Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 11(10)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581549

RESUMO

Diseases involving inflammation and oxidative stress can be exacerbated by high blood glucose levels. Due to tight metabolic regulation, safely reducing blood glucose can prove difficult. The ketogenic diet (KD) reduces absolute glucose and insulin, while increasing fatty acid oxidation, ketogenesis, and circulating levels of ß-hydroxybutyrate (ßHB), acetoacetate (AcAc), and acetone. Compliance to KD can be difficult, so alternative therapies that help reduce glucose levels are needed. Exogenous ketones provide an alternative method to elevate blood ketone levels without strict dietary requirements. In this study, we tested the changes in blood glucose and ketone (ßHB) levels in response to acute, sub-chronic, and chronic administration of various ketogenic compounds in either a post-exercise or rested state. WAG/Rij (WR) rats, a rodent model of human absence epilepsy, GLUT1 deficiency syndrome mice (GLUT1D), and wild type Sprague Dawley rats (SPD) were assessed. Non-pathological animals were also assessed across different age ranges. Experimental groups included KD, standard diet (SD) supplemented with water (Control, C) or with exogenous ketones: 1, 3-butanediol (BD), ßHB mineral salt (KS), KS with medium chain triglyceride/MCT (KSMCT), BD acetoacetate diester (KE), KE with MCT (KEMCT), and KE with KS (KEKS). In rested WR rats, the KE, KS, KSMCT groups had lower blood glucose level after 1 h of treatment, and in KE and KSMCT groups after 24 h. After exercise, the KE, KSMCT, KEKS, and KEMCT groups had lowered glucose levels after 1 h, and in the KEKS and KEMCT groups after 7 days, compared to control. In GLUT1D mice without exercise, only KE resulted in significantly lower glucose levels at week 2 and week 6 during a 10 weeks long chronic feeding study. In 4-month and 1-year-old SPD rats in the post-exercise trials, blood glucose was significantly lower in KD and KE, and in KEMCT groups, respectively. After seven days, the KSMCT group had the most significantly reduced blood glucose levels, compared to control. These results indicate that exogenous ketones were efficacious in reducing blood glucose levels within and outside the context of exercise in various rodent models of different ages, with and without pathology.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Acetoacetatos/farmacologia , Glicemia/efeitos dos fármacos , Butileno Glicóis/farmacologia , Erros Inatos do Metabolismo dos Carboidratos/terapia , Dieta Cetogênica , Suplementos Nutricionais , Epilepsia Tipo Ausência/terapia , Proteínas de Transporte de Monossacarídeos/deficiência , Animais , Biomarcadores , Glicemia/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/sangue , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo , Epilepsia Tipo Ausência/sangue , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/fisiopatologia , Transportador de Glucose Tipo 1/deficiência , Transportador de Glucose Tipo 1/genética , Masculino , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/sangue , Proteínas de Transporte de Monossacarídeos/genética , Esforço Físico , Ratos Sprague-Dawley , Descanso , Fatores de Tempo
2.
BMC Pediatr ; 14: 284, 2014 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-25381171

RESUMO

BACKGROUND: It has been demonstrated that glucose transporter (GLUT1) deficiency in a mouse model causes a diminished cerebral lipid synthesis. This deficient lipid biosynthesis could contribute to secondary CoQ deficiency. We report here, for the first time an association between GLUT1 and coenzyme Q10 deficiency in a pediatric patient. CASE PRESENTATION: We report a 15 year-old girl with truncal ataxia, nystagmus, dysarthria and myoclonic epilepsy as the main clinical features. Blood lactate and alanine values were increased, and coenzyme Q10 was deficient both in muscle and fibroblasts. Coenzyme Q10 supplementation was initiated, improving ataxia and nystagmus. Since dysarthria and myoclonic epilepsy persisted, a lumbar puncture was performed at 12 years of age disclosing diminished cerebrospinal glucose concentrations. Diagnosis of GLUT1 deficiency was confirmed by the presence of a de novo heterozygous variant (c.18+2T>G) in the SLC2A1 gene. No mutations were found in coenzyme Q10 biosynthesis related genes. A ketogenic diet was initiated with an excellent clinical outcome. Functional studies in fibroblasts supported the potential pathogenicity of coenzyme Q10 deficiency in GLUT1 mutant cells when compared with controls. CONCLUSION: Our results suggest that coenzyme Q10 deficiency might be a new factor in the pathogenesis of G1D, although this deficiency needs to be confirmed in a larger group of G1D patients as well as in animal models. Although ketogenic diet seems to correct the clinical consequences of CoQ deficiency, adjuvant treatment with CoQ could be trialled in this condition if our findings are confirmed in further G1D patients.


Assuntos
Ataxia/etiologia , Transportador de Glucose Tipo 1/deficiência , Doenças Mitocondriais/etiologia , Debilidade Muscular/etiologia , Ubiquinona/deficiência , Adolescente , Ataxia/diagnóstico , Ataxia/dietoterapia , Proteínas de Transporte de Cátions , Dieta Cetogênica , Suplementos Nutricionais , Feminino , Transportador de Glucose Tipo 1/genética , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/dietoterapia , Debilidade Muscular/diagnóstico , Debilidade Muscular/dietoterapia , Mutação , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio , Ubiquinona/análogos & derivados , Ubiquinona/uso terapêutico , Vitaminas/uso terapêutico
3.
Rev Med Chil ; 135(5): 631-5, 2007 May.
Artigo em Espanhol | MEDLINE | ID: mdl-17657332

RESUMO

The glucose transporter type 1 deficiency syndrome (GLUT-1 SD) (OMIM 606777) is an inborn error of metabolism of brain glucose transport. The characteristic clinical manifestations are seizures, hypotonia, developmental delay, microcephaly and hypoglycorrhachia. We report a girl with normal weight and height at birth. At 6 weeks of age she started with convulsions reaching up to 20 myoclonic seizures a day. She was treated with valproate, phenobarbital and carbamazepine without response. Blood analysis including aminoacids and acylcarnitines were all normal. The brain MRI showed frontal atrophy with an increased subarachnoidal space and Electroencephalography was abnormal. Blood glucose was 84 mg/dl and spinal fluid glucose 26 mg/dl with a ratio of 0.31 (Normal Ratio >0.65+/-00.1). These results suggested the diagnosis of GLUT-1 SD, and was confirmed with erythrocyte glucose uptake of 44% (Normal range 80-100%). A molecular study found the mutation 969del, C971T in exon 6 of the gene Glut-1. Treatment with a ketogenic diet was started immediately and after 7 days with this diet seizures ceased. Anticonvulsants were progressively suspended. At present, the patient is 6 years old, she continues on a ketogenic diet and supplements with L-carnitine, lipoic acid, vitamins and minerals. Growth and development are normal with an intelligence quotient of 103. It is concluded that it is necessary to include GLUT-1 SD in the differential diagnosis of children with early seizures that are non responsive to pharmacological treatment.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/dietoterapia , Gorduras na Dieta/administração & dosagem , Transportador de Glucose Tipo 1/deficiência , Cetonas/metabolismo , Anticonvulsivantes/uso terapêutico , Glicemia/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/sangue , Erros Inatos do Metabolismo dos Carboidratos/genética , Carnitina/uso terapêutico , Gorduras na Dieta/metabolismo , Eritrócitos/metabolismo , Feminino , Humanos , Recém-Nascido , Convulsões/dietoterapia , Convulsões/tratamento farmacológico , Síndrome
4.
Rev. méd. Chile ; 135(5): 631-635, mayo 2007. ilus
Artigo em Espanhol | LILACS | ID: lil-456680

RESUMO

The glucose transporter type 1 deficiency syndrome (GLUT-1 SD) (OMIM 606777) is an inborn error of metabolism of brain glucose transport. The characteristic clinical manifestations are seizures, hypotonia, developmental delay, microcephaly and hypoglycorrhachia. We report a girl with normal weight and height at birth. At 6 weeks of age she started with convulsions reaching up to 20 myoclonic seizures a day. She was treated with valproate, phenobarbital and carbamazepine without response. Blood analysis including aminoacids and acylcarnitines were all normal. The brain MRI showed frontal atrophy with an increased subarachnoidal space and Electroencephalography was abnormal. Blood glucose was 84 mg/dl and spinal fluid glucose 26 mg/dl with a ratio of 0.31 (Normal Ratio >0.65+00.1). These results suggested the diagnosis of GLUT-1 SD, and was confirmed with erythrocyte glucose uptake of 44 percent (Normal range 80-100 percent). A molecular study found the mutation 969del, C971T in exon 6 of the gene Glut-1. Treatment with a ketogenic diet was started immediately and after 7 days with this diet seizures ceased. Anticonvulsants were progressively suspended. At present, the patient is 6 years old, she continues on a ketogenic diet and supplements with L-carnitine, lipoic acid, vitamins and minerals. Growth and development are normal with an intelligence quotient of 103. It is concluded that it is necessary to include GLUT-1 SD in the differential diagnosis of children with early seizures that are non responsive to pharmacological treatment.


Assuntos
Feminino , Humanos , Recém-Nascido , Erros Inatos do Metabolismo dos Carboidratos/dietoterapia , Gorduras na Dieta/administração & dosagem , Transportador de Glucose Tipo 1/deficiência , Cetonas/metabolismo , Anticonvulsivantes/uso terapêutico , Glicemia/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/sangue , Erros Inatos do Metabolismo dos Carboidratos/genética , Carnitina/uso terapêutico , Gorduras na Dieta/metabolismo , Eritrócitos/metabolismo , Convulsões/dietoterapia , Convulsões/tratamento farmacológico , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA