Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.197
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 989-999, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621906

RESUMO

This study aims to investigate the effect of Naotaifang(NTF) on the proteins associated with microglial polarization and glial scar in the rat model of cerebral ischemia reperfusion injury(CIRI). The CIRI model was established by middle cerebral artery occlusion/reperfusion. The 48 successfully modeled rats were randomized into model 7 d, model 14 d, NTF 7 d, and NTF 14 d groups(n=12). In addition, 12 SD rats were selected as the sham group. The NTF group was administrated with NTF suspension at 27 g·kg~(-1)·d~(-1) by gavage, and the sham, model 7 d, and model 14 d groups were administrated with the same volume of normal saline every day by gavage for 7 and 14 days, respectively. After the intervention, Longa score was evaluated. The infarct volume was measured by 2,3,5-triphenyl-2H-tetrazolium chloride(TTC) staining. Morris water maze and open field tests were carried out to evaluate the spatial learning, memory, cognitive function, and anxiety degree of rats. Hematoxylin-eosin(HE) staining was employed to observe the morphological structure and damage of the brain tissue. The immunofluorescence assay was employed to measure the expression of glial fibrillary acidic protein(GFAP) and glial scar. Western blot was employed to determine the protein levels of GFAP, neurocan, phosphacan, CD206, arginase-1(Arg-1), interleukin(IL)-1ß, IL-6, and IL-4. Compared with the sham, model 7 d and model 14 d groups showed cerebral infarction of different degrees, severe pathological injury of cerebral cortex and hippocampus, neurological impairment, reduced spatial learning and memory, cognitive dysfunction, severe anxiety, astrocyte hyperplasia, thickening penumbra glial scar, and up-regulated protein levels of IL-1ß, IL-6, GFAP, neurocan, phosphacan, CD206, and Arg-1(P<0.01). Compared with the model group, NTF 7 d and NTF 14 d groups improved spatial learning, memory, and cognitive function, reduced anxiety, improved nerve function, reduced cerebral infarction volume, reduced astrocyte hyperplasia, thinned penumbra glial scar, down-regulated the protein levels of GFAP, neurocan, phosphacan, IL-6, and IL-1ß, and up-regulated the protein levels of IL-4, CD206, and Arg-1(P<0.05 or P<0.01). NTF exerts a neuroprotective effect on CIRI by inducing the M2 polarization of microglia, inhibiting inflammatory response, and reducing the formation of glial scar.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão , Ratos , Animais , Microglia/metabolismo , Gliose/patologia , Ratos Sprague-Dawley , Hiperplasia , Interleucina-4 , Interleucina-6 , Neurocam , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Infarto da Artéria Cerebral Média , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
2.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612680

RESUMO

The central exacerbating factor in the pathophysiology of ischemic-reperfusion acute kidney injury (AKI) is oxidative stress. Lipid peroxidation and DNA damage in ischemia are accompanied by the formation of 3-nitrotyrosine, a biomarker for oxidative damage. DNA double-strand breaks (DSBs) may also be a result of postischemic AKI. γH2AX(S139) histone has been identified as a potentially useful biomarker of DNA DSBs. On the other hand, hypoxia-inducible factor (HIF) is the "master switch" for hypoxic adaptation in cells and tissues. The aim of this research was to evaluate the influence of hyperbaric oxygen (HBO) preconditioning on antioxidant capacity estimated by FRAP (ferric reducing antioxidant power) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay, as well as on oxidative stress parameter 3-nitrotyrosine, and to assess its effects on γH2AX(S139), HIF-1α, and nuclear factor-κB (NF-κB) expression, in an experimental model of postischemic AKI induced in spontaneously hypertensive rats. The animals were divided randomly into three experimental groups: sham-operated rats (SHAM, n = 6), rats with induced postischemic AKI (AKI, n = 6), and group exposed to HBO preconditioning before AKI induction (AKI + HBO, n = 6). A significant improvement in the estimated glomerular filtration rate, eGFR, in AKI + HBO group (p < 0.05 vs. AKI group) was accompanied with a significant increase in plasma antioxidant capacity estimated by FRAP (p < 0.05 vs. SHAM group) and a reduced immunohistochemical expression of 3-nitrotyrosine and γH2AX(S139). Also, HBO pretreatment significantly increased HIF-1α expression (p < 0.001 vs. AKI group), estimated by Western blot and immunohistochemical analysis in kidney tissue, and decreased immunohistochemical NF-κB renal expression (p < 0.01). Taking all of these results together, we may conclude that HBO preconditioning has beneficial effects on acute kidney injury induced in spontaneously hypertensive rats.


Assuntos
Injúria Renal Aguda , Oxigenoterapia Hiperbárica , Traumatismo por Reperfusão , Animais , Ratos , Antioxidantes , NF-kappa B , Ratos Endogâmicos SHR , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/terapia , Rim , Isquemia , Reperfusão , Estresse Oxidativo , Oxigênio , Dano ao DNA , Biomarcadores , DNA
3.
Mol Nutr Food Res ; 68(8): e2300671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566522

RESUMO

SCOPE: Cerebral ischemia-reperfusion (IR) injury stands as a prominent global contributor to disability and mortality. Nervonic acid (NA), a bioactive elongated monounsaturated fatty acid, holds pivotal significance in human physiological well-being. This research aims to explore the prophylactic effects and fundamental mechanisms of NA in a rat model of cerebral IR injury. METHODS AND RESULTS: Through the induction of middle cerebral artery occlusion, this study establishes a rat model of cerebral IR injury and comprehensively assesses the pharmacodynamic impacts of NA pretreatment. This evaluation involves behavioral analyses, histopathological examinations, and quantification of serum markers. Detailed mechanisms of nervonic acid's prophylactic effects are revealed through fecal metabolomics and 16S rRNA sequencing analyses. Our findings robustly support nervonic acid's capacity to ameliorate neurological impairments in rats afflicted with cerebral IR injury. Beyond its neurological benefits, NA demonstrates its potential by rectifying metabolic perturbations across diverse pathways, particularly those pertinent to unsaturated fatty acid metabolism. Additionally, NA emerges as a modulator of gut microbiota composition, notably by selectively enhancing vital genera like Lactobacillus. CONCLUSION: These comprehensive findings highlight the potential of incorporating NA as a functional component in dietary interventions aimed at targeting cerebral IR injury.


Assuntos
Suplementos Nutricionais , Fezes , Microbioma Gastrointestinal , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Fezes/microbiologia , Fezes/química , Ratos , Infarto da Artéria Cerebral Média , Isquemia Encefálica , Modelos Animais de Doenças
4.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1361-1368, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621984

RESUMO

This study aims to explore the pathogenesis of myocardial ischaemia reperfusion injury(MIRI) based on oxidative stress-mediated programmed cell death and the mechanism and targets of Chaihu Sanshen Capsules in treating MIRI via the protein kinase Cß(PKCßⅡ)/NADPH oxidase 2(NOX2)/reactive oxygen species(ROS) signaling pathway. The rat model of MIRI was established by the ligation of the left anterior descending branch. Rats were randomized into 6 groups: sham group, model group, clinically equivalent-, high-dose Chaihu Sanshen Capsules groups, N-acetylcysteine group, and CGP53353 group. After drug administration for 7 consecutive days, the area of myocardial infarction in each group was measured. The pathological morphology of the myocardial tissue was observed by hematoxylin-eosin(HE) staining. The apoptosis in the myocardial tissue was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL). Enzyme-linked immunosorbent assay(ELISA) was employed to measure the le-vels of indicators of myocardial injury and oxidative stress. The level of ROS was detected by flow cytometry. The protein and mRNA levels of the related proteins in the myocardial tissue were determined by Western blot and real-time quantitative PCR(RT-qPCR), respectively. Compared with the sham group, the model group showed obvious myocardial infarction, myocardial structural disorders, interstitial edema and hemorrhage, presence of a large number of vacuoles, elevated levels of myocardial injury markers, myocardial apoptosis, ROS, and malondialdehyde(MDA), lowered superoxide dismutase(SOD) level, and up-regulated protein and mRNA le-vels of PKCßⅡ, NOX2, cysteinyl aspartate specific proteinase-3(caspase-3), and acyl-CoA synthetase long-chain family member 4(ACSL4) in the myocardial tissue. Compared with the model group, Chaihu Sanshen Capsules reduced the area of myocardial infarction, alleviated the pathological changes in the myocardial tissue, lowered the levels of myocardial injury and oxidative stress indicators and apoptosis, and down-regulated the mRNA and protein levels of PKCßⅡ, NOX2, caspase-3, and ACSL4 in the myocardial tissue. Chaihu Sanshen Capsules can inhibit oxidative stress and programmed cell death(apoptosis, ferroptosis) by regulating the PKCßⅡ/NOX2/ROS signaling pathway, thus mitigating myocardial ischemia reperfusion injury.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Espécies Reativas de Oxigênio , Ratos Sprague-Dawley , Caspase 3/metabolismo , Transdução de Sinais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , RNA Mensageiro , Apoptose
5.
Zhen Ci Yan Jiu ; 49(4): 391-397, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649207

RESUMO

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Baihui" (GV20) and "Shenting" (GV24) on the rats' behavior and the transforming precursor of brain-derived neurotrophic factor (proBDNF) into mature brain-derived neurotrophic factor (mBDNF) in the hippocampus of rats with learning and memory impairment induced by cerebral ischemia-reperfusion (IR), so as to explore its mechanisms underlying improvement of learning and memory ability. METHODS: SD rats were randomly divided into blank, sham operation, model, and EA groups, with 6 rats in each group. The model of IR was established by occlusion of the middle cerebral artery. EA (1 Hz/20 Hz) was applied to GV24 and GV20 for 30 min, once daily for 14 days. The neurological function was evaluated according to the Zea Longa's score criteria 24 h after modeling and after intervention. Morris water maze test was used to detect the learning and memory function of the rats. TTC staining was used to evaluate the cerebral infarction volume on the affected side. The protein expression levels of proBDNF, mBDNF, tissue plasminogen activator (tPA), tyrosine kinase receptor B (TrkB) and p75 neurotrophin receptor (p75NTR) in hippocampal tissue were detected by Western blot. RESULTS: Compared with the sham operation group, the neurological function score, the percentage of cerebral infarction volume and the expression levels of proBDNF and p75NTR protein in hippocampus were increased (P<0.01), while the times of crossing the original platform and the total distance in the target quadrant, the expression levels of mBDNF, TrkB and tPA protein and the ratio of mBDNF/proBDNF were decreased (P<0.01, P<0.05) in the model group. Compared with the model group, the neurological function score, the percentage of cerebral infarction volume, and the expression levels of proBDNF and p75NTR protein in hippocampus were decreased (P<0.01, P<0.05), while the times of crossing the original platform, the total distance in the target quadrant, and the expression levels of mBDNF, TrkB and tPA protein and the ratio of mBDNF/proBDNF were increased (P<0.05, P<0.01) in the EA group. CONCLUSIONS: EA can alleviate learning and memory impairment in IR rats, which may be related to its function in up-regulating the expression of tPA protein and promoting the transformation of proBDNF to mBDNF, thus improving the synaptic plasticity.


Assuntos
Isquemia Encefálica , Fator Neurotrófico Derivado do Encéfalo , Eletroacupuntura , Transtornos da Memória , Plasticidade Neuronal , Precursores de Proteínas , Traumatismo por Reperfusão , Animais , Humanos , Masculino , Ratos , Pontos de Acupuntura , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Isquemia Encefálica/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/metabolismo , Aprendizagem , Memória , Transtornos da Memória/terapia , Transtornos da Memória/metabolismo , Transtornos da Memória/etiologia , Ratos Sprague-Dawley , Receptor trkB/metabolismo , Receptor trkB/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/genética
6.
Phytomedicine ; 128: 155300, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518639

RESUMO

BACKGROUND: This study was conducted to elucidate the critical molecular pathways underlying the protective effects of remifentanil against hepatic ischemia-reperfusion injury in rats. Our approach integrated network pharmacology analysis with high-throughput sequencing to achieve a comprehensive understanding of the mechanisms involved. STUDY DESIGN/METHODS: The study utilized GSE24430 gene expression data from GEO to investigate remifentanil's impact on Hepatic Ischemia-Reperfusion Injury in rats. Weighted Correlation Network Analysis (WGCNA) was employed to pinpoint crucial genes and identify modules of co-expressed genes. Differential analysis with the "Limma" package revealed genes differentially expressed in IRI vs. control groups. PubChem and PharmMapper provided target genes affected by remifentanil. Protein-protein interaction networks were constructed via GeneCards and STRING. Functional analysis pinpointed core genes involved in remifentanil's IRI alleviation. IRI rat models were established, and hepatic injury indicators, liver structure via H&E staining, autophagosome counts via electron microscopy, and gene/protein expression via RT-qPCR and Western blot were assessed. High-throughput sequencing analyzed molecular pathways affected by varying remifentanil doses in IRI rats. RESULTS: In the study, we discovered four primary co-expression modules associated with hepatic IRI, and the grey module exhibited the highest correlation with hepatic IRI.A total of sixty-eight genes that were differentially expressed were found to have a connection with hepatic IRI.Network pharmacology analysis found that remifentanil may alleviate hepatic IRI through Fmol.found that the Fmol/Parkin signaling pathway may alleviate hepatic IRI via Additionally, the database autophagy. The established hepatic IRI rat models further confirmed the above findings. CONCLUSION: Our study established that remifentanil triggers the Fmol/Parkin signaling cascade, amplifying the expression levels of Fmol and Parkin. This process culminates in the activation of autophagy within hepatic cells, ultimately alleviating hepatic ischemia-reperfusion injury (IRI).


Assuntos
Fígado , Farmacologia em Rede , Ratos Sprague-Dawley , Remifentanil , Traumatismo por Reperfusão , Transdução de Sinais , Ubiquitina-Proteína Ligases , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Remifentanil/farmacologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ratos , Ubiquitina-Proteína Ligases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Mapas de Interação de Proteínas
7.
Phytomedicine ; 128: 155406, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520834

RESUMO

BACKGROUND: Ischemic stroke (IS) is characterized as a detrimental cerebrovascular disease with high mortality and disability. Ferroptosis is a novel mechanism involved in neuronal death. There is a close connection between IS and ferroptosis, and inhibiting ferroptosis may provide an effective strategy for treating IS. Our previous investigations have discovered that kellerin, the active compound of Ferula sinkiangensis K. M. Shen, possesses the capability to shield against cerebral ischemia injury. PURPOSE: Our objective is to clarify the relationship between the neuroprotective properties of kellerin against IS and its ability to modulate ferroptosis, and investigate the underlying regulatory pathway. STUDY DESIGN: We investigated the impact and mechanism of kellerin in C57BL/6 mice underwent middle cerebral artery occlusion/reperfusion (MCAO/R) as well as SH-SY5Y cells exposed to oxygen-glucose deprivation/ re-oxygenation (OGD/R). METHODS: The roles of kellerin on neurological severity, cerebral infarction and edema were investigated in vivo. The regulatory impacts of kellerin on ferroptosis, mitochondrial damage and Akt/Nrf2 pathway were explored. Molecular docking combined with drug affinity responsive target stability assay (DARTS) and cellular thermal shift assay (CETSA) were performed to analyze the potential target proteins for kellerin. RESULTS: Kellerin protected against IS and inhibited ferroptosis in vivo. Meanwhile, kellerin improved the neuronal damage caused by OGD/R and suppressed ferroptosis by inhibiting the production of mitochondrial ROS in vitro. Further we found that kellerin directly interacted with Akt and enhanced its phosphorylation, leading to the increase of Nrf2 nuclear translocation and its downstream antioxidant genes expression. Moreover, kellerin's inhibitory effect on ferroptosis and mitochondrial ROS release was eliminated by inhibiting Akt/Nrf2 pathway. CONCLUSIONS: Our study firstly demonstrates that the neuroprotective properties of kellerin against IS are related to suppressing ferroptosis through inhibiting the production of mitochondrial ROS, in which its modulation on Akt-mediated transcriptional activation of Nrf2 plays an important role. This finding shed light on the potential mechanism that kellerin exerts therapeutic effects in IS.


Assuntos
Ferroptose , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores , Proteínas Proto-Oncogênicas c-akt , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Ferroptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Masculino , Camundongos , Humanos , Fármacos Neuroprotetores/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Ativação Transcricional/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos
8.
Eur J Pharmacol ; 969: 176427, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428662

RESUMO

Acute ischemic stroke (AIS) is a leading cause of global incidence and mortality rates. Oxidative stress and inflammation are key factors in the pathogenesis of AIS neuroinjury. Therefore, it is necessary to develop drugs that target neuroinflammation and oxidative stress in AIS. The Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), primarily expressed on microglial cell membranes, plays a critical role in reducing inflammation and oxidative stress in AIS. In this study, we employed a high-throughput screening (HTS) strategy to evaluate 2625 compounds from the (Food and Drug Administration) FDA library in vitro to identify compounds that upregulate the TREM2 receptor on microglia. Through this screening, we identified Baicalin as a potential drug for AIS treatment. Baicalin, a flavonoid compound extracted and isolated from the root of Scutellaria baicalensis, demonstrated promising results. Next, we established an in vivo mouse model of cerebral ischemia-reperfusion injury (MCAO/R) and an in vitro microglia cell of oxygen-glucose deprivation reperfusion (OGD/R) to investigate the role of Baicalin in inflammation injury, oxidative stress, and neuronal apoptosis. Our results showed that baicalin effectively inhibited microglia activation, reactive oxygen species (ROS) production, and inflammatory responses in vitro. Additionally, baicalin suppressed neuronal cell apoptosis. In the in vivo experiments, baicalin not only improved neurological functional deficits and reduced infarct volume but also inhibited microglia activation and inflammatory responses. Overall, our findings demonstrate the efficacy of Baicalin in treating MCAO/R by upregulating TREM2 to reduce inflammatory responses and inhibit neuronal apoptosis.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Camundongos , Animais , AVC Isquêmico/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Inflamação/tratamento farmacológico , Isquemia Encefálica/metabolismo , Microglia , Infarto da Artéria Cerebral Média/metabolismo
9.
Diving Hyperb Med ; 54(1): 16-22, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38507906

RESUMO

Introduction: This study aimed to investigate whether hyperbaric oxygen treatment (HBOT) could ameliorate ischaemia-reperfusion injury in a rat model of ovarian torsion-detorsion. Methods: Twenty-seven rats were divided among four groups: surgical sham rats (S) (n = 6) underwent identical anaesthesia and surgical incisions to other groups (n = 7 per group) but with no ovary intervention; torsion rats (T) underwent laparotomy, ovarian torsion, relaparotomy and sacrifice after three hours; torsion and detorsion rats (T/DT) underwent laparotomy, ovarian torsion (three hours), relaparotomy and detorsion, and sacrifice after one week; torsion, detorsion, hyperbaric oxygen rats (T/DT/HBOT) underwent laparotomy, ovarian torsion, relaparotomy and detorsion, and sacrifice after one week during which HBOT was provided 21 times (100% oxygen at 600 kPa for 50 min). In all groups blood collection for markers of oxidative stress or related responses, and ovary collection for histology were performed after sacrifice. Results: When the T/DT, and T/DT/HBOT groups were compared, 8-hydroxy-2'-deoxyguanosine (a marker of oxidative damage to DNA) and malondialdehyde (a product of lipid peroxidation) levels were lower in the T/DT/HBOT group. Anti-Mullerian hormone levels were higher in the T/DT/HBOT group compared to the T/DT group. In addition, oedema, vascular occlusion, neutrophilic infiltration and follicular cell damage were less in the T/DT/HBOT group than in the T/DT group. Conclusions: When biochemical and histopathological findings were evaluated together, HBOT appeared reduce ovarian ischaemia / reperfusion injury in this rat model of ovarian torsion-detorsion.


Assuntos
Oxigenoterapia Hiperbárica , Traumatismo por Reperfusão , Humanos , Feminino , Ratos , Animais , Torção Ovariana/terapia , Ratos Wistar , Antioxidantes , Oxigênio , Traumatismo por Reperfusão/terapia
10.
Exp Clin Transplant ; 22(2): 120-128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38511983

RESUMO

OBJECTIVES: Hypocalcemia is frequently identified during liver transplant. However, supplementation of extracellular calcium could induce increased intracellular calcium concentration, as a potential factor for injury to the liver graft. We evaluated the effects of regulating extracellular calcium concentrations on hepatic ischemia-reperfusion injury. MATERIALS AND METHODS: We randomly divided 24 Sprague-Dawley rats into 3 groups: group C received normal saline (n = 8), group L received citrate to induce hypocalcemia (n = 8), and group L-Co received citrate followed by calcium gluconate to ameliorate hypocalcemia (n = 8). Liver enzyme levels and extracellular calcium were measured before surgery, 1 hour after ischemia, and 2 hours after reperfusion. The primary outcome was liver enzyme levels measured 2 hours after reperfusion. In addition, we evaluated intracellular calcium levels, lactate dehydrogenase activity, and histopathological results in liver tissue. RESULTS: Three groups demonstrated significant differences in extracellular calcium concentrations, but intracellular calcium concentrations in liver tissue were not significantly different. Group L showed significantly lower mean arterial pressure than other groups at 1 hour after ischemia (93.6 ± 20.8 vs 69.4 ± 14.2 vs 86.6 ± 10.4 mmHg; P = .02, for group C vs L vs L-Co, respectively). At 2 hours after reperfusion, group L showed significantly higher liver enzymes than other groups (aspartate aminotransferase 443.0 ± 353.2 vs 952.3 ± 94.8 vs 502.4 ± 327.3 U/L, P = .01; and alanine aminotransferase 407.9 ± 406.5 vs 860.6 ± 210.9 vs 333.9 ± 304.2 U/L, P = .02; for group C vs L vs L-Co, respectively). However, no significant difference was shown in lactate dehydrogenase and histological liver injury grade. CONCLUSIONS: Administering calcium to rats with hypocalcemia did not increase intracellular calcium accumulation but instead resulted in less hepatic injury compared with rats with low extracellular calcium concentrations in this rat model study.


Assuntos
Hipocalcemia , Traumatismo por Reperfusão , Ratos , Animais , Cálcio , Ratos Sprague-Dawley , Fígado/patologia , Traumatismo por Reperfusão/patologia , Isquemia , Citratos , Lactato Desidrogenases , Alanina Transaminase
11.
Biomed Pharmacother ; 173: 116407, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460367

RESUMO

Acute kidney injury frequently occurs after cardiac surgery, and is primarily attributed to renal ischemia-reperfusion (I/R) injury and inflammation from surgery and cardiopulmonary bypass. Vitamin C, an antioxidant that is often depleted in critically ill patients, could potentially mitigate I/R-induced oxidative stress at high doses. We investigated the effectiveness of high-dose vitamin C in preventing I/R-induced renal injury. The ideal time and optimal dosage for administration were determined in a two-phase experiment on Sprague-Dawley rats. The rats were assigned to four groups: sham, IRC (I/R + saline), and pre- and post-vitC (vitamin C before and after I/R, respectively), with vitamin C administered at 200 mg/kg. Additional groups were examined for dose modification based on the optimal timing determined: V100, V200, and V300 (100, 200, and 300 mg/kg, respectively). Renal I/R was achieved through 45 min of ischemia followed by 24 h of reperfusion. Vitamin C administration during reperfusion significantly reduced renal dysfunction and tubular damage, more than pre-ischemic administration. Doses of 100 and 200 mg/kg during reperfusion reduced oxidative stress markers, including myeloperoxidase and inflammatory responses by decreasing high mobility group box 1 release and nucleotide-binding and oligomerization domain-like receptor 3 inflammasome. Overall beneficial effect was most prominent with 200 mg/kg. The 300 mg/kg dose, however, showed no additional benefits over the IRC group regarding serum blood urea nitrogen and creatinine levels and histological evaluation. During reperfusion, high-dose vitamin C administration (200 mg/kg) significantly decreased renal I/R injury by effectively attenuating the major triggers of oxidative stress and inflammation.


Assuntos
Injúria Renal Aguda , Antineoplásicos , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Rim , Estresse Oxidativo , Injúria Renal Aguda/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Ácido Ascórbico/metabolismo , Traumatismo por Reperfusão/patologia , Antineoplásicos/farmacologia , Inflamação/metabolismo , Isquemia/metabolismo , Creatinina
12.
Zhen Ci Yan Jiu ; 49(3): 238-246, 2024 Mar 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500320

RESUMO

OBJECTIVES: To observe the effect of moxibustion preconditioning on inflammatory response in rats with cerebral ischemia reperfusion injury (CIRI), so as to explore its mechanisms underlying improving CIRI. METHODS: Seventy-five male SD rats were randomly divided into sham operation, model, moxibustion preconditioning 3 days (Moxi 1), moxibustion preconditioning 5 days (Moxi 2) and moxibustion preconditioning 7 days (Moxi 3) groups, with 15 rats in each group. Moxibustion was applied at "Baihui"(GV20), "Dazhui"(GV14) and "Zusanli"(ST36) for 20 min once a day, totally for 3, 5 or 7 days. Thirty minutes after the last moxibustion treatment, the CIRI model was established by occlusion of the middle cerebral artery. The neurological deficit score was assessed by using Longa's method. The infarct size of the brain assessed after staining with 2% triphenyltetrazolium chloride (TTC). The morphological changes of cortical neurons were observed by HE staining. The contents of inflammatory factors interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), S-100ß protein (S-100ß) and neuron-specific enolase (NSE) were detected by ELISA. The expression of phosphatidylinositol-3-kinase (PI3K), p-PI3K, protein kinase B (AKT) and mammalian target of rapamycin (mTOR) proteins in the ischemic cortex tissues were detected by immunohistochemistry and Western blot. RESULTS: Compared with the sham operation group, the neurological function score and the percentage of cerebral ischemic volume were increased (P<0.01). The contents of serum IL-1ß, TNF-α, S-100ß and NSE were significantly increased (P<0.01), while the protein expressions of PI3K, p-PI3K, AKT and mTOR in the cerebral cortex were significantly decreased (P<0.01) in the model group. Compared with the model group, the neurological function score and the percentage of cerebral ischemic volume were significantly decreased (P<0.01). The contents of serum IL-1ß, TNF-α, S-100ß and NSE were significantly decreased (P<0.01), and the expressions of PI3K, p-PI3K, AKT and mTOR proteins in the cerebral cortex were significantly increased (P<0.01) in three moxibustion groups. Compared with the Moxi 1 and Moxi 2 groups, the above indicators were significantly improved in rats of the Moxi 3 group (P<0.01, P<0.05). CONCLUSIONS: Moxibustion preconditioning can significantly improve the neurological function of rats after ischemia-reperfusion, inhibit serum inflammatory factors IL-1 ß and TNF-α, inhibit brain tissue injury markers S-100ß and NSE, which may be related to the activation of PI3K/AKT/mTOR signaling pathway. The protective effect of moxibustion preconditioning for 7 days on CIRI was better than that of 5 days and 3 days.


Assuntos
Isquemia Encefálica , Moxibustão , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Ratos Sprague-Dawley , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinase/farmacologia , Fator de Necrose Tumoral alfa/genética , Subunidade beta da Proteína Ligante de Cálcio S100/farmacologia , Transdução de Sinais , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/terapia , Serina-Treonina Quinases TOR/genética , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Infarto Cerebral , Mamíferos
13.
Zhen Ci Yan Jiu ; 49(3): 302-306, 2024 Mar 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500328

RESUMO

Ischemic stroke is currently the most common type of stroke, and the key pathological link is cerebral ischemia-reperfusion injury (CIRI), while the key factor leading to apoptosis and necrosis of ischemic nerve cells is calcium overload. Current studies have confirmed that acupuncture therapy has a good modulating effect on calcium homeostasis and can reduce cerebral ischemia-reperfusion induced damage of neuronal cells by inhibiting calcium overload. After reviewing the relevant literature published in the past 15 years, we find that acupuncture plays a role in regulating the pathological mechanism of calcium overload after CIRI by inhibiting the opening of connexin 43 hemichannels, regulating the intracellular free calcium ion concentration, suppressing the expression of calmodulin, and blocking the function of L-type voltage-gated calcium channels, thereby inhibiting calcium overload, regulating calcium homeostasis and antagonizing neuronal damage resulted from cerebral ischemia-reperfusion, which may provide ideas for future research.


Assuntos
Terapia por Acupuntura , Acupuntura , Isquemia Encefálica , Traumatismo por Reperfusão , Humanos , Cálcio/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Infarto Cerebral
14.
J Physiol ; 602(6): 1175-1197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431908

RESUMO

Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Selênio , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Ratos , Animais , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Neuroproteção/fisiologia , Proteína 2 Associada à Membrana da Vesícula , Selenoproteína P , Oxigênio/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Glucose/metabolismo , Proteínas Qa-SNARE
15.
Phytomedicine ; 128: 155335, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518648

RESUMO

BACKGROUND: Stroke is a complex physiological process associated with intestinal flora dysbiosis and metabolic disorders. Dan-deng-tong-nao capsule (DDTN) is a traditional Chinese medicine used clinically to treat cerebral ischemia-reperfusion injury (CIRI) for many years. However, little is known about the effects of DDTN in the treatment of CIRI from the perspective of gut microbiota and metabolites. PURPOSE: This study aimed to investigate the regulatory roles of DDTN in endogenous metabolism and gut microbiota in CIRI rats, thus providing a basis for clinical rational drug use and discovering natural products with potential physiological activities in DDTN for the treatment of CIRI. METHODS: The chemical composition of DDTN in vitro and in vivo was investigated using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLCHRMS), followed by target prediction using reverse molecular docking. Secondly, a biological evaluation of DDTN ameliorating neural damage in CIRI was performed at the whole animal level. Then, an integrated omics approach based on UHPLCHRMS and 16S rRNA sequencing was proposed to reveal the anti-CIRI effect and possible mechanism of DDTN. Finally, exploring the intrinsic link between changes in metabolite profiles, changes in the intestinal flora, and targets of components to reveal DDTN for the treatment of CIRI. RESULTS: A total of 112 chemical components of DDTN were identified in vitro and 10 absorbed constituents in vivo. The efficacy of DDTN in the treatment of CIRI was confirmed by alleviating cerebral infarction and neurological deficits. After the DDTN intervention, 21 and 26 metabolites were significantly altered in plasma and fecal, respectively. Based on the fecal microbiome, a total of 36 genera were enriched among the different groups. Finally, the results of the network integration analysis showed that the 10 potential active ingredients of DDTN could mediate the differential expression of 24 metabolites and 6 gut microbes by targeting 25 target proteins. CONCLUSION: This study was the first to outline the landscapes of metabolites as well as gut microbiota regulated by DDTN in CIRI rats using multi-omics data, and comprehensively revealed the systematic relationships among ingredients, targets, metabolites, and gut microbiota, thus providing new perspectives on the mechanism of DDTN in the treatment of CIRI.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Traumatismo por Reperfusão/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Ratos , Isquemia Encefálica/tratamento farmacológico , Simulação de Acoplamento Molecular , Cromatografia Líquida de Alta Pressão , RNA Ribossômico 16S , Cápsulas , Multiômica
16.
J Tradit Chin Med ; 44(2): 345-352, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504540

RESUMO

OBJECTIVE: To explore the effect of acupuncture treatment on cerebral ischaemia-reperfusion injury (CIRI) and reveal the underlying mechanism of the effect based on nuclear receptor coactivator 4 (NCOA4) mediated ferritinophagy. METHODS: Sprague-Dawley male rats were divided into four groups: the sham group, model group, acupuncture group, and sham acupuncture group. After 2 h of middle cerebral artery occlusion (MCAO), reperfusion was performed for 24 h to induce CIRI. The rats were treated with acupuncture at the Neiguan (PC6) and Shuigou (GV26) acupoints. Their neurological function was evaluated by taking their Bederson scores at 2 h after ischaemia and 24 h after reperfusion. Triphenyltetrazolium chloride staining was applied to assess the cerebral infarct volume at 24 h after reperfusion. The malondialdehyde (MDA) and ferrous iron (Fe2+) levels were observed after 24 h of reperfusion using an assay kit. Western blotting was performed to detect the expression of NCOA4 and ferritin heavy chain 1 (FTH1) at 24 h after reperfusion. Moreover, the colocalization of ferritin with neurons, NCOA4 with microtubule-associated protein 1 light chain 3 (LC3), and NCOA4 with ferritin was visualized using immunofluorescence staining. RESULTS: Acupuncture significantly improved neurological function and decreased cerebral infarct volume in the acupuncture group. Following CIRI, the expression of NCOA4, LC3 and FTH1 was increased, which enhanced ferritinophagy and induced an inappropriate accumulation of Fe2+ and MDA in the ischaemic brain. However, acupuncture dramatically downregulated the expression of NCOA4, LC3 and FTH1, inhibited the overactivation of ferritinophagy, and decreased the levels of MDA and Fe2+. CONCLUSIONS: Acupuncture can inhibit NCOA4-mediated ferritinophagy and protect neurons against CIRI in a rat model.


Assuntos
Terapia por Acupuntura , Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Infarto Cerebral , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/metabolismo , Ferritinas/genética , Coativadores de Receptor Nuclear/metabolismo
17.
Phytother Res ; 38(5): 2539-2559, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38459660

RESUMO

Avascular necrosis frequently occurs as a complication following surgery involving the distal perforator flap. Dihydrocapsaicin (DHC) can protect tissue from ischemia-reperfusion (I/R) injury, but its specific role in multizone perforator flaps remains unclear. In this study, the prospective target of DHC in the context of I/R injury was predicted using network pharmacology analysis. Flap viability was determined through survival area analysis, laser Doppler blood flow, angiograms, and histological examination. The expressions of angiogenesis, apoptosis, NLR family pyrin domain containing 3 (NLRP3) inflammasome, oxidative stress, and molecules related to cyclic guanosine monophosphate (GMP)-adenosine monophosphate synthase (cGAS)-interferon gene stimulant (STING) pathway were assessed using western blotting, immunofluorescence, TUNEL staining, and dihydroethidium (DHE) staining. Our finding revealed that DHC promoted the perforator flap survival, which involves the cGAS-STING pathway, oxidative stress, NLRP3 inflammasome, apoptosis, and angiogenesis. DHC induced oxidative stress resistance and suppressed the NLRP3 inflammasome, preventing apoptosis in vascular endothelial cells. Through regulation of STING pathway, DHC controlled oxidative stress in endothelial cells and NLRP3 levels in ischemic flaps. However, activation of the cGAS-STING pathway led to the accumulation of reactive oxygen species (ROS) and NLRP3 inflammasome, thereby diminishing the protective role of DHC. DHC enhanced the survival of multidomain perforator flaps by suppressing the cGAS-STING pathway, oxidative stress, and the formation of NLRP3 inflammasome. These findings unveil a potentially novel mechanism with clinical significance for promoting the survival of multidomain perforator flaps.


Assuntos
Apoptose , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Retalho Perfurante , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Inflamassomos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL
18.
Phytomedicine ; 128: 155530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493723

RESUMO

BACKGROUND: Ischemic stroke (IS) ranks as the second common cause of death worldwide. However, a narrow thrombolysis timeframe and ischemia-reperfusion (I/R) injury limits patient recovery. Moreover, anticoagulation and antithrombotic drugs do not meet the clinical requirements. Studies have demonstrated close communication between the brain and gut microbiota in IS. Notoginsenoside R1 (NG-R1), a significant component of the total saponins from Panax notoginseng, has been demonstrated to be effective against cerebral I/R injury. Total saponins have been used to treat IS in Chinese pharmacopoeia. Furthermore, previous research has indicated that the absorption of NG-R1 was controlled by gut microbiota. STUDY DESIGN: This study aimed to access the impact of NG-R1 treatment on neuroinflammation and investigate the microbiota-related mechanisms. RESULTS: NG-R1 significantly reduced neuronal death and neuroinflammation in middle cerebral artery occlusion/reperfusion (MCAO/R) models. 16S rRNA sequencing revealed that NG-R1 treatment displayed the reversal of microbiota related with MCAO/R models. Additionally, NG-R1 administration attenuated intestinal inflammation, gut barrier destruction, and systemic inflammation. Furthermore, microbiota transplantation from NG-R1 exhibited a similar effect in the MCAO/R models. CONCLUSION: In summary, NG-R1 treatment resulted in the restoration of the structure of the blood-brain barrier (BBB) and reduction in neuroinflammation via suppressing the stimulation of astrocytes and microglia in the cerebral ischemic area. Mechanistic research demonstrated that NG-R1 treatment suppressed the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor kappa B (TLR4/MyD88/NF-κB) signaling pathway in both the ischemic brain and colon. NG-R1 treatment enhanced microbiota dysbiosis by inhibiting the TLR4 signaling pathway to protect MCAO/R models. These findings elucidate the mechanisms by which NG-R1 improve stroke outcomes and provide some basis for Panax notoginseng saponins in clinical treatment.


Assuntos
Microbioma Gastrointestinal , Ginsenosídeos , Fator 88 de Diferenciação Mieloide , NF-kappa B , Traumatismo por Reperfusão , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , NF-kappa B/metabolismo , Ginsenosídeos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Eixo Encéfalo-Intestino/efeitos dos fármacos , Panax notoginseng/química , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Modelos Animais de Doenças , AVC Isquêmico/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico
19.
Phytomedicine ; 128: 155344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493721

RESUMO

BACKGROUND: Among adults, stroke is the main causes of mortality and permanent disability. Neuroinflammation is one of the main causes of stoke-mediated neuronal death. Our previous study revealed that (E)-5-(2-(Quinolin-4-yl) vinyl) benzene-1, 3-diol (RV01), a quinolinyl analog of resveratrol, inhibits microglia-induced neuroinflammation and safeguards neurons from inflammatory harm. The preventive role of RV01 in ischemic stroke and its underlying cellular mechanisms and molecular targets remain poorly understood. PURPOSE: To investigate whether RV01 alleviates ischemia-reperfusion (I/R) injury by inhibiting microglia-mediated neuroinflammation and determine the potential molecular mechanisms and targets by which RV01 inhibits the I/R-mediated microglia activation. METHODS: Rat middle cerebral artery occlusion and reperfusion (MCAO/R) and BV-2 or primary microglial cells oxygen-glucose deprivation and reperfusion (OGD/R) models were established. The neurological behavior scores, 2, 3, 5-triphenyl tetrazolium chloride staining and immunofluorescence were used to detect the neuroprotective effect of RV01 in the MCAO/R rats. In addition, the mRNA expression levels of IL-6, TNF-α, and IL-1ß were detected to reveal the antineuroinflammatory effect of RV01. Moreover, a western blot assay was performed to explore the protein expression changes in NF-κB-mediated neuroinflammation. Finally, we identified TLR4 as an RV01 target through molecular docking, drug sensitivity target stability analysis, cellular thermal shift analysis, and surface plasmon resonance techniques. RESULTS: RV01 reduced the infarct volume and neurological deficits, increased the rotarod duration, and decreased the number of rightward deflections in the MCAO/R rats. RV01 inhibited the NF-κB signaling pathway in vitro and in vivo, as demonstrated by the reduction in the transcription factor p65-mediated expression of several inflammatory factors including IL-6, TNF-α, and IL-1ß. Further studies showed that its protective effect was associated with targeting the TLR4 protein. Notably, the anti-inflammatory effect of RV01 was markedly reinforced by the TLR4 knockdown, but inhibited by the overexpression of TLR4. Results revealed that the conditioned medium derived from the RV01-treated BV-2 cells significantly decreased the OGD/R-mediated neuronal damage. CONCLUSION: Our results are the first to reveal the protective effects of RV01 on cerebral ischemia, depending on its inhibitory effect on the NF-κB pathway by targeting TLR4. RV01 could be a potential protective agent in ischemic stroke treatment.


Assuntos
Anti-Inflamatórios , Infarto da Artéria Cerebral Média , Microglia , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Resveratrol , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Masculino , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Microglia/efeitos dos fármacos , Resveratrol/farmacologia , Fármacos Neuroprotetores/farmacologia , Ratos , Anti-Inflamatórios/farmacologia , AVC Isquêmico/tratamento farmacológico , Modelos Animais de Doenças , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Simulação de Acoplamento Molecular
20.
Neurosci Lett ; 825: 137689, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38401641

RESUMO

PURPOSE: The ischemia-reperfusion (I/R) injury seen in the heart can cause severe damage to essential organs such as the brain. Cannabidiol (CBD) obtained from Cannabis sativa is used today to treat various diseases. This study aimed to demonstrate CBD's neuroprotective and therapeutic properties in rats with brain damage caused by I/R in the heart. MATERIALS: Rats were divided into four groups; sham, I/R, I/R + Prophylactic CBD, and I/R + Therapeutic CBD. End of the experiment, brain tissues were collected for biochemical, histopathological, and genetic examinations. RESULTS: I/R damage increased the number of degenerative neurons, caspase-3 and TNF-α immunoexpression, total oxidant status levels, and oxidative stress index. Both prophylactic and therapeutic CBD administration reduced these increased values. In addition, the relative fold changes of AMPK, PGC-1α, SIRT1, and Bcl 2 decreased in the I/R group, and the relative fold change of Bax increased, which are indicators of ER stress and apoptosis. Both administrations of CBD reversed these genes' relative fold changes. CONCLUSION: CBD can be protective against brain injury caused by cardiac I/R damage through antioxidant, anti-inflammatory, and anti-apoptotic mechanisms.


Assuntos
Síndrome Coronariana Aguda , Canabidiol , Traumatismo por Reperfusão , Ratos , Animais , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Síndrome Coronariana Aguda/tratamento farmacológico , Estresse Oxidativo , Antioxidantes/farmacologia , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA