Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Radiographics ; 44(2): e230133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236751

RESUMO

Parkinsonian syndromes are a heterogeneous group of progressive neurodegenerative disorders involving the nigrostriatal dopaminergic pathway and are characterized by a wide spectrum of motor and nonmotor symptoms. These syndromes are quite common and can profoundly impact the lives of patients and their families. In addition to classic Parkinson disease, parkinsonian syndromes include multiple additional disorders known collectively as Parkinson-plus syndromes or atypical parkinsonism. These are characterized by the classic parkinsonian motor symptoms with additional distinguishing clinical features. Dopamine transporter SPECT has been developed as a diagnostic tool to assess the levels of dopamine transporters in the striatum. This imaging assessment, which uses iodine 123 (123I) ioflupane, can be useful to differentiate parkinsonian syndromes caused by nigrostriatal degeneration from other clinical mimics such as essential tremor or psychogenic tremor. Dopamine transporter imaging plays a crucial role in diagnosing parkinsonian syndromes, particularly in patients who do not clearly fulfill the clinical criteria for diagnosis. Diagnostic clarification can allow early treatment in appropriate patients and avoid misdiagnosis. At present, only the qualitative interpretation of dopamine transporter SPECT is approved by the U.S. Food and Drug Administration, but quantitative interpretation is often used to supplement qualitative interpretation. The authors provide an overview of patient preparation, common imaging findings, and potential pitfalls that radiologists and nuclear medicine physicians should know when performing and interpreting dopamine transporter examinations. Alternatives to 123I-ioflupane imaging for the evaluation of nigrostriatal degeneration are also briefly discussed. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material. See the invited commentary by Intenzo and Colarossi in this issue.


Assuntos
Radioisótopos do Iodo , Nortropanos , Transtornos Parkinsonianos , Humanos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos
2.
Metab Brain Dis ; 37(7): 2331-2347, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35779151

RESUMO

Parkinson's disease (PD) is identified by the loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc), and is correlated to aggregates of proteins such as α-synuclein, Lewy's bodies. Although the PD etiology remains poorly understood, evidence suggests a main role of oxidative stress on this process. Lippia grata Schauer, known as "alecrim-do-mato", "alecrim-de-vaqueiro", "alecrim-da-chapada", is a native bush from tropical areas mainly distributed throughout the Central and South America. This plant species is commonly used in traditional medicine for relief of pain and inflammation conditions, and that has proven antioxidant effects. We evaluated the effects of essential oil of the L. grata after its complexed with ß-cyclodextrin (LIP) on PD animal model induced by reserpine (RES). Behavioral assessments were performed across the treatment. Upon completion the treatment, the animals were euthanized, afterwards their brains were isolated and processed for immunohistochemical and oxidative stress analysis. The LIP treatment delayed the onset of the behavior of catalepsy, decreased the number of oral movements and prevented the memory impairment on the novel object recognition task. In addition, the treatment with LIP protected against dopaminergic depletion in the SNpc and dorsal striatum (STRd), and decreased the α-syn immunoreactivity in the SNpc and hippocampus (HIP). Moreover, there was reduction of the oxidative stability index. These findings demonstrated that the LIP treatment has neuroprotective effect in a progressive parkinsonism model, suggesting that LIP could be an important source for novel treatment approaches in PD.


Assuntos
Lippia , Fármacos Neuroprotetores , Óleos Voláteis , Doença de Parkinson , Transtornos Parkinsonianos , beta-Ciclodextrinas , Animais , alfa-Sinucleína/metabolismo , Lippia/metabolismo , Reserpina , Óleos Voláteis/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Antioxidantes/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos/metabolismo , Modelos Animais de Doenças , beta-Ciclodextrinas/efeitos adversos , Substância Negra/metabolismo
3.
Brain ; 145(6): 2092-2107, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35245368

RESUMO

Synaptic impairment might precede neuronal degeneration in Parkinson's disease. However, the intimate mechanisms altering synaptic function by the accumulation of presynaptic α-synuclein in striatal dopaminergic terminals before dopaminergic death occurs, have not been elucidated. Our aim is to unravel the sequence of synaptic functional and structural changes preceding symptomatic dopaminergic cell death. As such, we evaluated the temporal sequence of functional and structural changes at striatal synapses before parkinsonian motor features appear in a rat model of progressive dopaminergic death induced by overexpression of the human mutated A53T α-synuclein in the substantia nigra pars compacta, a protein transported to these synapses. Sequential window acquisition of all theoretical mass spectra proteomics identified deregulated proteins involved first in energy metabolism and later, in vesicle cycling and autophagy. After protein deregulation and when α-synuclein accumulated at striatal synapses, alterations to mitochondrial bioenergetics were observed using a Seahorse XF96 analyser. Sustained dysfunctional mitochondrial bioenergetics was followed by a decrease in the number of dopaminergic terminals, morphological and ultrastructural alterations, and an abnormal accumulation of autophagic/endocytic vesicles inside the remaining dopaminergic fibres was evident by electron microscopy. The total mitochondrial population remained unchanged whereas the number of ultrastructurally damaged mitochondria increases as the pathological process evolved. We also observed ultrastructural signs of plasticity within glutamatergic synapses before the expression of motor abnormalities, such as a reduction in axospinous synapses and an increase in perforated postsynaptic densities. Overall, we found that a synaptic energetic failure and accumulation of dysfunctional organelles occur sequentially at the dopaminergic terminals as the earliest events preceding structural changes and cell death. We also identify key proteins involved in these earliest functional abnormalities that may be modulated and serve as therapeutic targets to counterbalance the degeneration of dopaminergic cells to delay or prevent the development of Parkinson's disease.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Animais , Autofagia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Metabolismo Energético , Transtornos Parkinsonianos/metabolismo , Ratos , alfa-Sinucleína/metabolismo
4.
Exp Aging Res ; 48(2): 191-210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34384037

RESUMO

INTRODUCTION: Parkinsonism is a neurodegenerative disorder. Pomegranate (POM) has been previously shown to have a dopaminergic neuroprotective effect against parkinsonism. OBJECTIVE: The aim of the current study is to investigate the possible effect of POM in combination with each of vinpocetine, propolis, or cocoa in the treatment of parkinsonism disease even without being given as adjuvant to L-dopa . METHODS: Rats were divided into seven groups, one normal and six RT model groups. One of the RT groups (2.5 mg/kg/48 h/10 doses sc), for 20 days served as non-treated parkinsonism model, whereas the others were treated with either L-dopa (10 mg/kg, p.o./day) or with POM (150 mg/kg, p.o./day) together with each of the following; vinpocetine (VIN) (20 mg/kg, p.o./day), propolis (300 mg/kg, p.o./day), cocoa (24 mg/kg, p.o./day). Motor and cognitive performances were examined using four tests (catalepsy, swimming, Y-maze, open field). Striatal dopamine, norepinephrine, serotonin, GABA, glutamate, acetylcholinesterase, GSK-3ß, BDNF levels were assessed as well as MDA, SOD, TAC, IL-1ß, TNF-α, iNOs, and caspase-3. Also, histopathological examinations of different brain regions were determined. RESULTS: Treatment with L-dopa alone or with all POM combination groups alleviated the deficits in locomotor activities, cognition, neurotransmitter levels, acetylcholinesterase activity, oxidative stress, and inflammatory markers as well as caspase-3 expression induced by RT. CONCLUSION: Combinations of POM with each of VIN, propolis, or cocoa have a promising disease-modifying antiparkinsonian therapy even without being given as an adjuvant to L-dopa.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Punica granatum , Própole , Acetilcolinesterase/efeitos adversos , Envelhecimento , Animais , Caspase 3/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Humanos , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Extratos Vegetais/efeitos adversos , Própole/efeitos adversos , Ratos , Alcaloides de Vinca
5.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622801

RESUMO

Current treatments for Parkinson's disease (PD) provide only symptomatic relief, with no disease-modifying therapies identified to date. Repurposing FDA-approved drugs to treat PD could significantly shorten the time needed for and reduce the costs of drug development compared with conventional approaches. We developed an efficient strategy to screen for modulators of ß-glucocerebrosidase (GCase), a lysosomal enzyme that exhibits decreased activity in patients with PD, leading to accumulation of the substrate glucosylceramide and oxidized dopamine and α-synuclein, which contribute to PD pathogenesis. Using a GCase fluorescent probe and affinity-based fluorescence polarization assay, we screened 1280 structurally diverse, bioactive, and cell-permeable FDA-approved drugs and found that the antipsychotic quetiapine bound GCase with high affinity. Moreover, quetiapine treatment of induced pluripotent stem cell-derived (iPSC-derived) dopaminergic neurons from patients carrying mutations in GBA1 or LRRK2 led to increased wild-type GCase protein levels and activity and partially lowered accumulation of oxidized dopamine, glucosylceramide, and α-synuclein. Similarly, quetiapine led to activation of wild-type GCase and reduction of α-synuclein in a GBA mutant mouse model (Gba1D409V/+ mice). Together, these results suggest that repurposing quetiapine as a modulator of GCase may be beneficial for patients with PD exhibiting decreased GCase activity.


Assuntos
Antipsicóticos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Glucosilceramidase/efeitos dos fármacos , Doença de Parkinson/genética , Transtornos Parkinsonianos/genética , Fumarato de Quetiapina/farmacologia , alfa-Sinucleína/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Glucosilceramidase/genética , Glucosilceramidas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , alfa-Sinucleína/metabolismo
6.
Mol Neurobiol ; 58(11): 5920-5936, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34426907

RESUMO

Parkinson's disease (PD) is a movement disorder associated with severe loss of mainly dopaminergic neurons in the substantia nigra. Pathological hallmarks include Lewy bodies, and loss of neuromelanin, due to degeneration of neuromelanin-containing dopaminergic neurons. Despite being described over 200 years ago, the etiology of PD remains unknown. Here, we highlight the roles of reactive oxygen species (ROS), iron, alpha synuclein (α-syn) and neuromelanin in a toxic feedback loop culminating in neuronal death and spread of the disease. Dopaminergic neurons are particularly vulnerable due to decreased antioxidant concentration with aging, constant exposure to ROS and presence of neurotoxic compounds (e.g. ortho-quinones). ROS and iron increase each other's levels, creating a state of oxidative stress. α-Syn aggregation is influenced by ROS and iron but also increases ROS and iron via its induced mitochondrial dysfunction and ferric-reductase activity. Neuromelanin's binding affinity is affected by increased ROS and iron. Furthermore, during neuronal death, neuromelanin is degraded in the extracellular space, releasing its bound toxins. This cycle of events continues to neighboring neurons in the form of a toxic loop, causing PD pathology. The increase in ROS and iron may be an important target for therapies to disrupt this toxic loop, and therefore diets rich in certain 'nutraceuticals' may be beneficial. Turmeric is an attractive candidate, as it is known to have anti-oxidant and iron chelating properties. More studies are needed to test this theory and if validated, this would be a step towards development of lifestyle-based therapeutic modalities to complement existing PD treatments.


Assuntos
Curcuma , Ferro/fisiologia , Melaninas/fisiologia , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/fisiologia , Animais , Autofagia , Química Encefálica , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Retroalimentação Fisiológica , Ferroptose , Homeostase , Humanos , Ferro/análise , Camundongos , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Fitoterapia , Agregação Patológica de Proteínas , Substância Negra/química
7.
Neuropharmacology ; 196: 108691, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34197892

RESUMO

Recent studies show that neuron-glial communication plays an important role in neurological diseases. Particularly, dysfunction of astroglial glutamate transporter GLT-1 has been involved in various neuropsychiatric disorders, including Parkinson's disease (PD) and depression. Our previous studies indicated hyperactivity of neurons in the lateral habenula (LHb) of hemiparkinsonian rats with depressive-like behaviors. Thus, we hypothesized that impaired expression or function of GLT-1 in the LHb might be a potential contributor to LHb hyperactivity, which consequently induces PD-related depression. In the study, unilateral lesions of the substantia nigra pars compacta (SNc) by 6-hydroxydopamine in rats induced depressive-like behaviors and resulted in neuronal hyperactivity as well as increased glutamate levels in the LHb compared to sham-lesioned rats. Intra-LHb injection of GLT-1 inhibitor WAY-213613 induced the depressive-like behaviors in both groups, but the dose producing behavioral effects in the lesioned rats was lower than that of sham-lesioned rats. In the two groups of rats, WAY-213613 increased the firing rate of LHb neurons and extracellular levels of glutamate, and these excitatory effects in the lesioned rats lasted longer than those in sham-lesioned rats. The functional changes of the GLT-1 which primarily expresses in astrocytes in the LHb may attribute to its downregulation after degeneration of the nigrostriatal pathway. Bioinformatics analysis showed that GLT-1 is correlated with various biomarkers of PD and depression risks. Collectively, our study suggests that astroglial GLT-1 in the LHb regulates the firing activity of the neurons, whereupon its downregulation and dysfunction are closely associated with PD-related depression.


Assuntos
Astrócitos/metabolismo , Depressão/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Habenula/metabolismo , Transtornos Parkinsonianos/metabolismo , Parte Compacta da Substância Negra/metabolismo , Animais , Modelos Animais de Doenças , Regulação para Baixo , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Oxidopamina/toxicidade , Transtornos Parkinsonianos/patologia , Parte Compacta da Substância Negra/patologia , Ratos , Substância Negra/metabolismo , Substância Negra/patologia , Tálamo/metabolismo , Tálamo/patologia , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/patologia
8.
Neurochem Res ; 46(9): 2317-2332, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34097239

RESUMO

Besides motor disorder, cognitive dysfunction is also common in Parkinson's disease (PD). Essentially no causal therapy for cognitive dysfunction of PD exists at present. In this study, a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD was used to analyze the neuroprotective potential of orally administered silibinin, a proverbial hepatoprotective flavonoid derived from the herb milk thistle (Silybum marianum). Results demonstrated that silibinin administration significantly attenuated MPTP-induced cognitive impairment in behavioral tests. Nissl staining results showed that MPTP injection significantly increases the loss of neurons in the hippocampus. However, these mice were protected by oral administration of silibinin, accompanying reduction in the cell apoptosis in the hippocampus. The hippocampal aggregates of α-synuclein (α-syn) appeared in MPTP-injected mice, but were significantly decreased by silibinin treatment. MPTP injection induced oxidative stress, as evidenced by increased malondialdehyde (MDA) and decreased superoxide dismutase (SOD). The oxidative stress was alleviated by silibinin treatment. Mitochondrial disorder including the decline of mitochondrial membrane potential (MMP) was another signature in the hippocampus of MPTP-treated mice, accompanying increased mitochondrial fission and decreased fusion. Silibinin administration restored these mitochondrial disorders, as expected for the protection against MPTP injury. These findings suggest that silibinin has a potential to be further developed as a therapeutic candidate for cognitive dysfunction in PD.


Assuntos
Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Silibina/uso terapêutico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Memantina/uso terapêutico , Camundongos Endogâmicos C57BL , Doenças Mitocondriais/induzido quimicamente , Doenças Mitocondriais/patologia , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Teste de Campo Aberto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Silibina/administração & dosagem , alfa-Sinucleína/metabolismo
9.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33547085

RESUMO

The parafascicular nucleus (Pf) of the thalamus provides major projections to the basal ganglia, a set of subcortical nuclei involved in action initiation. Here, we show that Pf projections to the subthalamic nucleus (STN), but not to the striatum, are responsible for movement initiation. Because the STN is a major target of deep brain stimulation treatments for Parkinson's disease, we tested the effect of selective stimulation of Pf-STN projections in a mouse model of PD. Bilateral dopamine depletion with 6-OHDA created complete akinesia in mice, but Pf-STN stimulation immediately and markedly restored a variety of natural behaviors. Our results therefore revealed a functionally novel neural pathway for the initiation of movements that can be recruited to rescue movement deficits after dopamine depletion. They not only shed light on the clinical efficacy of conventional STN DBS but also suggest more selective and improved stimulation strategies for the treatment of parkinsonian symptoms.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Núcleo Subtalâmico , Animais , Dopamina/metabolismo , Camundongos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/terapia , Núcleo Subtalâmico/metabolismo , Tálamo
10.
Neurotoxicology ; 84: 1-13, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33549657

RESUMO

Accumulating evidences suggest that inflammation-mediated neurons dysfunction participates in the initial and development of Parkinson's disease (PD), whereas mitochondria have been recently recognized as crucial regulators in NLRP3 inflammasome activation. Cordycepin, a major component of cordyceps militaris, has been shown to possess neuroprotective and anti-inflammatory activity. However, the effects of cordycepin in rotenone-induced PD models and the possible mechanisms are still not fully understood. Here, we observed that motor dysfunction and dopaminergic neurons loss induced by rotenone exposure were ameliorated by cordycepin. Cordycepin also reversed Drp1-mediated aberrant mitochondrial fragmentation through increasing AMPK phosphorylation and maintained normal mitochondrial morphology. Additionally, cordycepin effectively increased adenosine 5'-triphosphate (ATP) content, mitochondrial membrane potential (MMP), and reduced mitochondrial ROS levels, as well as inhibited complex 1 activity. More importantly, cordycepin administration inhibited the expression of NLRP3 inflammasome components and the release of pro-inflammatory cytokine in rotenone-induced rats and cultured neuronal PC12 cells. Moreover, we demonstrated that the activation of NLRP3 inflammasome within neurons could be suppressed by the mitochondrial division inhibitor (Mdivi-1). Collectively, the present study provides evidence that cordycepin exerts neuroprotective effects partially through preventing neural NLRP3 inflammasome activation induced by Drp1-dependent mitochondrial fragmentation in rotenone-injected PD models.


Assuntos
Anti-Inflamatórios/uso terapêutico , Desoxiadenosinas/uso terapêutico , Dinaminas/antagonistas & inibidores , Dinâmica Mitocondrial/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Rotenona/toxicidade , Animais , Anti-Inflamatórios/farmacologia , Desoxiadenosinas/farmacologia , Relação Dose-Resposta a Droga , Dinaminas/metabolismo , Inseticidas/toxicidade , Masculino , Dinâmica Mitocondrial/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fármacos Neuroprotetores/farmacologia , Células PC12 , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Nutr Neurosci ; 24(3): 181-196, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31100053

RESUMO

Objectives: Endoplasmic reticulum (ER) stress is one of the key mechanisms contributing to Parkinson's disease (PD) pathology. Pathways triggered by ER stress are protective at early stages and initiate apoptosis when the damage is extensive. Methods: We have previously reported that oxyresveratrol rescues cells from oxidative stress and apoptosis in a cell culture model of PD. The aim of this study was to investigate whether the neuroprotective mechanism of oxyresveratrol extends to PD-associated ER stress. For this purpose, we employed two cellular models; to induce severe ER stress, Mes23.5 cells were treated with 6-hydroxydopamine (6-OHDA) and for ER stress driven by chaperones, human neuroblastoma cells were stably transfected to overexpress familial mutants of α-synuclein (α-syn). Results: Our results indicate that oxyresveratrol exhibits distinct modes of protection in both models. In the 6-OHDA model, it inhibited the transcription of activating transcription factor 4 (ATF4), which controls the fate of pro-apoptotic proteins. On the other hand, in the α-syn model, oxyresveratrol suppressed mutant A30P oligomer formation, thereby facilitating a reduction of the ER-chaperone, 78-kDa glucose-regulated protein (Grp78). Discussion: In summary, oxyresveratrol is protective against ER stress induced by two different triggers of PD. Owing to its wide range of defense mechanisms, oxyresveratrol is an ideal candidate for a multifactorial disease like PD.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Chaperona BiP do Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Transtornos Parkinsonianos/metabolismo , Extratos Vegetais/administração & dosagem , Estilbenos/administração & dosagem , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
12.
Neurochem Int ; 139: 104815, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32758587

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease. Damage to energy metabolism and reduced adenosine triphosphate (ATP) levels in dopaminergic neurons are common features of PD. Previous studies suggested that the occurrence of PD often affects glucose metabolism and ATP production in the brain, and increased glycolysis or ATP production protects dopaminergic neuronal degeneration in the brain of PD patients. These systems may provide new potential therapeutic targets for the prevention of PD. The present study investigated the inhibitory action of polydatin (PLD) on early dopaminergic neuronal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results showed that PLD protected against MPTP-induced early dopaminergic neuronal degeneration. PLD reduced the MPTP-induced loss of dopaminergic neurons in substantia nigra and striatum, inhibited the occurrence of neural apoptosis, and restored motor function in mice. PLD also increased the continuous activity duration and rhythm amplitude in mice during the circadian activity test. PLD improved glucose metabolism in the brain and restored ATP production levels. These observations suggest that PLD attenuates MPTP-induced early PD-like symptoms, and its mechanism of action may be associated with the promotion of glucose metabolism in neurons.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Glucosídeos/uso terapêutico , Glicólise/fisiologia , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Estilbenos/uso terapêutico , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/farmacologia , Glucosídeos/farmacologia , Glicólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transtornos Parkinsonianos/patologia , Estilbenos/farmacologia
13.
Psychopharmacology (Berl) ; 237(11): 3225-3236, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32651640

RESUMO

The asymptomatic and clinical stages of Parkinson's disease (PD) are associated with comorbid non-motor symptoms including gastrointestinal (GI) dysfunction. Although the neuroprotective and gastroprotective roles of kolaviron (KV) have been reported independently, whether KV-mediated GI-protective capacity could be beneficial in PD is unknown. We therefore investigated the modulatory effects of KV on the loss of dopaminergic neurons, locomotor abnormalities, and ileal oxidative damage when rats are lesioned in the nigrostriatal pathway. KV treatment markedly suppressed the behavioral deficit and apomorphine-induced rotations associated with rotenone lesioning. KV attenuated the loss of nigrostriatal dopaminergic neurons and perturbations in the striatal glucose-regulated protein (GRP78) and X-box binding protein 1 (XBP1) levels. Ileal epithelial injury following stereotaxic rotenone infusion was associated with oxidative stress and marked inhibition of acetylcholine esterase activity and reduced expression of occludin in the crypt and villi. While KV treatment attenuated the redox imbalance in the gut and enhanced occludin immunoreactivity, acetylcholinesterase activity was not affected. Our data demonstrate ileal oxidative damage as a characteristic non-motor gut dysfunction in PD while showing the potential dual efficacy of KV in the attenuation of both neural defects and gut abnormalities associated with PD.


Assuntos
Corpo Estriado/efeitos dos fármacos , Flavonoides/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Transtornos Parkinsonianos/prevenção & controle , Rotenona/toxicidade , Substância Negra/efeitos dos fármacos , Animais , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Flavonoides/isolamento & purificação , Microbioma Gastrointestinal/fisiologia , Masculino , Degeneração Neural/induzido quimicamente , Degeneração Neural/tratamento farmacológico , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Ratos , Rotenona/administração & dosagem , Técnicas Estereotáxicas , Substância Negra/metabolismo
14.
Rev Med Interne ; 41(11): 769-775, 2020 Nov.
Artigo em Francês | MEDLINE | ID: mdl-32682623

RESUMO

Aceruloplasminemia is a rare iron-overload disease that should be better known by physicians. It is an autosomal recessive disorder due to mutations in ceruloplasmin gene causing systemic iron overload, including cerebral and liver parenchyma. The impairment of ferroxidase ceruloplasmin activity leads to intracellular iron retention leading aceruloplasminemia symptoms. Neurologic manifestations include cognitive impairment, ataxia, extrapyramidal syndrome, abnormal movements, and psychiatric-like syndromes. Physicians should search for aceruloplasminemia in several situations with high ferritin levels: microcytic anaemia, diabetes mellitus, neurological and psychiatric disorders. Diagnosis approach is based on the study of transferrin saturation and hepatic iron content evaluated by magnetic resonance imaging of the liver. Ceruloplasmin dosage is required in case of low transferrin saturation and high hepatic iron content and genetic testing is mandatory in case of serum ceruloplasmin defect. Neurological manifestations occur in the sixties decade and leads to disability. Iron chelators are widely used. Despite their efficacy on systemic and cerebral iron overload, iron chelators tolerance is poor. Early initiation of iron chelation therapy might prevent or slowdown neurodegeneration, highlighting the need for an early diagnosis but their clinical efficacy remains uncertain.


Assuntos
Ceruloplasmina/deficiência , Distúrbios do Metabolismo do Ferro/diagnóstico , Doenças Neurodegenerativas/diagnóstico , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Diagnóstico Diferencial , Humanos , Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/complicações , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/terapia , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/diagnóstico , Sobrecarga de Ferro/patologia , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Transtornos Parkinsonianos/diagnóstico , Transtornos Parkinsonianos/etiologia , Transtornos Parkinsonianos/metabolismo , Doenças Raras
15.
Metab Brain Dis ; 35(6): 933-946, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32430695

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease. Currently, the precise pathogenic detail of PD is not entirely clear and first line therapeutics fail to attenuate the progress of the disease. In this study, we examined the neuroprotective effect of kolaviron, a natural antioxidant and anti-inflammatory biflavonoid from Garcinia kola seed, on behavioural impairment, neurodegeneration, oxidative stress and neuroinflammation in an acute MPTP-induced PD model. Kolaviron mitigated the frequently interrupted MPTP-associated hyperkinesia, inefficient gait, immobility, inability to pay attention to sizable holes on walking path, habitual clockwise rotations characterized with minimal diversion of movements and impaired balance. Also, kolaviron suppressed MPTP-mediated striatal oxidative stress, depletion as well as degeneration of dopaminergic terminals, reduced DJ-1 secretion and upregulated expression of caspase-3. Kolaviron facilitated cytoprotective antioxidant response and prevented MPTP-mediated neuroinflammation by blocking striatal infiltration of peripheral CD45R positive cells. Additionally, kolaviron reversed MPTP-induced inhibition of acetylcholinesterase activity. Together, our study provides evidence that the neuroprotective capacity of kolaviron to modulate striatal degeneration, behavioural impairment, antioxidant/redox imbalance and neuroinflammation implicated in the pathogenesis of PD may involve upregulation of DJ-1 secretion and inhibition of CD45R cells infiltration. Our data recommend kolaviron as a possible neuroprotective strategy in the management of Parkinson's disease and the associated behavioural complications, albeit the identity of MPTP-associated striatal CD45R infiltrate needs to be further characterized.


Assuntos
Corpo Estriado/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Flavonoides/uso terapêutico , Antígenos Comuns de Leucócito/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Proteína Desglicase DJ-1 , Animais , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Antígenos Comuns de Leucócito/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/fisiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteína Desglicase DJ-1/metabolismo
16.
Neurotox Res ; 38(2): 461-477, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32394056

RESUMO

In this study, we aim to assess the phytomedicinal potential of perillyl alcohol (PA), a dietary monoterpenoid, in a unilateral 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinson's disease (PD). We observed that PA supplementation alleviated behavioural abnormalities such as loss of coordination, reduced rearing and motor asymmetry in lesioned animals. We also observed that PA-treated animals exhibited reduced oxidative stress, DNA fragmentation and caspase 3 activity indicating alleviation of apoptotic cell death. We found reduced mRNA levels of pro-apoptotic regulator BAX and pro-inflammatory mediators IL18 and TNFα in PA-treated animals. Further, PA treatment successfully increased mRNA and protein levels of Bcl2, mitochondrial biogenesis regulator PGC1α and tyrosine hydroxylase (TH) in lesioned animals. We observed that PA treatment blocked BAX and Drp1 translocation to mitochondria, an event often associated with the inception of apoptosis. Further, 6-OHDA exposure reduced expression of electron transport chain complexes I and IV, thereby disturbing energy metabolism. Conversely, expression levels of both complexes were upregulated with PA treatment in lesioned rats. Finally, we found that protein levels of Nrf2, the transcription factor responsible for antioxidant gene expression, were markedly reduced in cytosolic and nuclear fraction on 6-OHDA exposure, and PA increased expression of Nrf2 in both fractions. We believe that our data hints towards PA having the ability to provide cytoprotection in a hemiparkinsonian rat model through alleviation of motor deficits, oxidative stress, mitochondrial dysfunction and apoptosis.


Assuntos
Inibidores Enzimáticos/farmacologia , Mitocôndrias/efeitos dos fármacos , Monoterpenos/farmacologia , Movimento/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Caspase 3/efeitos dos fármacos , Caspase 3/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Dinaminas/efeitos dos fármacos , Dinaminas/metabolismo , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/fisiopatologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos , Simpatolíticos/toxicidade , Tirosina 3-Mono-Oxigenase/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/genética , Proteína X Associada a bcl-2/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
17.
Brain Res Bull ; 160: 150-161, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32147532

RESUMO

Parkinson's disease (PD) is an age associated, progressive and a second most common neurodegenerative disease. It is caused due to degeneration of dopaminergic neurons in substantia nigra (SN). Various studies implicate mitochondrial dysfunction, oxidative stress, altered degradation of misfolded proteins in PD pathogenesis. Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, is reported to possess a number of biological activities viz. anti-oxidant, anti-inflammatory etc. The focus of our study was to assess the neuroprotective potential of UA against the rotenone induced pathophysiological alterations. In this study rats were subjected to stereotaxic bilateral injection of rotenone (12 µg/µl) in SN. Further, they were treated per-orally with UA (5 and 10 mg/kg) for 30 days. During the study, neurobehavioral tests comprising Rota-rod, Open field and Barnes maze (BMT) were conducted. At the end of 30 days, the antioxidant (Reduced glutathione, superoxide dismutase, catalase and lipid peroxidation), inflammatory (TNF-α) parameters, mitochondrial complex I, mitochondrial biogenesis (MB) and immunohistochemical analysis (TH positive neurons, Glial Fibrillary Acidic Protein (GFAP)) was performed. The results exhibited significant amelioration in the motor deficits by UA which can be attributed to the protection of TH positive neurons from degeneration. A significant improvement in the cognitive function due to UA was observed in BMT. Biochemically, the oxidative stress and inflammation triggered by rotenone was significantly diminished by UA. It also significantly obviated the complex I inhibition and promoted MB. The preliminary results thus firmly advocate the neuroprotective potential of UA to prevent rotenone induced neurotoxicity in rats.


Assuntos
Mitocôndrias/efeitos dos fármacos , Biogênese de Organelas , Transtornos Parkinsonianos/tratamento farmacológico , Rotenona/toxicidade , Triterpenos/uso terapêutico , Animais , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Glutationa/metabolismo , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Ratos , Ratos Sprague-Dawley , Triterpenos/farmacologia , Ácido Ursólico
18.
Neuroreport ; 31(6): 456-465, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32168102

RESUMO

Onjisaponin B (OB) is the main active ingredient of the traditional Chinese medicinal herb polygala, which is effective against neurodegenerative disorders. However, the target of OB is currently unknown. Neuroinflammation and oxidative stress are both risk factors for the pathogenesis and progression of Parkinson's disease (PD). Here, we used a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute mouse model of PD to explore the efficacy and neuroprotective mechanism of OB in PD. Immunohistochemistry was used to mark dopaminergic (DA) neurons and microglia in the substantia nigra pars compact. Administration of OB (20 and 40 mg/kg) prevented the degeneration of DA neurons and improved motor impairment in the rotarod test. Furthermore, OB attenuated microglia over-activation and reduced the secretion of inflammatory factors including tumor necrosis factor-alpha, interleukin-1 beta (IL-1ß) and interleukin-6 (IL-6), as determined by ELISA. Meanwhile, the activities of superoxide dismutase and malondialdehyde were used to measure the level of oxidative stress in brain homogenates and suppression of excessive lipid epoxidation and increased antioxidant enzyme activity were found in OB-treated PD mice. Finally, OB inhibits the expression of the p65 subunit of NF-κB in the nucleus and attenuated expression of the RhoA and ROCK2 proteins in PD mice. Consequently, our results show that OB ameliorates DA neurodegeneration in a MPTP-induced mouse model of PD through anti-oxidant and anti-inflammatory activities mediated via the RhoA/ROCK2 signaling pathway. This finding demonstrates that OB may be a promising drug for DA neuron degeneration, which may provide a new therapeutic agent for future discovery of drugs for PD.See video abstract: http://links.lww.com/WNR/A580.


Assuntos
Diterpenos do Tipo Caurano/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Mesencéfalo/efeitos dos fármacos , Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Diterpenos do Tipo Caurano/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Destreza Motora/efeitos dos fármacos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Teste de Desempenho do Rota-Rod
19.
Pharm Dev Technol ; 25(6): 735-747, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32141798

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease which is characterized by the loss of dopaminergic neurons in the brain. Levodopa is the drug of choice in the treatment of PD but it exhibits low oral bioavailability (30%) and very low brain uptake due to its extensive metabolism by aromatic amino acid decarboxylase in the peripheral circulation. Moreover, levodopa has psychic, gastrointestinal, and cardiovascular side effects, and most importantly, short and frequent stimulation of dopamine receptors lead to undesirable conditions such as dyskinesia over time. The challenges are to increase the therapeutic efficiency, the bioavailability and decreasing the unfavourable side effects of levodopa. Biocompatible nano-sized drug carriers could address these challenges at molecular level. For this purpose, levodopa-loaded Poly (lactide-co-glycolide) acid nanoparticles were prepared by double emulsion-solvent evaporation method for nose to brain drug delivery. Parameters such as homogenization speed, and external and internal phase content were modified to reach the highest loading efficiency. F1-1 coded formulation showed prolonged release up to 9 h. Carbodiimide method was used for surface modification studies of nanoparticles. The efficacy of the selected nanoparticle formulation has been demonstrated by in vivo experiments in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced PD model in mice.


Assuntos
Administração Intranasal/métodos , Antiparkinsonianos/metabolismo , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Levodopa/metabolismo , Nanopartículas/metabolismo , Animais , Antiparkinsonianos/administração & dosagem , Encéfalo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Levodopa/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Nanopartículas/administração & dosagem , Células PC12 , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Ratos
20.
Behav Brain Res ; 383: 112539, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32032741

RESUMO

Parthenolide (PTL) is a natural compound with anti-inflammatory and antioxidant properties and is an active ingredient extracted from the medicinal plant Tanacetum parthenium. ACT001 is derived from parthenolide and is a fumarate form of dimethylaminomylide (DMAMCL). Its effect is equivalent to that of PTL, but it is more stable in plasma and has lower acquisition costs. Related reports indicate that NLRP3-mediated neuroinflammation is involved in the progression of Parkinson's disease (PD). In our research, we explored whether ACT001 alleviates NLRP3-mediated neuroinflammation in PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our results revealed that ACT001 reduces movement impairment and cognitive deficit in PD mice. In addition, it alleviates dopaminergic neurodegeneration in the nigrostriatal pathway and inhibits oxidative stress, the inflammatory response and activation of the NLRP3 inflammasome in the midbrain of MPTP-induced PD mice. Moreover, it attenuates microglial activation in the nigrostriatal pathway. Overall, our study showed that ACT001 alleviates NLRP3-mediated neuroinflammation in PD mice induced by MPTP.


Assuntos
Comportamento Animal/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Sesquiterpenos de Guaiano/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Catalase/efeitos dos fármacos , Catalase/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Citocinas/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Inflamassomos/metabolismo , Inflamação/fisiopatologia , Malondialdeído/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/fisiopatologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA