Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Neuropathol Exp Neurol ; 82(5): 402-411, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36881691

RESUMO

Inflammatory responses in the brain contribute to cognitive deficits. Nuclear factor-κB (NF-κB), a critical transcription factor in inflammatory responses, is activated in post-stroke cognitive deficit. Baihui (DU20) and Shenting (DU24) acupoints, the main acupoints of Du Meridian, are widely used to improve cognitive deficits in Chinese patients with stroke. It has been reported that post-stroke cognitive deficits can be treated by electroacupuncture (EA) but the underlying mechanisms of these effects are unclear. Using the rat middle cerebral artery occlusion cerebral ischemia-reperfusion injury model, we found that EA at these 2 acupoints improved neurological function, decreased cerebral infarct lesion volumes, and ameliorated the inflammatory response in the hippocampal CA1 region. The treatment also ameliorated memory and learning deficits by inhibiting the NF-κB signaling pathway in the ischemic hippocampal CA 1 region. This coincided with downregulation of interleukin-1ß, interleukin-6, CD45, and tumor necrosis factor-α. We conclude that EA at these 2 acupoints ameliorates memory and learning deficits following experimental cerebral infarction by inhibiting NF-κB-mediated inflammatory injury in the hippocampal CA1 region.


Assuntos
Isquemia Encefálica , Eletroacupuntura , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Animais , NF-kappa B/metabolismo , AVC Isquêmico/complicações , AVC Isquêmico/terapia , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Isquemia Encefálica/complicações , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/metabolismo , Região CA1 Hipocampal/patologia , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/metabolismo
2.
Nutrients ; 14(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35405992

RESUMO

1,3-Dipalmitoyl-2-oleoylglycerol (POP) is a triacylglyceride found in oils from various natural sources, including palm kernels, sunflower seeds, and rice bran. In the current study, the neuroprotective effects and the specific mechanism of POP derived from rice bran oil were investigated for the first time using the middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats. Orally administered POP at 1, 3, or 5 mg/kg (three times: 0.5 h before MCAO, after 1 h of MCAO, and after 1 h of reperfusion) markedly reduced the MCAO/R-induced infarct/edema volume and neurobehavioral deficits. Glutathione depletion and the oxidative degradation of lipids in the rat brain induced by MCAO/R were prevented by POP administration. The upregulation of phosphorylated p38 MAPKs, inflammatory factors (inducible nitric oxide synthase (i-NOS) and cyclooxygenase-2 (COX-2)), and pro-apoptotic proteins (B-cell lymphoma-2 (Bcl-2) associated X protein (Bax) and cleaved caspase-3) and the downregulation of the anti-apoptotic protein (Bcl-2) in the ischemic brain were significantly inhibited by POP administration. In addition, downregulation of phosphatidylinositol 3'-kinase (PI3K), phosphorylated protein kinase B (Akt), and phosphorylated cyclic (adenosine monophosphate) AMP responsive element-binding protein (CREB) expression in the ischemic brain was inhibited by POP administration. These results suggest that POP might exert neuroprotective effects by inhibition of p38 MAPK and activation of PI3K/Akt/CREB pathway, which is associated with anti-oxidant, anti-apoptotic, and anti-inflammatory action. From the above results, the present study provides evidence that POP might be effectively applied for the management of cerebral ischemia-related diseases.


Assuntos
Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Apoptose , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Óleo de Farelo de Arroz/farmacologia , Triglicerídeos , Proteínas Quinases p38 Ativadas por Mitógeno
3.
Adv Sci (Weinh) ; 9(12): e2103675, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35112806

RESUMO

Acute kidney injury (AKI) is a complex clinical disorder associated with poor outcomes. Targeted regulation of the degree of inflammation has been a potential strategy for AKI management. Macrophages are the main effector cells of kidney inflammation. However, macrophage heterogeneity in ischemia reperfusion injury induced AKI (IRI-AKI) remains unclear. Using single-cell RNA sequencing of the mononuclear phagocytic system in the murine IRI model, the authors demonstrate the complementary roles of kidney resident macrophages (KRMs) and monocyte-derived infiltrated macrophages (IMs) in modulating tissue inflammation and promoting tissue repair. A unique population of S100a9hi Ly6chi IMs is identified as an early responder to AKI, mediating the initiation and amplification of kidney inflammation. Kidney infiltration of S100A8/A9+ macrophages and the relevance of renal S100A8/A9 to tissue injury is confirmed in human AKI. Targeting the S100a8/a9 signaling with small-molecule inhibitors exhibits renal protective effects represented by improved renal function and reduced mortality in bilateral IRI model, and decreased inflammatory response, ameliorated kidney injury, and improved long-term outcome with decreased renal fibrosis in the unilateral IRI model. The findings support S100A8/A9 blockade as a feasible and clinically relevant therapy potentially waiting for translation in human AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/tratamento farmacológico , Animais , Calgranulina A/uso terapêutico , Feminino , Humanos , Inflamação/tratamento farmacológico , Macrófagos/fisiologia , Masculino , Camundongos , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Análise de Sequência de RNA
4.
Phytother Res ; 36(2): 984-995, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35040204

RESUMO

Acute kidney injury (AKI) induced by renal ischemia reperfusion (RIR) is typically observed in renal surgeries and is a leading cause of renal failure. However, there is still an unmet medical need currently in terms of clinical treatments. Herein, we report the effect of Urolithin A (UA) in a mouse RIR model, wherein we demonstrated its underlying mechanism both in vitro and in vivo. The expression levels of p62 and Keap1 significantly decreased, while that of nuclear Nrf2 increased in vitro in a hypoxia cell model after UA treatment. Furthermore, the apoptosis of tubular cells was attenuated and the reactive oxygen species (ROS) levels were reduced in the kidneys in a mouse RIR model after UA administration. In this study, we demonstrated that UA can alleviate oxidative stress and promote autophagy by activating the p62-Keap1-Nrf2 signaling pathway, which could protect the kidneys from ischemia reperfusion injury.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Animais , Cumarínicos , Isquemia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Reperfusão , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais
5.
Nutrients ; 13(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34836115

RESUMO

Renal ischemia-reperfusion (I/R) injury is an important cause of acute renal failure (ARF). Geumgwe-sinkihwan (GSH) was recorded in a traditional Chines medical book named "Bangyakhappyeon" in 1884. GSH has been used for treatment for patients with diabetes and glomerulonephritis caused by deficiency of kidney yang and insufficiency of kidney gi. Here we investigate the effects of GSH in mice model of ischemic acute kidney injury. The mice groups are as follows; sham group: C57BL6 male mice, I/R group: C57BL6 male mice with I/R surgery, GSH low group: I/R + 100 mg/kg/day GSH, and GSH high group: I/R + 300 mg/kg/day GSH. Ischemia was induced by clamping both renal arteries and reperfusion. Mice were orally given GSH (100 and 300 mg/kg/day) during 3 days after surgery. Treatment with GSH significantly ameliorated creatinine clearance, creatinine, and blood urea nitrogen levels. Treatment with GSH reduced neutrophil gelatinase associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), specific renal injury markers. GSH also reduced the periodic acid-Schiff and picro sirius red staining intensity in kidney of I/R group. Western blot and real-time RT-qPCR analysis demonstrated that GSH decreased protein and mRNA expression levels of the inflammatory cytokines in I/R-induced ARF mice. Moreover, GSH inhibited protein and mRNA expression of inflammasome-related protein including NLRP3 (NOD-like receptor pyrin domain-containing protein 3, cryoprin), ASC (Apoptosis-associated speck-like protein containing a CARD), and caspase-1. These findings provided evidence that GSH ameliorates renal injury including metabolic dysfunction and inflammation via the inhibition of NLRP3-dependent inflammasome in I/R-induced ARF mice.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Traumatismo por Reperfusão/complicações , Injúria Renal Aguda/induzido quimicamente , Animais , Modelos Animais de Doenças , Inflamassomos/efeitos dos fármacos , Rim/irrigação sanguínea , Rim/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Traumatismo por Reperfusão/induzido quimicamente
6.
Shock ; 56(5): 762-772, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652342

RESUMO

ABSTRACT: Organ injury by oxidative and inflammatory mediators occurs during ischemia-reperfusion (I/R) of the liver. Remote organ injury secondary to liver I/R increases the systemic insult. Tender coconut water (TCW) has been studied in chemical and fructose-induced liver injury but its ability to decrease tissue injury in clinically relevant injury models is unknown. We evaluated the therapeutic potential of TCW in preventing liver I/R injury and associated remote organ injury. Mice were fed sugar water (SUG; control) or TCW for a week and then subjected to 60 min of liver ischemia followed by reperfusion for 6 h. Plasma alanine transaminase levels, tissue damage, and mRNA levels of Nos2, Tnf, and Il6 were significantly lower in mice fed TCW prior to I/R. Plasma cytokines followed liver cytokine patterns. TCW increased mRNA levels of the anti-oxidant genes Hmox1 and Ptgs2 in the liver of mice subjected to I/R. Remote lung injury from liver I/R was also decreased by TCW feeding as evident by less neutrophil infiltration, decreased pro-inflammatory Il6, and increased anti-inflammatory Il10 mRNA levels in the lung. To examine macrophage activation as a potential mechanism, TCW pretreatment decreased the amount of nitrite produced by RAW264.7 macrophages stimulated with LPS. The levels of Nos2, Il1b, Tnf, and Il6 were decreased while Il10 and Hmox1 mRNA levels were significantly up-regulated upon LPS stimulation of TCW pretreated RAW264.7 macrophages. Collectively, our results indicate that TCW decreased hepatic I/R-mediated damage to liver and lung and suggest that decreased macrophage activation contributes to this effect.


Assuntos
Cocos , Sucos de Frutas e Vegetais , Fígado/irrigação sanguínea , Lesão Pulmonar/prevenção & controle , Pulmão/irrigação sanguínea , Fitoterapia , Traumatismo por Reperfusão/prevenção & controle , Animais , Lesão Pulmonar/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/complicações
7.
Biomed Pharmacother ; 142: 111975, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34343894

RESUMO

This study aimed to explore the potential antioxidant, anti-inflammatory, and anti-apoptotic effects of omega 3 fatty acid (Ω-3) in a rat model of testicular torsion/detorsion (T/D). Under ketamine/xylazine anaesthesia, age-matched adult male Wistar rats of comparable weight underwent sham-operation or testicular torsion by fixing the left testis rotated at 720° for two and half hours. After detorsion, animals were treated with either olive oil as vehicle or Ω-3 subcutaneously for three days. On post-operative day 3, rats were culled and the ipsilateral and contralateral testes, as well as obtained blood samples, were analyzed. Our findings revealed that T/D led to significant poor weight gain, distorted gross anatomy, and cytoarchitecture of the testes, low sperm quality, redox imbalance, and inflammation of the ipsilateral and contralateral testes. This was accompanied by reduced circulatory testosterone, a decline in testicular lactate metabolism and transport, upregulation of xanthine oxidase/uric acid signaling, and increased testicular DNA fragmentation. Administration of Ω-3 attenuated T/D-induced damage to the testes and sperm cells with a significant rise in the level of serum testosterone. Enhancement of lactate transport and down-regulation of xanthine oxidase/uric acid signaling by Ω-3 may be beneficial in protecting against T/D-related oxido-inflammatory damage and male infertility.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Torção do Cordão Espermático/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Lactatos/metabolismo , Masculino , Ratos , Ratos Wistar , Traumatismo por Reperfusão/complicações , Transdução de Sinais/efeitos dos fármacos , Torção do Cordão Espermático/complicações , Espermatozoides/efeitos dos fármacos , Espermatozoides/patologia , Testículo/efeitos dos fármacos , Testículo/patologia , Testosterona/sangue , Ácido Úrico/metabolismo , Xantina Oxidase/metabolismo
8.
Pharm Biol ; 59(1): 823-827, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34196572

RESUMO

CONTEXT: Huanglian Jiedu Decoction (HLJJD) has a variety of pharmacological activities, such as anti-inflammatory and neuroprotection against ischaemic brain injury. OBJECTIVES: This ex vivo study explores its antithrombosis activity and inhibition of platelet aggregation. MATERIAL AND METHODS: To study the antithrombosis activity of HLJJD ex vivo, saline, or HLJDD (100, 200, and 500 mg/kg) was treated prophylactically by gavage for 3 days in Wistar rats (n = 4). Based on the rat model of transient middle cerebral artery infarction (MCAO) or normal rats (n = 4), the antithrombotic activity in the normal group and HLJDD subgroups on prothrombin time, thrombus weight, platelet aggregation, and others was evaluated, followed by the antiplatelet aggregation of its main components (n = 4). RESULTS: The weight of the thrombus increased significantly at 24 h after MCAO onset. HLJJD did not influence the change of PT, but significantly inhibited thrombosis by 12.5, 20.0, and 20.5% in reducing the dry weight of thrombus, and blocked collagen-induced platelet aggregation by 25.5, 39.0, and 42.7% and adhesion of blood platelet by 17.3, 26.2, and 27.3%. The IC50 value of HLJJD on collagen-induced platelet aggregation was 670 mg/kg. Geniposide only facilitated antiplatelet aggregation induced by collagen, but not AA or ADP. Both baicalin and berberine showed markedly antiplatelet aggregation induced by all activators. The antithrombotic activity of baicalin was relatively higher than that of berberine (35.0-47.8% vs. 20.6-33.5%). CONCLUSION: Our results indicated that HLJDD regulated blood circulation by inhibiting platelet aggregation and thrombosis, which might also extensively contribute to the clinical prevention and treatment of cerebrovascular diseases.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fibrinolíticos/farmacologia , AVC Isquêmico/prevenção & controle , Inibidores da Agregação Plaquetária/farmacologia , Animais , Isquemia Encefálica/prevenção & controle , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Fibrinolíticos/administração & dosagem , Infarto da Artéria Cerebral Média , Masculino , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/administração & dosagem , Ratos , Ratos Wistar , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico
9.
Pharm Biol ; 59(1): 828-839, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34196587

RESUMO

CONTEXT: Pien-Tze-Huang (PTH) is traditionally applied to treat various inflammation-related diseases including stroke. However, literature regarding the anti-inflammatory effects and possible mechanisms of PTH in ischaemic stroke is unavailable. OBJECTIVE: This study investigates the anti-inflammatory effects and its underlying mechanism of PTH on ischaemic stroke. MATERIALS AND METHODS: Cerebral ischaemia-reperfusion injury was induced through 2 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion in male Sprague-Dawley (SD) rats receiving oral pre-treatment with PTH (180 mg/kg) for 4 days. TLR4 antagonist TAK-242 (3 mg/kg) was injected intraperitoneally at 1.5 h after MCAO. MRI, HE staining, qRT-PCR, western blot, and immunofluorescence methods were employed. RESULTS: PTH treatment markedly reduced cerebral infarct volume (by 51%), improved neurological function (by 33%), and ameliorated brain histopathological damage in MCAO rats. It also reduced the levels of four inflammatory mediators including IL-1ß (by 70%), IL-6 (by 78%), TNF-α (by 60%) and MCP-1 (by 58%); inhibited microglia and astrocyte activation; and decreased protein expression of iNOS and COX-2 in injured brains. Moreover, PTH down-regulated the protein expressions of TLR4, MyD88, and TRAF6; reduced the expression and nuclear translocation of NF-κB; and lowered the protein expressions of p-ERK1/2, p-JNK, and p-p38. Similar effects were observed in MCAO rats with TAK-242 treatment. However, combined administration of PTH and TAK-242 did not significantly reinforce the anti-inflammatory effects of PTH. DISCUSSION AND CONCLUSION: PTH improved cerebral ischaemia-reperfusion injury by inhibiting neuroinflammation partly via the TLR4/NF-κB/MAPK signalling pathway, which will help guide its clinical application.


Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , AVC Isquêmico/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , AVC Isquêmico/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/patologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/metabolismo
10.
Physiol Res ; 70(4): 649-953, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34062081

RESUMO

Previously, we demonstrated that supplementation of resuscitation fluids with the Kv7 voltage-activated potassium channel inhibitor linopirdine reduces fluid resuscitation requirements and stabilizes hemodynamics in various rat models of hemorrhagic shock. To further evaluate the therapeutic potential of linopirdine, we tested the effects of linopirdine-supplemented resuscitation fluids in a rat model of ischemia-reperfusion injury-induced acute respiratory distress syndrome (ARDS). Ventilated rats underwent unilateral lung ischemia from t=0-75 min, followed by lung reperfusion and fluid resuscitation to a mean arterial blood pressure of 60 mmHg with normal saline (NS, n=9) or NS supplemented with 50 µg/ml linopridine (NS-L), n=7) until t=360 min. As compared with NS, fluid resuscitation with NS-L stabilized blood pressure and reduced fluid requirements by 40% (p<0.05 vs. NS at t=240-360 min). While NS-L did not affect ARDS development, it reduced mortality from 66% with NS to 14% with NS-L (p=0.03, hazard ratio 0.14; 95% confidence interval of the hazard ratio: 0.03-0.65). Median survival time was 240 min with NS and >360 min with NS-L. As compared with NS treated animals that survived the observation period (n=3), however, plasma lactate and creatinine concentrations at t=360 min were higher with NS-L (n=6; p<0.05). Our findings extend therapeutic potential of NS-L from hypovolemic/hemorrhagic shock to hemodynamic instability under normovolemic conditions during organ ischemia-reperfusion injury. Possible adverse effects of NS-L, such as impairment of renal function and/or organ hypoperfusion, require further evaluation in long-term pre-clinical models.


Assuntos
Hidratação , Indóis/administração & dosagem , Bloqueadores dos Canais de Potássio/administração & dosagem , Piridinas/administração & dosagem , Traumatismo por Reperfusão/complicações , Síndrome do Desconforto Respiratório/terapia , Ressuscitação , Solução Salina/administração & dosagem , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Infusões Intravenosas , Masculino , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/fisiopatologia , Fatores de Tempo
11.
Undersea Hyperb Med ; 48(2): 173-176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33975408

RESUMO

Background: Carbon monoxide (CO) poisoning and cardiac arrest can cause neurological complications such as mental deterioration and movement disorders through ischemic brain injury. We report a case in which neurological sequelae after cardiac arrest caused by CO poisoning improved after hyperbaric oxygen (HBO2) therapy. Case report: A 43-year-old male visited the hospital with cardiac arrest due to CO poisoning. He developed neurological sequelae including mental deterioration and myoclonus after recovering spontaneous circulation. Anticonvulsant therapy was used after target temperature management but did not have a positive effect on neurological symptoms. However, after HBO2 therapy the patient's neurological symptoms improved, and he was discharged a month later. Conclusion: HBO2 therapy may be considered when neurological sequelae persist after cardiac arrest due to CO poisoning.


Assuntos
Intoxicação por Monóxido de Carbono/complicações , Parada Cardíaca/complicações , Oxigenoterapia Hiperbárica , Hipóxia-Isquemia Encefálica/terapia , Mioclonia/terapia , Adulto , Humanos , Hipóxia-Isquemia Encefálica/diagnóstico , Hipóxia-Isquemia Encefálica/etiologia , Masculino , Mioclonia/tratamento farmacológico , Traumatismo por Reperfusão/complicações
13.
Naunyn Schmiedebergs Arch Pharmacol ; 394(5): 1045-1054, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33394135

RESUMO

23-Hydroxytormentic acid (23-HTA) is an important herbal medicine purified from immature fruits of African Rubus aceae (Rosaceae). This study was carried out to examine the protection properties and potential mechanisms of 23-HTA against cerebral ischemia/reperfusion (I/R) damage. Rats underwent middle cerebral artery occlusion/reperfusion (MCAO/R) 2/24 h. All animals were euthanized 24 h after reperfusion. Rats were injected with various concentrations of 23-HTA intraperitoneally. Evaluations of infarct volumes, neurological deficit, and brain water contents were carried out to assess the outcome of 23-HTA treatment. The results showed that 23-HTA reduced infarct volumes, brain water content, and neurological deficit in a dosage-dependent manner. 23-HTA can also significantly reduce the numbers of TUNEL-positive cells, the expression levels of Bax, caspase-3, lipid peroxidation, Sod 1, Sod 2, catalase, and pro-inflammatory cytokines TNF and IL-1ß and increase the expression levels of Bcl-2 and p-Akt. 23-HTA has a neuroprotective effect due to its anti-apoptotic, antioxidant, and anti-inflammatory effects.


Assuntos
Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Masculino , Fármacos Neuroprotetores/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Rubus/química , Triterpenos/isolamento & purificação
14.
Food Chem ; 345: 128672, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33352403

RESUMO

I/R (cerebral ischemia reperfusion injury) is the secondary complication of ischemic stroke patients that are immediately treated with drug thrombolysis or vascular recanalization in clinic. Diosgenin (DIO) purified from medicine food homologous (MFH) Dioscorea yam source is served as a fatal starting material to synthesize multifarious steroidal anti-inflammatory drugs in medicinal field, and has previously been demonstrated the potential prevention of I/R. However, the detailed mechanisms of neuroprotective effects against I/R remain elusively understood. Here, a global proteomic dynamics of rat right hemisphere brains was executed to investigate the protein expression patterns with a quantitative LC-MSn. In total, 5043 proteins were identified and 418 ones were determined to be significantly dysregulated DEPs (differentially expressed proteins) in comparison of Sham verse I/R and I/R verse DIO after onset stage of I/R, among which 5 DEPs namely BICD2, HNRNPK, CEP41, PPM1K, and ARL2BP, whose biological functions were mainly clustered into the mediation of nervous system, were selected for further validation in vitro and in vivo, and the change tendency expectedly supported the proteomic findings. Additionally, the AUC value of the combined ROC of these 5 DEPs was 0.988 with P < 0.0001, higher than every single one. Collectively, these scientific findings attributed to a typical investigation of dietary Dioscorea-enriched diosgenin in MFH research, suggesting that diosgenin or its derivatives were potential to be developed into food supplements or healthy food products to reveal healthy benefits in natural prevention and reduction risk of I/R. This work also promoted reasonable consumption of Dioscorea yams and contributed to the function of diosgenin-derived products and their applications in food industry.


Assuntos
Anti-Inflamatórios/farmacologia , Isquemia Encefálica/complicações , Dioscorea/química , Diosgenina/farmacologia , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/prevenção & controle , Animais , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Suplementos Nutricionais , Proteômica , Ratos , Traumatismo por Reperfusão/metabolismo
15.
J Immunol Res ; 2020: 8873261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294469

RESUMO

Stroke is a cerebrovascular disease that results in decreased blood flow. Although Panax notoginseng (PN), a Chinese herbal medicine, has been proven to promote stroke recovery, its molecular mechanism remains unclear. In this study, middle cerebral artery occlusion (MCAO) was induced in rats with thrombi generated by thread and subsequently treated with PN. After that, staining with 2,3,5-triphenyltetrazolium chloride was employed to evaluate the infarcted area, and electron microscopy was used to assess ultrastructural changes of the neurovascular unit. RNA-Seq was performed to determine the differential expressed genes (DEGs) which were then verified by qPCR. In total, 817 DEGs were identified to be related to the therapeutic effect of PN on stroke recovery. Further analysis by Gene Oncology analysis and Kyoto Encyclopedia of Genes and Genomes revealed that most of these genes were involved in the biological function of nerves and blood vessels through the regulation of neuroactive live receptor interactions of PI3K-Akt, Rap1, cAMP, and cGMP-PKG signaling, which included in the 18 pathways identified in our research, of which, 9 were reported firstly that related to PN's neuroprotective effect. This research sheds light on the potential molecular mechanisms underlying the effects of PN on stroke recovery.


Assuntos
Biomarcadores , Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Panax notoginseng/química , Traumatismo por Reperfusão/etiologia , Animais , Biópsia , Biologia Computacional/métodos , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Ratos , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/diagnóstico , Traumatismo por Reperfusão/tratamento farmacológico , Roedores , Transdução de Sinais , Transcriptoma
16.
ACS Chem Neurosci ; 11(24): 4489-4498, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270442

RESUMO

Cerebral ischemia/reperfusion (I/R)-induced injury is a common phenomenon of stroke, and the effective treatment for I/R-induced brain tissue damage is limited. Breviscapine has been widely used in China as herbal medicine to treat cardiovascular diseases for hundreds of years and has been demonstrated to possess potent cardiovascular pharmacological effects. This study aims to investigate the neuroprotective effect of breviscapine on cerebral I/R-induced injury. The rat model of middle cerebral artery occlusion (MCAO) was applied in our study. The cerebral I/R rats received multiple injections of breviscapine. All rats were subject to neurological behavior tests by open field test and Morris water maze test. The pro-inflammatory cytokines and oxidative stress marker levels were determined by ELISA and colorimetric analysis, respectively. We demonstrated that administration of breviscapine dose-dependently ameliorated cerebral I/R-induced injury and improved the neurological performance of cerebral I/R rats. Further studies illustrated that breviscapine treatment effectively attenuated inflammatory cytokine expression, reduced oxidative stress, and pro-apoptosis protein expression and inhibited the activation of NF-κB signaling and microglia in the I/R injury tissues. Breviscapine may serve as a single drug or a promising adjuvant that can be used in conjunction with other medicine for the treatment of cerebral I/R-induced injury.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Ataque Isquêmico Transitório , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , China , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Flavonoides , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Reperfusão , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico
17.
Mol Cell Probes ; 54: 101672, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33186709

RESUMO

Garcinol, a polyisoprenylated benzophenone derivative, is isolated from fruit rind of Garcinia indica. It is known to exert potent anti-inflammatory and anti-oxidative properties. In the present study, we tried to investigate the neuroprotective effects of garcinol on a rat model with middle cerebral artery occlusion/reperfusion (MCAO/R) and a cell model subjected to oxygen glucose deprivation and reperfusion (OGD/R). In vivo, we found that the rats with garcinol treatment showed a lower neurological deficit score and a smaller infarct size compared with the rats with ischemia-reperfusion (I/R) injury alone. We further found that garcinol treatment decreased cerebral I/R-induced inflammatory cytokines and oxidative stress, including inhibiting the production of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α (TNF-α), decreasing the levels of malonaldehyde (MDA) and nitric oxide (NO), and suppressing the decreased superoxide dismutase (SOD) activity. Moreover, the suppression of toll-like receptor (TLR) 4 and nuclear NF-κB (p65) expression by garcinol was found both in vivo and in vitro. In addition, NF-κB activator or TLR4 overexpression was employed to investigate its involvement in the effects of garcinol. The results showed that NF-κB activator or TLR4 overexpression at least in part reversed the anti-inflammatory and anti-oxidative properties of garcinol in vitro. Taken together, the data suggest that garcinol could protect against cerebral I/R injury through attenuating inflammation and oxidative stress, and improving neurological function. The molecular mechanism might be related to its suppression of TLR4/NF-ĸB signal pathway.


Assuntos
Inflamação/patologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Traumatismo por Reperfusão/tratamento farmacológico , Terpenos/uso terapêutico , Animais , Citocinas/metabolismo , Glucose/deficiência , Inflamação/complicações , Mediadores da Inflamação/metabolismo , Masculino , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Oxigênio , Células PC12 , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Terpenos/farmacologia
18.
Mol Vis ; 26: 691-704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088173

RESUMO

Purpose: The present study aimed to determine whether the administration of Acer palmatum thumb. leaf extract (KIOM-2015E) protects against the degeneration of rat retinal ganglion cells after ischemia/reperfusion (I/R) induced by midbrain cerebral artery occlusion (MCAO). Methods: Sprague-Dawley rats were subjected to 90 min of MCAO, which produces transient ischemia in both the retina and brain due to the use of an intraluminal filament that blocks the ophthalmic and middle cerebral arteries. This was followed by reperfusion under anesthesia with isoflurane. The day after surgery, the eyes were treated three times (eye drop) or one time (oral administration) daily with KIOM-2015E for five days. Retinal histology was assessed in flat mounts and vertical sections to determine the effect of KIOM-2015E on I/R injury. Results: A significant loss of brain-specific homeobox/POU domain protein 3A (Brn3a) and neuron-specific class III beta-tubulin (Tuj-1) fluorescence and a marked increase in glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) expression were observed after five days in the PBS-treated MCAO group compared to the sham-operated control group. However, KIOM-2015E treatment reduced (1) MCAO-induced upregulation of GFAP and GS, (2) retinal ganglion cell loss, (3) nerve fiber degeneration, and (4) the number of TUNEL-positive cells. KIOM-2015E application also increased staining for parvalbumin (a marker of horizontal cell associated calcium-binding protein and amacrine cells) and recoverin (a marker of photoreceptor expression) in rats subjected to MCAO-induced retinal damage. Conclusions: Our findings indicated that KIOM-2015E treatment exerted protective effects against retinal damage following MCAO injury and that this extract may aid in the development of novel therapeutic strategies for retinal diseases, such as glaucoma and age-related macular disease.


Assuntos
Acer/metabolismo , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Traumatismo por Reperfusão/metabolismo , Degeneração Retiniana/prevenção & controle , Células Ganglionares da Retina/efeitos dos fármacos , Acer/química , Animais , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Masculino , Fibras Nervosas/patologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/mortalidade , Degeneração Retiniana/complicações , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/patologia , Fator de Transcrição Brn-3B/metabolismo , Tubulina (Proteína)/metabolismo , Regulação para Cima
19.
Mol Med Rep ; 22(4): 3225-3232, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32945486

RESUMO

Limb ischemia/reperfusion (I/R) can induce inflammation, causing acute lung injury. The Toll­like receptor 4 (TLR4)/NF­κB pathway plays an important role in acute and chronic inflammatory disorders. Several studies have demonstrated the efficacy of acupuncture in lung inflammatory injury. The aim of the present study was to elucidate the mechanism underlying the protective effect of electroacupuncture (EA) against lung injury induced by limb I/R. EA applied at the Zusanli and Sanyinjiao acupoints attenuated lung injury and decreased the secretion of inflammatory factors such as tumor necrosis factor­α, interleukin (IL)­1, IL­6 and myeloperoxidase. Moreover, the expression levels of TLR4 and NF­κB were suppressed by EA. Thus, the present findings suggested that EA can reduce pulmonary inflammation induced by limb I/R injury, possibly via the inhibition of the TLR4/NF­κB pathway.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Eletroacupuntura/métodos , NF-kappa B/metabolismo , Traumatismo por Reperfusão/terapia , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/imunologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/imunologia , Transdução de Sinais
20.
Mol Neurobiol ; 57(10): 4305-4321, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32700252

RESUMO

Buyang Huanwu Decoction (BHD), a classic traditional Chinese medicine (TCM) formula, has been used for recovering neurological dysfunctions and treating post-stroke disability in China for 200 years. In the present study, we investigated the effects of BHD on inhibiting neuronal apoptosis, promoting proliferation and differentiation of neural stem cells (NSCs) and neurite formation and enhancing learning and memory functional recovery in an experimental rat ischemic stroke model. BHD significantly reduced infarct volume and decreased cell apoptosis in the ischemic brain. BHD enhanced neuronal cell viability in vitro. BHD dose-dependently promoted the proliferation of NSCs in ischemic rat brains in vivo. Moreover, BHD promoted neuronal and astrocyte differentiation in primary cultured NSCs in vitro. Water maze test revealed that BHD promoted the recovery of learning function but not memory functions in the transient ischemic rats. We then investigated the changes of the cellular signaling molecules by using two-dimension (2D) gel electrophoresis and focused on the PI3K/Akt/Bad and Jak2/Stat3/cyclin D1signaling pathway to uncover its underlying mechanisms for its neuroprotective and neurogenetic effects. BHD significantly upregulated the expression of p-PI3K, p-Akt, and p-Bad as well as the expression of p-Jak, p-Stat3, and cyclin D1 in vitro and in vivo. In addition, BHD upregulated Hes1 and downregulated cav-1 in vitro and in vivo. Taken together, these results suggest that BHD has neuroprotective effects and neurogenesis-promoting effects via activating PI3K/Akt/Bad and Jak2/Stat3/Cyclin D1 signaling pathways. Graphical Abstract Buyang Huanwu Decoction (BHD) activates the PI3K-AKT-BAD pathway in the ischemic brain for neuroprotection. BHD also activates JAK2/STAT3/Cyclin D1 signaling cascades for promoting neurogenesis in the hippocampus of post-ischemic brains. Moreover, BHD inhibits the expression of caveolin-1 and increases the expression of HES1 for promoting neuronal differentiation. The neuroprotective and neurogenesis-promoting effects in the hippocampus of post-ischemic brains promote learning ability.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Ataque Isquêmico Transitório/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Neurogênese , Fármacos Neuroprotetores/uso terapêutico , Proteômica , Transdução de Sinais , Proteínas 14-3-3/metabolismo , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Axônios/patologia , Caveolina 1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Receptores ErbB/metabolismo , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , AVC Isquêmico/complicações , AVC Isquêmico/patologia , AVC Isquêmico/fisiopatologia , Janus Quinase 2/metabolismo , Masculino , Memória/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Neurite (Inflamação)/patologia , Neurogênese/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição HES-1/metabolismo , Regulação para Cima/efeitos dos fármacos , Xantenos/farmacologia , Proteína de Morte Celular Associada a bcl/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA