM, psbZ-trnG-GCC, trnT-UGU-trnL-UAA, accD-psbI, ndhF-rpl32, rpl32-trnL-UAG, ndhA-intron and ycf1), which are proposed for use as DNA barcode regions. Phylogenetic relationships based on the plastid genomes of 23 species of 14 genera of Urticaceae resulted in the placement of Pilea in the middle and lower part of the phylogenetic tree, with 100% bootstrap support within Urticaceae. CONCLUSION: Our results enrich the resources concerning plastid genomes. Comparative plastome analysis provides insight into the interspecific diversity of the plastid genome of Pilea. The identified hypervariable regions could be used for developing molecular markers applicable in various research areas.


Assuntos
Evolução Molecular , Genoma de Planta , Genomas de Plastídeos , Plantas Medicinais/genética , Urticaceae/genética , China , Transferência Genética Horizontal , Variação Genética , Filogenia , Análise de Sequência de DNA
8.
Nat Commun ; 9(1): 5308, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30546019

RESUMO

The propensity of viruses to acquire genetic material from relatives and possibly from infected hosts makes them excellent candidates as vectors for horizontal gene transfer. However, virus-mediated acquisition of host genetic material, as deduced from historical events, appears to be rare. Here, we report spontaneous and surprisingly efficient generation of hybrid virus/host DNA molecules in the form of minicircles during infection of Beta vulgaris by Beet curly top Iran virus (BCTIV), a single-stranded DNA virus. The hybrid minicircles replicate, become encapsidated into viral particles, and spread systemically throughout infected plants in parallel with the viral infection. Importantly, when co-infected with BCTIV, B. vulgaris DNA captured in minicircles replicates and is transcribed in other plant species that are sensitive to BCTIV infection. Thus, we have likely documented in real time the initial steps of a possible path of virus-mediated horizontal transfer of chromosomal DNA between plant species.


Assuntos
Beta vulgaris/genética , Beta vulgaris/virologia , DNA Circular/genética , DNA de Plantas/genética , DNA Viral/genética , Geminiviridae/genética , Transferência Genética Horizontal/genética , Arabidopsis/virologia , DNA de Cadeia Simples/genética , Doenças das Plantas/virologia , Nicotiana/virologia
9.
Pol J Microbiol ; 67(3): 251-258, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30451441

RESUMO

Probiotic bacteria have been used as a health-promoting factor for a very long time. Nowadays, products containing probiotic bacteria are becoming more and more popular on the market. The term probiotics refers to the products belonging to the following groups: probiotic drugs (medicinal products - live biotherapeutic products for human use), medical devices, probiotic foods (e.g. foods, food ingredients, dietary supplements or food for special medical purposes), directly fed microorganisms (for animal use) and designer probiotics (genetically modified probiotics). Safety assessment of bacterial strains used as probiotics should be carefully studied. Even though probiotic bacteria have the generally recognized as safe (GRAS status), there are several reports about side effects triggered by the presence of these organisms. Microorganisms used as probiotics may cause systemic infections, stimulate the immune system, disturb metabolism and participate in horizontal gene transfer.


Assuntos
Qualidade de Produtos para o Consumidor , Probióticos/administração & dosagem , Probióticos/efeitos adversos , Bacteriemia/etiologia , Bifidobacterium , Transferência Genética Horizontal , Humanos , Hospedeiro Imunocomprometido , Lactobacillus
10.
BMC Genomics ; 19(1): 750, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326830

RESUMO

BACKGROUND: Plant-bacteria associations have been extensively studied for their potential in increasing crop productivity in a sustainable manner. Serratia marcescens is a species of Enterobacteriaceae found in a wide range of environments, including soil. RESULTS: Here we describe the genome sequencing and assessment of plant growth-promoting abilities of S. marcescens UENF-22GI, a strain isolated from mature cattle manure vermicompost. In vitro, S. marcescens UENF-22GI is able to solubilize P and Zn, to produce indole compounds (likely IAA), to colonize hyphae and counter the growth of two phytopathogenic fungi. Inoculation of maize with this strain remarkably increased seedling growth and biomass under greenhouse conditions. The S. marcescens UENF-22GI genome has 5 Mb, assembled in 17 scaffolds comprising 4662 genes (4528 are protein-coding). No plasmids were identified. S. marcescens UENF-22GI is phylogenetically placed within a clade comprised almost exclusively of non-clinical strains. We identified genes and operons that are likely responsible for the interesting plant-growth promoting features that were experimentally described. The S. marcescens UENF-22GI genome harbors a horizontally-transferred genomic island involved in antibiotic production, antibiotic resistance, and anti-phage defense via a novel ADP-ribosyltransferase-like protein and possible modification of DNA by a deazapurine base, which likely contributes to its competitiveness against other bacteria. CONCLUSIONS: Collectively, our results suggest that S. marcescens UENF-22GI is a strong candidate to be used in the enrichment of substrates for plant growth promotion or as part of bioinoculants for agriculture.


Assuntos
Compostagem , Genoma Bacteriano/genética , Serratia marcescens/genética , Serratia marcescens/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Biofilmes , Transporte Biológico/genética , Biomassa , Fusarium/crescimento & desenvolvimento , Transferência Genética Horizontal , Esterco/microbiologia , Controle Biológico de Vetores , Fenóis/metabolismo , Fósforo/química , Fósforo/metabolismo , Serratia marcescens/isolamento & purificação , Serratia marcescens/metabolismo , Solubilidade , Espermidina/biossíntese , Zinco/química , Zinco/metabolismo
12.
Parasitology ; 145(10): 1294-1303, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29642965

RESUMO

Animals are common hosts of mutualistic, commensal and pathogenic microorganisms. Blood-feeding parasites feed on a diet that is nutritionally unbalanced and thus often rely on symbionts to supplement essential nutrients. However, they are also of medical importance as they can be infected by pathogens such as bacteria, protists or viruses that take advantage of the blood-feeding nutritional strategy for own transmission. Since blood-feeding evolved multiple times independently in diverse animals, it showcases a gradient of host-microbe interactions. While some parasitic lineages are possibly asymbiotic and manage to supplement their diet from other food sources, other lineages are either loosely associated with extracellular gut symbionts or harbour intracellular obligate symbionts that are essential for the host development and reproduction. What is perhaps even more diverse are the pathogenic lineages that infect blood-feeding parasites. This microbial diversity not only puts the host into a complicated situation - distinguishing between microorganisms that can greatly decrease or increase its fitness - but also increases opportunity for horizontal gene transfer to occur in this environment. In this review, I first introduce this diversity of mutualistic and pathogenic microorganisms associated with blood-feeding animals and then focus on patterns in their interactions, particularly nutrition, immune cross-talk and gene exchange.


Assuntos
Artrópodes/genética , Interações Hospedeiro-Patógeno/imunologia , Parasitos/genética , Simbiose , Animais , Artrópodes/microbiologia , Sangue , Comportamento Alimentar , Transferência Genética Horizontal , Interações Hospedeiro-Patógeno/genética , Microbiota , Nematoides/genética , Nematoides/microbiologia , Parasitos/microbiologia , Filogenia , RNA Ribossômico 16S/genética
13.
Gene ; 651: 70-78, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29408405

RESUMO

Metacaspases (MCAs) are cysteine proteases that share sequence homology with caspases, and may play roles in programmed cell death (PCD). In the present study, we identified a novel MCA gene (CpMCA) from the red tide dinoflagellate Cochlodinium polykrikoides, and examined its molecular characteristics and gene expression in response to algicide-induced cell death. CpMCA cDNA is 1164 bp in length, containing a dinoflagellate spliced leader sequence (dinoSL), an 879-bp open reading frame (ORF), which codes for a 293-aa protein, and a poly (A) tail. Multi-sequence comparison indicated that CpMCA belongs to type I MCA, but it has a different structure at the N-terminal. Phylogenetic analysis showed that C. polykrikoides may have acquired the MCA gene from bacteria by means of horizontal gene transfer (HGT). In addition, expressions of CpMCA significantly increased following exposure to the common algicides copper sulfate and oxidizing chlorine, which trigger cell death in dinoflagellates, suggesting that CpMCA may be involved in cell death.


Assuntos
Caspases/genética , Dinoflagellida/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , DNA Complementar , DNA de Protozoário , Dinoflagellida/efeitos dos fármacos , Dinoflagellida/enzimologia , Expressão Gênica , Transferência Genética Horizontal , Genes Bacterianos , Genes de Protozoários , Herbicidas/farmacologia , Filogenia , Análise de Sequência de DNA , Transcrição Gênica/efeitos dos fármacos
14.
Int J Hyg Environ Health ; 221(2): 355-363, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29307571

RESUMO

Wastewater of human and animal may contain Shiga toxin-producing (STEC) and enteropathogenic (EPEC) Escherichia coli. We evaluated the prevalence of such strains in a wastewater treatment plant (WWTP) receiving both city and slaughterhouse wastewater. PCR screenings were performed on 12,248 E. coli isolates. The prevalence of STEC in city wastewater, slaughterhouse wastewater and treated effluent was 0.22%, 0.07% and 0.22%, respectively. The prevalence of EPEC at the same sampling sites was 0.63%, 0.90% and 0.55%. No significant difference was observed between the sampling points. Treatment had no impact on these prevalences. Enterohemorrhagic E. coli (EHEC) O157:H7 and O111:H8 were isolated from the treated effluent rejected into the river. The characteristics of STEC and EPEC differed according to their origin. City wastewater contained STEC with various stx subtypes associated with serious human disease, whereas slaughterhouse wastewater contained exclusively STEC with stx2e subtype. All the EPEC strains were classified as atypical and were screened for the ε, γ1 and ß1 subtypes, known to be associated with the EHEC mainly involved in human infections in France. In city wastewater, eae subtypes remained largely unidentified; whereas eae-ß1 was the most frequent subtype in slaughterhouse wastewater. Moreover, the EPEC isolated from slaughterhouse wastewater were positive for other EHEC-associated virulence markers, including top five serotypes, the ehxA gene, putative adherence genes and OI-122 associated genes. The possibility that city wastewater could contain a pool of stx genes associated with human disease and that slaughterhouse wastewater could contain a pool of EPEC sharing similar virulence genes with EHEC, was highlighted. Mixing of such strains in WWTP could lead to the emergence of EHEC by horizontal gene transfer.


Assuntos
Matadouros , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/isolamento & purificação , Águas Residuárias/microbiologia , Farmacorresistência Bacteriana , Escherichia coli Enteropatogênica/genética , Transferência Genética Horizontal , Testes de Sensibilidade Microbiana , Filogenia , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genética , Purificação da Água
15.
J Antimicrob Chemother ; 73(1): 52-56, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069366

RESUMO

OBJECTIVES: Two carbapenemase-carrying plasmids, pLS488 (blaOXA-23) and pLS535 (blaOXA-58) from Acinetobacter pittii clinical isolates, were characterized in this study, including their ability to be transferred to Acinetobacter baumannii. METHODS: The clinical isolates were obtained from drainage fluid of a patient with biliary tract cancer and from an exudate of a patient with a hip infection (Portuguese University Hospital, 2012). Isolate characterization included antimicrobial susceptibility tests, carbapenemase production by Blue-Carba, carbapenem-hydrolysing class D ß-lactamase (CHDL) gene search by PCR sequencing, ApaI-PFGE, CHDL genetic location and plasmid size by hybridization and WGS. Plasmid transfer was performed by conjugation or electroporation. RESULTS: pLS488 constitutes the first conjugative plasmid reported to carry a carbapenem resistance gene in A. pittii and is part of a potential new incompatibility group that might also account for the dissemination of OXA-23 in A. baumannii. pLS535 belongs to the Acinetobacter GR7 incompatibility group and presents a new scaffold for OXA-58. This plasmid lacked the machinery for conjugation, but was transferable by electroporation to A. baumannii. Both isolates, which displayed the same PFGE pattern, represent the first report of CHDL-carrying A. pittii in Portuguese hospitals. CONCLUSIONS: Altogether, these results emphasize the importance of A. pittii, or particular A. pittii clones, as a source of resistance genes, facilitating their dissemination among different bacterial species.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbapenêmicos/uso terapêutico , Plasmídeos/genética , beta-Lactamases/genética , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Acinetobacter/isolamento & purificação , Infecções por Acinetobacter/microbiologia , Sequência de Bases , Transferência Genética Horizontal/genética , Humanos , Testes de Sensibilidade Microbiana , Portugal , Análise de Sequência de DNA
16.
J Antimicrob Chemother ; 73(3): 658-663, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149337

RESUMO

Objectives: Characterization of the mechanisms driving ceftolozane/tazobactam resistance development in 5 of 47 (10.6%) patients treated for MDR Pseudomonas aeruginosa infections in a Spanish hospital. Methods: Five pairs of ceftolozane/tazobactam-susceptible/resistant P. aeruginosa isolates were studied. MICs were determined by broth microdilution, clonal relatedness was assessed by MLST and resistance mechanisms were investigated by phenotypic and genotypic methods, including WGS. ampC variants were cloned to assess their impact on resistance. Results: In all five cases, the same clone was detected for the susceptible/resistant pairs; the widespread ST175 high-risk clone in four of the cases and ST179 in the remaining case. Genomic analysis of the four initial ST175 isolates revealed the characteristic OprD mutation (Q142X) responsible for carbapenem resistance and the AmpR mutation (G154R) responsible for AmpC overexpression and ß-lactam resistance. The final isolates had developed ceftolozane/tazobactam and ceftazidime/avibactam resistance, and each additionally showed a mutation in AmpC: E247K in one of the isolates, T96I in two isolates and a deletion of 19 amino acids (G229-E247) in the remaining isolate. The cloned AmpC variants showed greatly increased ceftolozane/tazobactam and ceftazidime/avibactam MICs compared with WT AmpC, but, in contrast, yielded lower MICs of imipenem, cefepime and particularly piperacillin/tazobactam. On the other hand, ceftolozane/tazobactam resistance development in ST179 was shown to be driven by the emergence of the extended-spectrum OXA ß-lactamase OXA-14, through the selection of an N146S mutation from OXA-10. Conclusions: Modification of intrinsic (AmpC) and horizontally acquired ß-lactamases appears to be the main mechanism leading to ceftolozane/tazobactam resistance in MDR P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Tazobactam/farmacologia , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Transferência Genética Horizontal , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Pseudomonas aeruginosa/genética , beta-Lactamases/genética
17.
Curr Opin Insect Sci ; 23: 65-69, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29129284

RESUMO

Insects generally cannot synthesize eight B vitamins that function as co-enzymes in various required enzymatic reactions. Most insects derive their B vitamin requirements from the diet, microbial symbionts, or a combination of these complementary sources. Exceptionally, the genomes of a few insects bear genes in vitamin B5 (pantothenate) and B7 (biotin) synthesis, horizontally acquired from bacteria. Biomarkers of B vitamin deficiency (e.g. vitamin titers, activity of vitamin-dependent enzymes) offer routes to investigate the incidence and the physiological and fitness consequences of B vitamin deficiency in laboratory and field populations of insects.


Assuntos
Insetos/fisiologia , Microbiota/fisiologia , Complexo Vitamínico B/metabolismo , Animais , Dieta , Transferência Genética Horizontal , Genes Bacterianos , Insetos/genética , Insetos/metabolismo , Complexo Vitamínico B/biossíntese , Deficiência de Vitaminas do Complexo B
18.
Nat Rev Microbiol ; 15(11): 689-696, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28757648

RESUMO

Predicting the future is difficult, especially for evolutionary processes that are influenced by numerous unknown factors. Still, this is what is required of drug developers when they assess the risk of resistance arising against a new antibiotic candidate during preclinical development. In this Opinion article, we argue that the traditional procedures that are used for the prediction of antibiotic resistance today could be markedly improved by including a broader analysis of bacterial fitness, infection dynamics, horizontal gene transfer and other factors. This will lead to more informed preclinical decisions for continuing or discontinuing the development of drug candidates.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Bactérias/genética , Avaliação Pré-Clínica de Medicamentos , Evolução Molecular , Transferência Genética Horizontal , Interações Hospedeiro-Patógeno , Humanos
19.
Appl Microbiol Biotechnol ; 101(11): 4341-4348, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28500385

RESUMO

Petroleum sludge contains recalcitrant residuals. These compounds because of being toxic to humans and other organism are of the major concerns. Therefore, petroleum sludge should be safely disposed. Physicochemical methods which are used by this sector are mostly expensive and need complex devices. Bioremediation methods because of being eco-friendly and cost-effective overcome most of the limitations of physicochemical treatments. Microbial strains capable to degrade petroleum hydrocarbons are practically present in all soils and sediments and their population density increases in contact with contaminants. Bacterial strains cannot degrade alone all kinds of petroleum hydrocarbons, rather microbial consortium should collaborate with each other for degradation of petroleum hydrocarbon mixtures. Horizontal transfer of functional genes between bacteria plays an important role in increasing the metabolic potential of the microbial community. Therefore, selecting a suitable degrading gene and tracking its horizontal transfer would be a useful approach to evaluate the bioremediation process and to assess the bioremediation potential of contaminated sites.


Assuntos
Biodegradação Ambiental , Transferência Genética Horizontal , Consórcios Microbianos/genética , Poluição por Petróleo , Microbiologia do Solo , Bactérias/genética , Bactérias/metabolismo , Consórcios Microbianos/fisiologia , Petróleo/metabolismo , Poluição por Petróleo/prevenção & controle , Poluição por Petróleo/estatística & dados numéricos , Esgotos/microbiologia , Poluentes do Solo
20.
Environ Microbiol ; 19(6): 2320-2333, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28276126

RESUMO

Mobile genomic islands distribute functional traits between microbes and habitats, yet it remains unclear how their proteins adapt to new environments. Here we used a comparative phylogenomic and proteomic approach to show that the marine bacterium Pseudoalteromonas haloplanktis ANT/505 acquired a genomic island with a functional pathway for pectin catabolism. Bioinformatics and biochemical experiments revealed that this pathway encodes a series of carbohydrate-active enzymes including two multi-modular pectate lyases, PelA and PelB. PelA is a large enzyme with a polysaccharide lyase family 1 (PL1) domain and a carbohydrate esterase family 8 domain, and PelB contains a PL1 domain and two carbohydrate-binding domains of family 13. Comparative phylogenomic analyses indicate that the pathway was most likely acquired from terrestrial microbes, yet we observed multi-modular orthologues only in marine bacteria. Proteomic experiments showed that P. haloplanktis ANT/505 secretes both pectate lyases into the environment in the presence of pectin. These multi-modular enzymes may therefore represent a marine innovation that enhances physical interaction with pectins to reduce loss of substrate and enzymes by diffusion. Our results revealed that marine bacteria can catabolize pectin, and highlight enzyme fusion as a potential adaptation that may facilitate microbial consumption of polymeric substrates in aquatic environments.


Assuntos
Adaptação Fisiológica/genética , Gammaproteobacteria/metabolismo , Pectinas/metabolismo , Polissacarídeo-Liases/genética , Sequência de Aminoácidos , Gammaproteobacteria/genética , Transferência Genética Horizontal/genética , Sequências Repetitivas Dispersas/genética , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA