Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1365172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562932

RESUMO

CAR T cell therapies face challenges in combating solid tumors due to their single-target approach, which becomes ineffective if the targeted antigen is absent or lost. Universal CAR T cells (UniCAR Ts) provide a promising solution by utilizing molecular tags (linkers), such as biotin conjugated to monoclonal antibodies, enabling them to target a variety of tumor antigens. Recently, we showed that conventional CAR T cells could penetrate the extracellular matrix (ECM) of ADCC-resistant tumors, which forms a barrier to therapeutic antibodies. This finding led us to investigate whether UniCAR T cells, targeted by soluble antibody-derived linkers, could similarly tackle ADCC-resistant tumors where ECM restricts antibody penetration. We engineered UniCAR T cells by incorporating a biotin-binding monomeric streptavidin 2 (mSA2) domain for targeting HER2 via biotinylated trastuzumab (BT). The activation and cytotoxicity of UniCAR T cells in the presence or absence of BT were evaluated in conventional immunoassays. A 3D spheroid coculture was set up to test the capability of UniCAR Ts to access ECM-masked HER2+ cells. For in vivo analysis, we utilized a HER2+ xenograft model in which intravenously administered UniCAR T cells were supplemented with intraperitoneal BT treatments. In vitro, BT-guided UniCAR T cells showed effective activation and distinct anti-tumor response. Upon target recognition, IFNγ secretion correlated with BT concentration. In the presence of BT, UniCAR T cells effectively penetrated HER2+ spheroids and induced cell death in their core regions. In vivo, upon intravenous administration of UniCAR Ts, circulating BT linkers immediately engaged the mSA2 domain and directed effector cells to the HER2+ tumors. However, these co-treated mice died early, possibly due to the lung infiltration of UniCAR T cells that could recognize both native biotin and HER2. Our results suggest that UniCAR T cells guided with soluble linkers present a viable alternative to conventional CAR T cells, especially for patients resistant to antibody therapy and those with solid tumors exhibiting high antigenic variability. Critical to their success, however, is the choice of an appropriate binding domain for the CAR and the corresponding soluble linker, ensuring both efficacy and safety in therapeutic applications.


Assuntos
Biotina , Receptor ErbB-2 , Humanos , Camundongos , Animais , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Biotina/metabolismo , Xenoenxertos , Linhagem Celular Tumoral , Linfócitos T , Citotoxicidade Celular Dependente de Anticorpos
2.
MAbs ; 14(1): 2122957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36151884

RESUMO

Biotherapeutics are exposed to common transition metal ions such as Cu(II) and Fe(II) during manufacturing processes and storage. IgG1 biotherapeutics are vulnerable to reactive oxygen species (ROS) generated via the metal-catalyzed oxidation reactions. Exposure to these metal ions can lead to potential changes to structure and function, ultimately influencing efficacy, potency, and potential immunogenicity of the molecules. Here, we stress four biotherapeutics of the IgG1 subclass (trastuzumab, trastuzumab emtansine, anti-NaPi2b, and anti-NaPi2b-vc-MMAE) with two common pharmaceutically relevant metal-induced oxidizing systems, Cu(II)/ ascorbic acid and Fe(II)/ H2O2, and evaluated oxidation, size distribution, carbonylation, Fc effector functions, antibody-dependent cellular cytotoxicity (ADCC) activity, cell anti-proliferation and autophaghic flux. Our study demonstrates that the extent of oxidation was metal ion-dependent and site-specific, leading to decreased FcγRIIIa and FcRn receptor binding and subsequently potentially reduced bioactivity, though antigen binding was not affected to a great extent. In general, the monoclonal antibody (mAb) and corresponding antibody-drug conjugate (ADC) showed similar impacts to product quality when exposed to the same metal ion, either Cu(II) or Fe(II). Our study clearly demonstrates that transition metal ion binding to therapeutic IgG1 mAbs and ADCs is not random and that oxidation products show unique structural and functional ramifications. A critical outcome from this study is our highlighting of key process parameters, route of degradation, especially oxidation (metal catalyzed or via ROS), on the CH1 and Fc region of full-length mAbs and ADCs.Abbreviations: DNPH 2,4-dinitrophenylhydrazine; ADC Antibody drug conjugate; ADCC Antibody-dependent cellular cytotoxicity; CDR Complementary determining region; DTT Dithiothreitol; HMWF high molecular weight form; LC-MS Liquid chromatography-mass spectrometry; LMWF low molecular weight forms; MOA Mechanism of action; MCO Metal-catalyzed oxidation; MetO Methionine sulfoxide; mAbs Monoclonal antibodies; MyBPC Myosin binding protein C; ROS Reactive oxygen species; SEC Size exclusion chromatography.


Assuntos
Antineoplásicos Imunológicos , Imunoconjugados , Ado-Trastuzumab Emtansina , Anticorpos Monoclonais/química , Ácido Ascórbico , Catálise , Ditiotreitol , Compostos Ferrosos , Peróxido de Hidrogênio , Imunoglobulina G/química , Miosinas/metabolismo , Oxirredução , Proteína C/metabolismo , Espécies Reativas de Oxigênio , Trastuzumab/metabolismo , Trastuzumab/farmacologia
3.
Curr Drug Metab ; 20(6): 446-456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30465497

RESUMO

BACKGROUND: Breast cancer is the second leading cause of death in women worldwide. The extremely fast rate of metastasis and ability to develop resistance mechanism to all the conventional drugs make them very difficult to treat which are the causes of high morbidity and mortality of breast cancer patients. Scientists throughout the world have been focusing on the early detection of breast tumor so that treatment can be started at the very early stage. Moreover, conventional treatment processes such as chemotherapy, radiotherapy, and local surgery suffer from various limitations including toxicity, genetic mutation of normal cells, and spreading of cancer cells to healthy tissues. Therefore, new treatment regimens with minimum toxicity to normal cells need to be urgently developed. METHODS: Iron oxide nanoparticles have been widely used for targeting hyperthermia and imaging of breast cancer cells. They can be conjugated with drugs, proteins, enzymes, antibodies or nucleotides to deliver them to target organs, tissues or tumors using external magnetic field. RESULTS: Iron oxide nanoparticles have been successfully used as theranostic agents for breast cancer both in vitro and in vivo. Furthermore, their functionalization with drugs or functional biomolecules enhance their drug delivery efficiency and reduces the systemic toxicity of drugs. CONCLUSION: This review mainly focuses on the versatile applications of superparamagnetic iron oxide nanoparticles on the diagnosis, treatment, and detecting progress of breast cancer treatment. Their wide application is because of their excellent superparamagnetic, biocompatible and biodegradable properties.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Compostos Férricos/uso terapêutico , Nanomedicina Teranóstica/métodos , Neoplasias da Mama/classificação , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Febre , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Integrinas/metabolismo , Nanopartículas , Fototerapia , Transferrina/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Trastuzumab/metabolismo
4.
Bioconjug Chem ; 26(4): 625-32, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25781873

RESUMO

There is a critical need to advance promising novel molecular imaging (MI) agents for cancer from preclinical studies to first-in-humans Phase I clinical trials in order to realize their full potential for cancer detection and for predicting or monitoring response to targeted ("personalized") cancer therapies. Steps to clinical translation include radiopharmaceutical formulation, preclinical pharmacology and toxicology studies, clinical trial design and human ethics approval, and regulatory agency submission. In this Topical Review, we provide a "roadmap" to advancing one class of novel MI agents to Phase I trials in academia and illustrate the processes that we have successfully applied for (111)In-labeled pertuzumab, a MI probe for monitoring response of HER2-positive breast cancer to treatment with trastuzumab (Herceptin). We hope that our experience will encourage other academic radiopharmaceutical scientists to embrace this challenge.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Índio/química , Compostos Radiofarmacêuticos/química , Trastuzumab/uso terapêutico , Animais , Anticorpos Monoclonais Humanizados/metabolismo , Antineoplásicos/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/ultraestrutura , Ensaios Clínicos Fase I como Assunto , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Índio/metabolismo , Imagem Molecular/métodos , Terapia de Alvo Molecular , Cintilografia , Compostos Radiofarmacêuticos/metabolismo , Kit de Reagentes para Diagnóstico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Coloração e Rotulagem/métodos , Trastuzumab/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA