Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 252: 121226, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309071

RESUMO

The extensive exploration of antibiotic biodegradation by antibiotic-degrading bacteria in biological wastewater treatment processes has left a notable gap in understanding the behavior of these bacteria when exposed to antibiotics and the initiation of biodegradation processes. This study, therefore, delves into the adhesive behavior of Paraclostridium bifermentans, isolated from a bioreactor treating ciprofloxacin-laden wastewater, towards ciprofloxacin molecules. For the first time, this behavior is observed and characterized through quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy. The investigation further extends to identify key regulatory factors and mechanisms governing this adhesive behavior through a comparative proteomics analysis. The results reveal the dominance of extracellular proteins, particularly those involved in nucleotide binding, hydrolase, and transferase, in the adhesion process. These proteins play pivotal roles through direct chemical binding and the regulation of signaling molecule. Furthermore, QCM-D measurements provide evidence that transferase-related signaling molecules, especially tyrosine, augment the binding between ciprofloxacin and transferases, resulting in enhance ciprofloxacin removal by P. bifermentans (increased by ∼1.2-fold). This suggests a role for transferase-related signaling molecules in manipulating the adhesive behavior of P. bifermentans towards ciprofloxacin. These findings contribute to a new understanding of the prerequisites for antibiotic biodegradation and offer potential strategies for improving the application of antibiotic-degrading bacteria in the treatment of antibiotics-laden wastewater.


Assuntos
Antibacterianos , Ciprofloxacina , Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Águas Residuárias , Biodegradação Ambiental , Bactérias/metabolismo , Proteínas , Transferases/metabolismo
2.
Biol Trace Elem Res ; 202(5): 2279-2293, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37667095

RESUMO

A feeding trial of 5-week duration was performed to assess the response of broiler chicks to dietary supplementation with different doses of myco-fabricated zinc oxide nanoparticles (ZONPs) on blood indices, physiological, immunological response, antioxidant status, intestinal microbial count, and histological changes in immune organs. A total of 162 3-day-old Ross 308 broiler chicks were weighed individually and distributed equally into 3 dietary treatments with 6 replicate of 9 chicks in each in a completely randomized design. Chicks were fed ad libitum a basal ration prepared as starter, grower, and finisher supplemented with 0 (T1, control), 40 (T2), and 60 (T3) mg zinc oxide nanoparticles (ZONPs)/kg feed. Results showed that supplementing with ZONPs at both studied levels increased the relative weights of the spleen, bursa, thymus, and liver and decreased the relative weight of the kidney, gizzard, and intestine. A significant increase in the concentrations of hemoglobin (Hb), hematocrit (PCV%), red and white blood cell counts, total protein (TP), globulin (GLOB), aspartate transferase (AST), alanine transferase (ALT), alkaline phosphatase (ALP), superoxide dismutase (SOD), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) and a significant decrease in malonaldehyde (MDA), uric acid, and creatinine concentration were observed. Furthermore, all immunological organs showed histological alteration and increased both types of immunity in ZONPs groups with more pronounced effects in the T2 group.


Assuntos
Nanopartículas , Óxido de Zinco , Animais , Óxido de Zinco/farmacologia , Antioxidantes/metabolismo , Galinhas/metabolismo , Suplementos Nutricionais , Dieta , Transferases/metabolismo , Ração Animal/análise
3.
New Phytol ; 239(3): 1098-1111, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37247337

RESUMO

Lettuce produces natural rubber (NR) with an average Mw of > 1 million Da in laticifers, similar to NR from rubber trees. As lettuce is an annual, self-pollinating, and easily transformable plant, it is an excellent model for molecular genetic studies of NR biosynthesis. CRISPR/Cas9 mutagenesis was optimized using lettuce hairy roots, and NR-deficient lettuce was generated via bi-allelic mutations in cis-prenyltransferase (CPT). This is the first null mutant of NR deficiency in plants. In the CPT mutant, orthologous CPT counterparts from guayule (Parthenium argentatum) and goldenrod (Solidago canadensis) were expressed under a laticifer-specific promoter to examine how the average Mw of NR is affected. No developmental defects were observed in the NR-deficient mutants. The lettuce mutants expressing guayule and goldenrod CPT produced 1.8 and 14.5 times longer NR, respectively, than the plants of their origin. This suggests that, although goldenrod cannot synthesize a sufficiently lengthy NR, goldenrod CPT has the catalytic competence to produce high-quality NR in the cellular context of lettuce laticifers. Thus, CPT alone does not determine the length of NR. Other factors, such as substrate concentration, additional proteins, and/or the nature of protein complexes including CPT-binding proteins, influence CPT activity in determining NR length.


Assuntos
Borracha , Solidago , Borracha/química , Borracha/metabolismo , Lactuca/genética , Transferases/genética , Transferases/metabolismo
4.
Plant Physiol Biochem ; 197: 107643, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36989989

RESUMO

Rhamnosyltransferase (RT) and rhamnose synthase (Rhs) are the key enzymes that are responsible for the biosynthesis of rhamnosides and UDP-l-rhamnose (UDP-Rha) in plants, respectively. How to discover such enzymes efficiently for use is still a problem to be solved. Here, we identified HmF3RT, HmRhs1, and HmRhs2 from Hypericum monogynum, which is abundant in flavonol rhamnosides, with the help of a full-length and high throughput transcriptome sequencing platform. HmF3RT could regiospecifically transfer the rhamnose moiety of UDP-Rha onto the 3-OH position of flavonols and has weakly catalytic for UDP-xylose (UDP-Xyl) and UDP-glucose (UDP-Glc). HmF3RT showed well quercetin substrate affinity and high catalytic efficiency with Km of 5.14 µM and kcat/Km of 2.21 × 105 S-1 M-1, respectively. Docking, dynamic simulation, and mutagenesis studies revealed that V129, D372, and N373 are critical residues for the activity and sugar donor recognition of HmF3RT, mutant V129A, and V129T greatly enhance the conversion rate of catalytic flavonol glucosides. HmRhs1 and HmRhs2 convert UDP-Glc to UDP-Rha, which could be further used by HmF3RT. The HmF3RT and HmRhs1 co-expressed strain RTS1 could produce quercetin 3-O-rhamnoside (quercitrin), kaempferol 3-O-rhamnoside (afzelin), and myricetin 3-O-rhamnoside (myricitrin) at yields of 85.1, 110.7, and 77.6 mg L-1, respectively. It would provide a valuable reference for establishing a better and more efficient biocatalyst for preparing bioactive flavonol rhamnosides by identifying HmF3RT and HmRhs.


Assuntos
Hypericum , Transferases , Flavonóis/metabolismo , Hypericum/enzimologia , Ramnose/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Transferases/química , Transferases/metabolismo
5.
Arch Insect Biochem Physiol ; 112(3): e21993, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36546461

RESUMO

The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an insect pest that threatens potato crops. Multiple options exist to limit the impact of this pest even though insecticides remain a primary option for its control. Insecticide resistance has been reported in Colorado potato beetles and a better understanding of the molecular players underlying such process is of utmost importance to optimize the tools used to mitigate the impact of this insect. Resistance against the insecticide spinosad has been reported in this insect and this work thus aims at exploring the expression of targets previously associated with insecticide response in Colorado potato beetles exposed to this compound. Amplification and quantification of transcripts coding for cytochrome P450s and glutathione S-transferases were conducted via qRT-PCR in insects treated with varying doses of spinosad and for different time duration. This approach notably revealed differential expression of CYP6a23 and CYP12a5 in insects exposed to low doses of spinosad for 4 h as well as modulation of CYP6a13, CYP6d4, GST, GST1, and GST1-Like in insects treated with high doses of spinosad for the same duration. RNAi-based targeting of CYP4g15 and CYP6a23 was associated with marked reduction of transcript expression 7 days following dsRNA injection and reduction of the former had a marked impact on insect viability. In general, results presented here provide novel information regarding the expression of transcripts relevant to spinosad response in Colorado potato beetles and reveal a novel target to consider in the development of RNAi-based strategies aimed at this potato pest.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Inseticidas/metabolismo , Besouros/genética , Neonicotinoides , Solanum tuberosum/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Transferases/metabolismo , Glutationa/metabolismo
6.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293383

RESUMO

Deodorized garlic (DG) may favor the activity of the antioxidant enzymes and promote the synthesis of hydrogen sulfide (H2S). The objective was to test if DG favors an increase in H2S and if it decreases the oxidative stress caused by lipopolysaccharide (LPS) in rat hearts. A total of 24 rats were divided into 4 groups: Group 1 control (C), Group 2 LPS, Group 3 DG, and Group 4 LPS plus DG. The cardiac mechanical performance (CMP), coronary vascular resistance (CVR), and oxidative stress markers, such as total antioxidant capacity (TAC), glutathione (GSH), selenium (Se), lipid peroxidation (LPO), thiols, hydrogen sulfide (H2S), and the activities and expressions of thioredoxin reductase (TrxR), glutathione peroxidase (GPx), and glutathione-S-transferase (GST), cystathionine synthetase (CBS), cystathionine γ-lyase (CTH), iNOS, and eNOS-p, were analyzed in the heart. Infarct zones in the cardiac tissue were present (p = 0.01). The CMP and CVR decreased and increased (p ≤ 0.05), TAC, GSH, H2S, NO, thiols, and GST activity (p ≤ 0.01) decreased, and LPO and iNOS increased (p ≤ 0.05). The activities and expressions of TrxR, GPx, eNOS-p, CTH, and CBS (p ≤ 0.05) decreased with the LPS treatment; however, DG normalized this effect. DG treatment decreases heart damage caused by LPS through the cross-talk between the H2S and NO systems.


Assuntos
Alho , Sulfeto de Hidrogênio , Selênio , Animais , Ratos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Alho/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Lipopolissacarídeos/farmacologia , Estresse Oxidativo , Selênio/farmacologia , Compostos de Sulfidrila/farmacologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Transferases/metabolismo
7.
Chemosphere ; 308(Pt 3): 136523, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36165928

RESUMO

Plants essentially require manganese (Mn) for their normal metabolic functioning. However, excess Mn in the cellular environment is detrimental to plant growth, development, and physio-biochemical functions. Taurine (TAU) is an amino acid with potent antioxidant and anti-inflammatory properties in animals and humans. However, no previous study has investigated the potential of TAU in plant metal stress tolerance. The current study provides some novel insights into the effect of TAU in modulating the defense system of Trifolium alexandrinum plants under Mn toxicity. Manganese toxicity resulted in higher oxidative stress and membrane damage through increased superoxide radical, hydrogen peroxide, malondialdehyde, and methylglyoxal generation alongside enhanced lipoxygenase (LOX) activity. Mn toxicity also resulted in limited uptake of potassium (K+), phosphorus (P), calcium (Ca2+), and increased the accumulation of Mn in both leaf and roots. However, TAU circumvented the Mn-induced oxidative stress by upregulating the activities of antioxidant enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase, glutathione-S-transferase, and superoxide dismutase) and levels of ascorbic acid, proline, anthocyanins, phenolics, flavonoids and glutathione (GSH). Taurine conspicuously improved the growth, photosynthetic pigments, hydrogen sulphide (H2S), and nitric oxide (NO) levels of Mn stressed plants. Taurine also improved the uptake of K+, Ca2+, P and reduced the Mn content in stressed plants. Overall, exogenous taurine might be a suitable strategy to combat Mn stress in T. alexandrinum plants but applications at field levels for various crops and metal toxicities and economic suitability need to be addressed before final recommendations.


Assuntos
Sulfeto de Hidrogênio , Trifolium , Aminoácidos/metabolismo , Antocianinas , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/farmacologia , Cálcio/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Lipoxigenases/metabolismo , Malondialdeído/metabolismo , Manganês/toxicidade , Óxido Nítrico/metabolismo , Nutrientes , Estresse Oxidativo , Fósforo/metabolismo , Fotossíntese , Potássio , Prolina/metabolismo , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia , Superóxido Dismutase/metabolismo , Superóxidos , Taurina/farmacologia , Transferases/metabolismo , Transferases/farmacologia , Trifolium/metabolismo
8.
Genes Genomics ; 44(10): 1201-1213, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947298

RESUMO

BACKGROUND: Hypoxia can induce lung injury such as pulmonary arterial hypertension and pulmonary edema. And in the rat model of hypoxia-induced lung injury, the expression of Farnesyl diphosphate farnesyl transferase 1 (Fdft 1) was highly expressed and the steroid biosynthesis pathway was activated. However, the role of Fdft 1 and steroid biosynthesis pathway in hypoxia-induced lung injury remains unclear. OBJECTIVE: The study aimed to further investigate the relationship between Fdft1 and steroid biosynthesis pathway with hypoxia-induced lung injury. METHODS: A rat model of lung injury was constructed by hypobaric chamber with hypoxic stress, the adenovirus interference vector was used to silence the expression of Fdft 1, and the exogenous steroid biosynthesis metabolite Vitamin D3 (VD3) was used to treat acute hypoxia-induced lung injury in rats. RESULTS: Sh-Fdft 1 and exogenous VD3 significantly inhibited the expression of Fdft 1 and the activation of the steroid pathway in hypoxia-induced lung injury rats, which showed a synergistic effect on the steroid activation pathway. In addition, sh-Fdft 1 promoted the increase of pulmonary artery pressure and lung water content, the decrease of oxygen partial pressure and oxygen saturation, and leaded to the increase of lung cell apoptosis and the aggravation of mitochondrial damage in hypoxia-stressed rats. And VD3 could significantly improve the lung injury induced by hypoxia and sh-Fdft 1 in rats. CONCLUSIONS: Fdft 1 gene silencing can promote hypoxic-induced lung injury, and exogenous supplement of VD3 has an antagonistic effect on lung injury induced by Fdft 1 gene silencing and hypoxic in rats, suggesting that VD3 has a preventive and protective effect on the occurrence and development of hypoxia-induced lung injury.


Assuntos
Lesão Pulmonar Aguda , Colecalciferol , Animais , Colecalciferol/farmacologia , Inativação Gênica , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Oxigênio/metabolismo , Ratos , Transferases/metabolismo
9.
Phytomedicine ; 104: 154325, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35820303

RESUMO

BACKGROUND: Tetrandrine (TET), a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra S. Moore, is the only approved medicine in China for silicosis. However, TET-induced hepatotoxicity has raised safety concerns. The underlying toxic targets and mechanism induced by TET remain unclear; there are no targeted detoxification strategies developed for TET-induced hepatotoxicity. Ursolic acid (UA), a pentacyclic triterpene with liver protective effects, may have detoxification effects on TET-induced hepatotoxicity. PURPOSE: This study aims to explore toxic targets and mechanism of TET and present UA as a potential targeted therapy for alleviating TET-induced hepatotoxicity. METHODS: A TET-induced liver-injury model was established to evaluate TET toxicity and the potential UA detoxification effect. Alkenyl-modified TET and UA probes were designed to identify potential liver targets. Pharmacological and molecular biology methods were used to explore the underlying toxicity/detoxification mechanism. RESULTS: TET induced liver injury by covalently binding to the substrate-binding pocket (H-site) of glutathione S-transferases (GSTs) and inhibiting GST activity. The covalent binding led to toxic metabolite accumulation and caused redox imbalance and liver injury. UA protected the liver from TET-induced damage by competitively binding to the GST H-site. CONCLUSION: The mechanism of TET-induced hepatotoxicity is related to irreversible binding with the GST H-site and GST-activity inhibition. UA, a natural antidote, competed with TET on H-site binding and reversed the redox imbalance. This study revealed the hepatotoxic mechanism of TET and provided a targeted detoxifying agent, UA, to alleviate hepatotoxicity caused by GST inhibition.


Assuntos
Antineoplásicos , Benzilisoquinolinas , Doença Hepática Induzida por Substâncias e Drogas , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Sítios de Ligação , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Humanos , Transferases/metabolismo , Triterpenos , Ácido Ursólico
10.
Res Vet Sci ; 139: 94-101, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34273745

RESUMO

Effects of Selenium-enriched probiotics (SP) on ochratoxin A-induced kidney injury, growth performance, antioxidant injury, selenoprotein and DNA methylation transferases (DNMTs) expression of piglets were investigated in the article. A total of 48 piglets were randomly divided into 4 groups and fed with basal diet (Con, 0.15 mg Se/kg and OTA at 0.00 mg/kg), basal diets added with OTA (OTA, 0.40 mg OTA/kg), SP and OTA (SP1, 0.15 mg Se/kg and 0.40 mg OTA/kg), SP and OTA (SP2, 0.30 mg Se/kg and 0.40 mg OTA/kg) respectively for 42 days. From each group, six piglets were randomly selected for blood collection on Days 0 and 42 and three piglets were selected for tissue collection on Day 42.The results showed that OTA at 0.40 mg /kg significantly decreased growth performance of pigs, induced the histopathological lesions of kidney and increased urea and creatine levels of serum, decreased GPx and SOD activities, and increased MDA levels. OTA decreased GPx1, GPx4 and SelS expressions, and increased TR1, DNMT 1, DNMT3a and SOCS3 expressions. Both SP1 and SP2 improved OTA-induced poor growth performance, kidney injury, poor antioxidant statues, GPx1, SelS, TR1, SOCS3, DNMT1 and DNMT3a expressions in kidney of pigs. The effects of SP2 on the above parameters changes were better than that of SP1. SP increased GPx and SOD activities and decreased MDA levels changes induced by OTA treatment. These results suggest that SP may serve as a better feed additive for piglets under mycotoxin contamination environments.


Assuntos
Rim/lesões , Ocratoxinas , Probióticos , Selênio , Ração Animal/análise , Animais , Metilação de DNA , Rim/metabolismo , Ocratoxinas/metabolismo , Selênio/metabolismo , Selênio/farmacologia , Suínos , Transferases/metabolismo
11.
Trends Biochem Sci ; 44(8): 701-715, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31036406

RESUMO

Decades have passed without approval of a new antibiotic class. Several companies have recently halted related discovery efforts because of multiple obstacles. One promising route under research is to target the lipoprotein maturation pathway in light of major recent findings and the virulence roles of lipoproteins. To support the future design of selective drugs, considerations and priority-setting are established for the main lipoprotein processing enzymes (Lgt, LspA, and Lnt) based on microbiology, biochemistry, structural biology, chemical design, and pharmacology. Although not all bacterial species will be similarly impacted by drug candidates, several advantages make LspA a top target to pursue in the development of novel antibiotics effective against bacteria that are resistant to existing drugs.


Assuntos
Anti-Infecciosos/química , Proteínas de Bactérias/química , Lipoproteínas/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Lipoproteínas/farmacologia , Proteínas de Membrana/metabolismo , Conformação Proteica , Serina Endopeptidases/metabolismo , Relação Estrutura-Atividade , Transferases/metabolismo , Virulência
12.
Food Chem Toxicol ; 124: 54-63, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30465898

RESUMO

Diabetes mellitus, a complex progressive metabolic disorder, leads to some oxidative stress related complications. Pycnogenol® (PYC), a plant extract obtained from Pinus pinaster, has been suggested to be effective in many diseases including diabetes, cancer, inflammatory and immune system disorders. The mechanisms underlying the effects of PYC in diabetes need to be elucidated. The aim of this study was to determine the effects of PYC treatment (50 mg/kg/day, orally, for 28 days) on the DNA damage and biochemical changes in the blood, liver, and kidney tissues of experimental diabetic rats. Changes in the activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase enzymes, and the levels of 8-hydroxy-2'-deoxyguanosine, total glutathione, malondialdehyde, insulin, total bilirubin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, high density lipoprotein, low density lipoprotein, total cholesterol, and triglyceride were evaluated. DNA damage was also determined in the whole blood cells and the liver and renal tissue cells using the alkaline comet assay. PYC treatment significantly ameliorated the oxidative stress, lipid profile, and liver function parameters as well as DNA damage in the hyperglycemic rats. The results show that PYC treatment might improve the hyperglycemia-induced biochemical and physiological changes in diabetes.


Assuntos
Antioxidantes/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Flavonoides/uso terapêutico , Hiperglicemia/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Animais , DNA/metabolismo , Rim/efeitos dos fármacos , Rim/enzimologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Oxirredutases/metabolismo , Ratos Wistar , Estreptozocina , Transferases/metabolismo
13.
Int J Mol Sci ; 19(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544591

RESUMO

Tea (Camellia sinensis L.) contains abundant secondary metabolites, which are regulated by numerous enzymes. Hydroxycinnamoyl transferase (HCT) is involved in the biosynthesis pathways of polyphenols and flavonoids, and it can catalyze the transfer of hydroxyconnamoyl coenzyme A to substrates such as quinate, flavanol glycoside, or anthocyanins, thus resulting in the production of chlorogenic acid or acylated flavonol glycoside. In this study, the CsHCT gene was cloned from the Chin-Shin Oolong tea plant, and its protein functions and characteristics were analyzed. The full-length cDNA of CsHCT contains 1311 base pairs and encodes 436 amino acid sequences. Amino acid sequence was highly conserved with other HCTs from Arabidopsis thaliana, Populus trichocarpa, Hibiscus cannabinus, and Coffea canephora. Quantitative real-time polymerase chain reaction analysis showed that CsHCT is highly expressed in the stem tissues of both tea plants and seedlings. The CsHCT expression level was relatively high at high altitudes. The abiotic stress experiment suggested that low temperature, drought, and high salinity induced CsHCT transcription. Furthermore, the results of hormone treatments indicated that abscisic acid (ABA) induced a considerable increase in the CsHCT expression level. This may be attributed to CsHCT involvement in abiotic stress and ABA signaling pathways.


Assuntos
Camellia sinensis/enzimologia , Camellia sinensis/metabolismo , Proteínas de Plantas/metabolismo , Transferases/metabolismo , Ácido Abscísico/farmacologia , Camellia sinensis/efeitos dos fármacos , Camellia sinensis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Transferases/genética
14.
Gene ; 643: 61-67, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29196256

RESUMO

Salvia miltiorrhiza (S. miltiorrhiza) and Salvia castanea Diels f. tomentosa (S. castanea) are both used for treatment of cardiovascular diseases. They have the same bioactive compound tanshinones, but whose contents are hugely different. This study illustrated diverse responses of tanshinone biosynthesis to yeast extract (YE) and Ag+ in hairy roots of the two species. YE enhanced both the growth and tanshinone biosynthesis of two hairy roots, and contributed more to tanshinone accumulation in S. castanea than that in S. miltiorrhiza. Genes encoding 1-deoxy-d-xylulose 5-phosphate synthase (DXS2), geranylgeranyl diphosphatesynthase (GGPPS1), copalyl diphosphate synthase (CPS1), and two cytochromes P450 (CYP76AH1 and CYP76AH3) were also more responsive to YE in S. castanea than those in S. miltiorrhiza. Accumulations of dihydrotanshinone I and tanshinone I, and most biosynthetic genes in S. miltiorrhiza were more responsive to Ag+ than those in S. castanea. Accumulations of dihydrotanshinone I and cryptotanshinone were more responsive to YE, while tanshinone IIA accumulation was more responsive to Ag+ in S. miltiorrhiza. However, accumulations of other four tanshinones and related genes in S. castanea were more responsive to YE than Ag+. This study provides foundations for studying diverse specialized metabolism between the related species.


Assuntos
Abietanos/biossíntese , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Medicina Tradicional Chinesa , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Salvia/genética , Prata/metabolismo , Transferases/genética , Transferases/metabolismo
15.
Phytochemistry ; 147: 30-48, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29288888

RESUMO

Potato native and wound healing periderms contain an external multilayered phellem tissue (potato skin) consisting of dead cells whose cell walls are impregnated with suberin polymers. The phellem provides physical and chemical barriers to tuber dehydration, heat transfer, and pathogenic infection. Previous RNAi-mediated gene silencing studies in native periderm have demonstrated a role for a feruloyl transferase (FHT) in suberin biosynthesis and revealed how its down-regulation affects both chemical composition and physiology. To complement these prior analyses and to investigate the impact of FHT deficiency in wound periderms, a bottom-up methodology has been used to analyze soluble tissue extracts and solid polymers concurrently. Multivariate statistical analysis of LC-MS and GC-MS data, augmented by solid-state NMR and thioacidolysis, yields two types of new insights: the chemical compounds responsible for contrasting metabolic profiles of native and wound periderms, and the impact of FHT deficiency in each of these plant tissues. In the current report, we confirm a role for FHT in developing wound periderm and highlight its distinctive features as compared to the corresponding native potato periderm.


Assuntos
Epiderme Vegetal/metabolismo , Solanum tuberosum/metabolismo , Transferases/metabolismo , Regulação para Baixo , Lipídeos , Análise Multivariada , Transferases/deficiência
16.
Plant Physiol Biochem ; 121: 74-79, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29096175

RESUMO

For many centuries, Lonicera japonica has been used as an effective herb for the treatment of inflammation and swelling because of the presence of bioactive components such as chlorogenic acid (CGA). To clarify the relationship between L. japonica hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT) gene expression and CGA content, an HQT eukaryotic expression system was constructed using Gateway cloning. L. japonica callus transformed with HQT was obtained using Agrobacterium tumefaciens-mediated transformation. We found a positive correlation between CGA content, determined by High-Performance Liquid Chromatography (HPLC), and the expression of HQT, analyzed by semi-quantitative RT-PCR. This study demonstrates that the HQT gene positively regulates CGA synthesis and lays the foundation for further study into enhancing efficacious components of medicinal plants.


Assuntos
Ácido Clorogênico/metabolismo , Lonicera/metabolismo , Proteínas de Plantas , Transferases , Lonicera/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transferases/genética , Transferases/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-28874370

RESUMO

The mycobacterial phosphoglycosyltransferase WecA, which initiates arabinogalactan biosynthesis in Mycobacterium tuberculosis, has been proposed as a target of the caprazamycin derivative CPZEN-45, a preclinical drug candidate for the treatment of tuberculosis. In this report, we describe the functional characterization of mycobacterial WecA and confirm the essentiality of its encoding gene in M. tuberculosis by demonstrating that the transcriptional silencing of wecA is bactericidal in vitro and in macrophages. Silencing wecA also conferred hypersensitivity of M. tuberculosis to the drug tunicamycin, confirming its target selectivity for WecA in whole cells. Simple radiometric assays performed with mycobacterial membranes and commercially available substrates allowed chemical validation of other putative WecA inhibitors and resolved their selectivity toward WecA versus another attractive cell wall target, translocase I, which catalyzes the first membrane step in the biosynthesis of peptidoglycan. These assays and the mutant strain described herein will be useful for identifying potential antitubercular leads by screening chemical libraries for novel WecA inhibitors.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Proteínas de Bactérias/análise , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Terapia de Alvo Molecular/métodos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Radiometria/métodos , Transferases/análise , Transferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Tuberculose/microbiologia , Tunicamicina/farmacologia , Uridina/análogos & derivados , Uridina/farmacologia
18.
ACS Infect Dis ; 3(7): 467-478, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28636325

RESUMO

1-Deoxy-d-xylulose 5-phosphate (DXP) synthase catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate. DXP is at a metabolic branch point in bacteria, feeding into the methylerythritol phosphate pathway to indispensable isoprenoids and acting as a precursor for biosynthesis of essential cofactors in central metabolism, pyridoxal phosphate and ThDP, the latter of which is also required for DXP synthase catalysis. DXP synthase follows a unique random sequential mechanism and possesses an unusually large active site. These features have guided the design of sterically demanding alkylacetylphosphonates (alkylAPs) toward the development of selective DXP synthase inhibitors. alkylAPs studied here display selective, low µM inhibitory activity against DXP synthase. They are weak inhibitors of bacterial growth in standard nutrient rich conditions. However, bacteria are significantly sensitized to most alkylAPs in defined minimal growth medium, with minimal inhibitory concentrations (MICs) ranging from low µM to low mM and influenced by alkyl-chain length. The longest analog (C8) displays the weakest antimicrobial activity and is a substrate for efflux via AcrAB-TolC. The dependence of inhibitor potency on growth environment emphasizes the need for antimicrobial screening conditions that are relevant to the in vivo microbial microenvironment during infection. DXP synthase expression and thiamin supplementation studies offer support for DXP synthase as an intracellular target for some alkylAPs and reveal both the challenges and intriguing aspects of these approaches to study target engagement.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Organofosfonatos/farmacologia , Transferases/antagonistas & inibidores , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Antibacterianos/síntese química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Inibidores Enzimáticos/síntese química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Gliceraldeído 3-Fosfato/metabolismo , Testes de Sensibilidade Microbiana , Organofosfonatos/síntese química , Plasmídeos/química , Plasmídeos/metabolismo , Fosfato de Piridoxal/metabolismo , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiamina Pirofosfato/metabolismo , Transferases/genética , Transferases/metabolismo
19.
Sci Rep ; 7: 45333, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28350010

RESUMO

Photosynthetic activity is indispensable for plant growth and survival and it depends on the synthesis of plastidial isoprenoids as chlorophylls and carotenoids. In the non-mevalonate pathway (MEP), the 1-deoxy-D-xylulose-5-phosphate synthase 1 (DXS1) enzyme has been postulated to catalyze the rate-limiting step in the formation of plastidial isoprenoids. In tomato, the function of DXS1 has only been studied in fruits, and hence its functional relevance during plant development remains unknown. Here we report the characterization of the wls-2297 tomato mutant, whose severe deficiency in chlorophylls and carotenoids promotes an albino phenotype. Additionally, growth of mutant seedlings was arrested without developing vegetative organs, which resulted in premature lethality. Gene cloning and silencing experiments revealed that the phenotype of wls-2297 mutant was caused by 38.6 kb-deletion promoted by a single T-DNA insertion affecting the DXS1 gene. This was corroborated by in vivo and molecular complementation assays, which allowed the rescue of mutant phenotype. Further characterization of tomato plants overexpressing DXS1 and comparative expression analysis indicate that DXS1 may play other important roles besides to that proposed during fruit carotenoid biosynthesis. Taken together, these results demonstrate that DXS1 is essentially required for the development and survival of tomato plants.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimologia , Transferases/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Clonagem Molecular , DNA Bacteriano/genética , DNA Complementar/metabolismo , Frutas/química , Frutas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Mutagênese , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Interferência de RNA , Plântula/crescimento & desenvolvimento , Transferases/antagonistas & inibidores , Transferases/genética
20.
Sci Rep ; 7: 40851, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128232

RESUMO

Triptolide and celastrol, two principal bioactive compounds in Tripterygium wilfordii, are produced from geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate ((E,E)-FPP) through terpenoid biosynthesis pathway. However, little is known about T. wilfordii terpene synthases which could competitively utilize GGPP and (E,E)-FPP as substrates, producing C15 and C20 tertiary alcohols. Here we firstly cloned the genes encoding nerolidol synthase (NES) and geranyllinalool synthases (GES1, GES2), which are responsible for the biosynthesis of (E)-nerolidol and (E,E)-geranyllinalool. In vitro characterization of recombinant TwNES and TwGES1 revealed both were functional enzymes that could catalyze the conversion of (E,E)-FPP and GGPP to (E)-nerolidol and (E,E)-geranyllinalool, which were consistent with the results of yeast fermentation. Biochemical characterization revealed TwNES and TwGES1 had strong dependency for Mg2+, Km and Kcat/Km values of TwNES for (E,E)-FPP were 12.700 µM and 0.029 s-1/µM, and TwGES1 for GGPP were 2.039 µM and 0.019 s-1/µM. Real-time PCR analysis showed the expression levels of NES and GES1 increased by several fold in the suspension cells treated with alamethicin, indicating TwNES and TwGES1 are likely to utilize GGPP and (E,E)-FPP to generate tertiary alcohols as precursor of plant volatiles, which play important roles in the ecological interactions between T. wilfordii and other organisms.


Assuntos
Diterpenos/metabolismo , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo , Transferases/genética , Tripterygium/enzimologia , Monoterpenos Acíclicos , Coenzimas/metabolismo , Magnésio/metabolismo , Proteínas de Plantas/metabolismo , Plantas Medicinais/enzimologia , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Especificidade por Substrato , Transferases/metabolismo , Tripterygium/genética , Tripterygium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA