Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Int Med Res ; 52(3): 3000605241232550, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456645

RESUMO

OBJECTIVE: To investigate the effect of adipose-derived cells (ADCs) on tendon-bone healing in a rat model of chronic rotator cuff tear (RCT) with suprascapular nerve (SN) injury. METHODS: Adult rats underwent right shoulder surgery whereby the supraspinatus was detached, and SN injury was induced. ADCs were cultured from the animals' abdominal fat. At 6 weeks post-surgery, the animals underwent surgical tendon repair; the ADC (+ve) group (n = 18) received an ADC injection, and the ADC (-ve) group (n = 18) received a saline injection. Shoulders were harvested at 10, 14, and 18 weeks and underwent histological, fluorescent, and biomechanical analyses. RESULTS: In the ADC (+ve) group, a firm enthesis, including dense mature fibrocartilage and well-aligned cells, were observed in the bone-tendon junction and fatty infiltration was less than in the ADC (-ve) group. Mean maximum stress and linear stiffness was greater in the ADC (+ve) compared with the ADC (-ve) group at 18 weeks. CONCLUSION: ADC supplementation showed a positive effect on tendon-bone healing in a rat model of chronic RCT with accompanying SN injury. Therefore, ADC injection may possibly accelerate recovery in massive RCT injuries.


Assuntos
Traumatismos dos Nervos Periféricos , Lesões do Manguito Rotador , Ratos , Animais , Lesões do Manguito Rotador/patologia , Lesões do Manguito Rotador/cirurgia , Cicatrização , Modelos Animais de Doenças , Tendões/patologia , Traumatismos dos Nervos Periféricos/terapia , Fenômenos Biomecânicos , Suplementos Nutricionais
2.
Neurosci Lett ; 824: 137691, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373630

RESUMO

Enhancing axonal regeneration is one of the most important processes in treating nerve injuries. Both magnetic and electrical stimulation have the effect of promoting nerve axon regeneration. But few study has investigated the effects of trans-spinal magnetic stimulation (TsMS) combined with electroacupuncture (EA) on nerve regeneration in rats with sciatic nerve injury. In this study, we compared the improvement of neurological function in rats with sciatic nerve crush injuries after 4 weeks of different interventions (EA, TsMS, or TsMS combined with EA). We further explored the morphological and molecular biological alterations following sciatic nerve injury by HE, Masson, RT-PCR, western blotting, immunofluorescence staining and small RNA transcriptome sequencing. The results showed that TsMS combined with EA treatment significantly promoted axonal regeneration, increased the survival rate of neurons, and suppressed denervation atrophy of the gastrocnemius muscle. Subsequent experiments suggested that the combination treatment may play an active role by mediating the miR-539-5p/Sema3A/PlexinA1 signaling axis.


Assuntos
Eletroacupuntura , MicroRNAs , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Ratos Sprague-Dawley , Semaforina-3A/farmacologia , Axônios , Regeneração Nervosa/fisiologia , Nervo Isquiático/lesões , Neuropatia Ciática/terapia , Traumatismos dos Nervos Periféricos/terapia , MicroRNAs/genética , MicroRNAs/farmacologia
3.
Int. j. morphol ; 42(1): 166-172, feb. 2024. ilus
Artigo em Inglês | LILACS | ID: biblio-1528834

RESUMO

SUMMARY: Peripheral nerve injury is an extremely important medical and socio-economic problem. It is far from a solution, despite on rapid development of technologies. To study the effect of long-term electrical stimulation of peripheral nerves, we used a domestically produced electrical stimulation system, which is approved for clinical use. The study was performed on 28 rabbits. Control of regeneration was carried out after 3 month with morphologic techniques. The use of long-term electrostimulation technology leads to an improvement in the results of the recovery of the nerve trunk after an injury, both directly at the site of damage, when stimulation begins in the early period, and indirectly, after the nerve fibers reach the effector muscle.


La lesión de los nervios periféricos es un problema médico y socioeconómico extremadamente importante. Sin embargo, y a pesar del rápido desarrollo de las tecnologías, aún no tiene solución. Para estudiar el efecto de la estimulación eléctrica a largo plazo de los nervios periféricos, utilizamos un sistema de estimulación eléctrica de producción nacional, que está aprobado para uso clínico. El estudio se realizó en 28 conejos. El control de la regeneración se realizó a los 3 meses con técnicas morfológicas. El uso de tecnología de electro estimulación a largo plazo conduce a una mejora en los resultados de la recuperación del tronco nervioso después de una lesión, tanto directamente en el lugar del daño, cuando la estimulación comienza en el período temprano, como indirectamente, después de que las fibras nerviosas alcanzan el músculo efector.


Assuntos
Animais , Coelhos , Estimulação Elétrica/métodos , Traumatismos dos Nervos Periféricos/terapia , Nervos Periféricos , Músculo Esquelético/inervação , Recuperação de Função Fisiológica , Regeneração Nervosa
4.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255977

RESUMO

Peripheral nerve injuries lead to severe functional impairments and long recovery times, with limited effectiveness and accessibility of current treatments. This has increased interest in natural bioactive compounds, such as ursolic acid (UA). Our study evaluated the effect of an oleolyte rich in UA from white grape pomace (WGPO) on neuronal regeneration in mice with induced sciatic nerve resection, administered concurrently with the induced damage (the WGPO group) and 10 days prior (the PRE-WGPO group). The experiment was monitored at two-time points (4 and 10 days) after injury. After 10 days, the WGPO group demonstrated a reduction in muscle atrophy, evidenced by an increased number and diameter of muscle fibers and a decreased Atrogin-1 and Murf-1 expression relative to the denervated control. It was also observed that 85.7% of neuromuscular junctions (NMJs) were fully innervated, as indicated by the colocalization of α-bungarotoxin and synaptophysin, along with the significant modulation of Oct-6 and S-100. The PRE-WGPO group showed a more beneficial effect on nerve fiber reformation, with a significant increase in myelin protein zero and 95.2% fully innervated NMJs, and a pro-hypertrophic effect in resting non-denervated muscles. Our findings suggest WGPO as a potential treatment for various conditions that require the repair of nerve and muscle injuries.


Assuntos
Traumatismos dos Nervos Periféricos , Animais , Camundongos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Ácido Ursólico , Nervo Isquiático , Suplementos Nutricionais , Fibras Musculares Esqueléticas
5.
Mol Neurobiol ; 61(2): 935-949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37672149

RESUMO

Although the benefits of electroacupuncture (EA) for peripheral nerve injury (PNI) are well accepted in clinical practice, the underlying mechanism remains incompletely elucidated. In our study, we observed that EA intervention led to a reduction in the expression of the long non-coding RNA growth-arrest-specific transcript 5 (GAS5) and an increased in miR-21 levels within the injured nerve, effectively promoting functional recovery and nerve regeneration following sciatic nerve injury (SNI). In contrast, administration of adeno-associated virus expressing GAS5 (AAV-GAS5) weakened the therapeutic effect of EA. On the other hand, both silencing GAS5 and introducing a miR-21 mimic prominently enhanced the proliferation activity and migration ability of Schwann cells (SCs), while also inhibiting SCs apoptosis. On the contrary, inhibition of SCs apoptosis was found to be mediated by miR-21. Additionally, overexpression of GAS5 counteracted the effects of the miR-21 mimic on SCs. Moreover, SCs that transfected with the miR-21 mimic promoted neurite growth in hypoxia/reoxygenation-induced neurons, which might be prevented by overexpressing GAS5. Furthermore, GAS5 was found to be widely distributed in the cytoplasm and was negatively regulated by miR-21. Consequently, the targeting of GAS5 by miR-21 represents a potential mechanism through which EA enhances reinnervation and functional restoration following SNI. Mechanistically, the GAS5/miR-21 axis can modulate the proliferation, migration, and apoptosis of SCs while potentially influencing the neurite growth of neurons.


Assuntos
Eletroacupuntura , MicroRNAs , Traumatismos dos Nervos Periféricos , RNA Longo não Codificante , Neuropatia Ciática , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/metabolismo , Neuropatia Ciática/metabolismo , Regeneração Nervosa/fisiologia , Nervo Isquiático/metabolismo
6.
Eur J Neurosci ; 59(2): 192-207, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145884

RESUMO

Skeletal muscle is striated muscle that moves autonomously and is innervated by peripheral nerves. Peripheral nerve injury is very common in clinical treatment. However, the commonly used treatment methods often focus on the regeneration of the injured nerve but overlook the pathological changes in the injured skeletal muscle. Acupuncture, as the main treatment for denervated skeletal muscle atrophy, is used extensively in clinical practice. In the present study, a mouse model of lower limb sciatic nerve detachment was constructed and treated with electroacupuncture Stomach 36 to observe the atrophy of lower limb skeletal muscle and changes in skeletal muscle fibre types before and after electroacupuncture Stomach 36 treatment. Mice with skeletal muscle denervation showed a decrease in the proportion of IIa muscle fibres and an increase in the proportion of IIb muscle fibres, after electroacupuncture Stomach 36. The changes were reversed by specific activators of p38 MAPK, which increased IIa myofibre ratio. The results suggest that electroacupuncture Stomach 36 can reverse the change of muscle fibre type from IIb to IIa after denervation of skeletal muscle by inhibiting p38 MAPK. The results provide an important theoretical basis for the treatment of clinical peripheral nerve injury diseases with electroacupuncture, in addition to novel insights that could facilitate the study of pathological changes of denervated skeletal muscle.


Assuntos
Eletroacupuntura , Traumatismos dos Nervos Periféricos , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Traumatismos dos Nervos Periféricos/terapia , Fibras Musculares Esqueléticas , Músculo Esquelético , Nervo Isquiático/lesões , Atrofia Muscular/terapia , Proteínas Quinases p38 Ativadas por Mitógeno
7.
Zhongguo Zhen Jiu ; 43(11): 1293-1299, 2023 Nov 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37986253

RESUMO

OBJECTIVES: To observe the effects of electroacupuncture (EA) at "Jiaji" (EX-B 2) combined with neurodynamic mobilization (NM) on the cross-sectional area of the gastrocnemius muscle fibers after sciatic nerve injury in rabbits, and the expression of nuclear factor κB (NF-κB) and muscle-specific ring-finger protein 1 (MuRF1). METHODS: A total of 180 common-grade New Zealand rabbits (half male and half female) were randomly divided into five groups, i.e. a normal control group, a model control group, a NM group, an EA group and a combined intervention group, 36 rabbits in each group. Except in the normal control group, clipping method was used to prepare the model of sciatic nerve injury in the rest groups. On the 3rd day of successful modeling, NM was delivered in the NM group. In the EA group, EA was exerted at bilateral "Jiaji" (EX-B 2) of L4 to L6, stimulated with disperse-dense wave and the frequency of 2 Hz/100 Hz. In the combined intervention group, after EA delivered at bilateral "Jiaji" (EX-B 2) of L4 to L6 , NM was operated. The intervention in each group was delivered once daily, for 6 days a week, and lasted 1, 2 or 4 weeks according to the collection time of sample tissue. After 1, 2 and 4 weeks of intervention, in each group, the toe tension reflex score and the modified Tarlov test score were observed; the morphology of the gastrocnemius muscle was observed by HE staining and the cross-sectional area of muscular fiber was measured; using Western blot method, the expression of NF-κB and MuRF1 of the gastrocnemius muscle was detected. RESULTS: After 1, 2 and 4 weeks of intervention, the toe tension reflex scores and the modified Tarlov scores in the model control group were lower than those of the normal control group (P<0.05), and these two scores in the NM group, the EA group and the combined intervention group were all higher than those of the model control group (P<0.05); the scores in the combined intervention group were higher than those in the EA group and the NM group (P<0.05). The gastrocnemius fibers were well arranged and the myocyte morphology was normal in the normal control group. In the model control group, the gastrocnemius fibers were disarranged, the myocytes were irregular in morphology and the inflammatory cells were infiltrated in the local. In the NM group, the EA group and the combined intervention group, the muscle fibers were regularly arranged when compared with the model control group. After 1, 2 and 4 weeks of intervention, the cross-sectional areas of the gastrocnemius muscle fibers in the model control group were smaller than those of the normal control group (P<0.05). The cross-sectional areas in the NM group, the EA group and the combined intervention group were larger than those of the model control group (P<0.05), and the cross-sectional areas in the combined intervention group were larger than those in the NM group and the EA group (P<0.05). After intervention for 1, 2 and 4 weeks, the protein expressions of NF-κB and MuRF1 in the gastrocnemius muscle were higher in the model control group in comparison of those in the normal control group (P<0.05). In the NM group, the EA group and the combined intervention group, the expressions of NF-κB after intervention for 1, 2 and 4 weeks and the expressions of MuRF1 after 2 and 4 weeks of intervention were lower when compared with those in the model control group (P<0.05). In the combined intervention group, the protein expressions of NF-κB after intervention for 1, 2 and 4 weeks and the expressions of MuRF1 after 2 and 4 weeks of intervention were decreased when compared with those in the NM group and the EA group (P<0.05). CONCLUSIONS: Electroacupuncture at "Jiaji" (EX-B 2) combined with NM may increase the muscle strength and sciatic function and alleviate gastrocnemius muscle atrophy in the rabbits with sciatic nerve injury. The underlying mechanism is related to the inhibition of NF-κB and MuRF1 expression.


Assuntos
Eletroacupuntura , Traumatismos dos Nervos Periféricos , Animais , Feminino , Masculino , Coelhos , Músculo Esquelético , Atrofia Muscular/terapia , NF-kappa B/genética , Ratos Sprague-Dawley , Nervo Isquiático , Ratos
8.
Burns ; 49(8): 1958-1968, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821288

RESUMO

INTRODUCTION: Although several studies have investigated models of nerve electrical injury, only a few have focused on electrical injury to peripheral nerves, which is a common and intractable problem in clinical practice. Here, we describe an experimental rat model of peripheral nerve electrical injury and its assessment. METHODS: A total of 120 animals were subjected to short-term corrective electrostimulation (50 Hz, 1-s duration) applied at varying voltages (control, 65, 75, 100, 125, and 150 V) to the exposed left sciatic nerve. Behavioural testing, electrophysiological measurements, and histopathological observation of the sciatic nerve were conducted at 1-, 2-, 4-, and 8-w follow-ups. RESULTS: No functional defects were noted in the groups that received 65-V stimulation at any time point. Sciatic nerve functional defects were found after 2 w in animals that received 75-V stimulation, but function returned to normal after 4 w. In animals that received 100-V and 125-V stimulation, functional defects were observed at 4 w, but had partially recovered by 8 w. Conversely, animals that received 150-V stimulation did not show recovery after 8 w. CONCLUSION: We presented a model of peripheral nerve electrical injury that avoided the interference of various external factors, such as current instability, compression of the surrounding tissues, and altered blood supply. The model allowed quantitation and ranking of the nerve injury into four degrees. It facilitated effective evaluation of nerve function impairment and repair after injury. It can be used post-surgically to evaluate peripheral nerve impairment and reconstruction and enables translational interpretation of results, which may improve understanding of the mechanisms underlying the progression of peripheral nerve electrical injury.


Assuntos
Queimaduras , Traumatismos por Eletricidade , Traumatismos dos Nervos Periféricos , Ratos , Animais , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia , Regeneração Nervosa/fisiologia
9.
Int. j. morphol ; 41(4): 1184-1190, ago. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1514361

RESUMO

SUMMARY: Peripheral nerve damage is a significant clinical problem that can lead to severe complications in patients. Regarding the regeneration of peripheral nerves, it is crucial to use experimental animals' nerves and use different evaluation methods. Epineural or perineural suturing is the gold standard in treating sciatic nerve injury, but nerve repair is often unsuccessful. This study aimed to investigate the neuroregenerative effects of magnetotherapy and bioresonance in experimental animals with sciatic nerve damage. In this study, 24 female Wistar rats were divided into 7 groups (n=6) as follows: Group 1 (Control), Group 2 (Axonotmesis control), Group 3 (Anastomosis control), Group 4 (Axonotmesis + magnetotherapy), Group 5 (Anastomosis + magnetotherapy), Group 6 (Axonotmesis + bioresonance), Group 7 (Anastomosis + bioresonance). Magnetotherapy and bioresonance treatments were applied for 12 weeks. Behavioural tests and EMG tests were performed at the end of the 12th week. Then the rats were sacrificed, and a histopathological evaluation was made. The statistical significance level was taken as 5 % in the calculations, and the SPSS (IBM SPSS for Windows, ver.21) statistical package program was used for the calculations. Statistically significant results were obtained in animal behaviour tests, EMG, and pathology groups treated with magnetotherapy. There was no statistically significant difference in the groups treated with bioresonance treatment compared to the control groups. Muscle activity and nerve repair occurred in experimental animals with acute peripheral nerve damage due to 12 weeks of magnetotherapy, and further studies should support these results.


El daño a los nervios periféricos es un problema clínico importante que puede conducir a complicaciones graves en los pacientes. En cuanto a la regeneración de los nervios periféricos, es crucial utilizar los nervios de los animales de experimentación y diferentes métodos de evaluación. La sutura epineural o perineural es el gold estándar en el tratamiento de lesiones del nervio ciático, pero la reparación del nervio a menudo no tiene éxito. Este estudio tuvo como objetivo investigar los efectos neuroregenerativos de la magnetoterapia y la biorresonancia en animales de experimentación con daño del nervio ciático. En el estudio, 24 ratas hembras Wistar se dividieron en 7 grupos (n=6) de la siguiente manera: Grupo 1 (Control), Grupo 2 (Control de axonotmesis), Grupo 3 (Control de anastomosis), Grupo 4 (Axonotmesis + magnetoterapia), Grupo 5 (Anastomosis + magnetoterapia), Grupo 6 (Axonotmesis + biorresonancia), Grupo 7 (Anastomosis + biorresonancia). Se aplicaron durante 12 semanas tratamientos de magnetoterapia y biorresonancia. Las pruebas de comportamiento y las pruebas de EMG se realizaron al final de la semana 12. Luego se sacrificaron las ratas y se realizó una evaluación histopatológica. El nivel de significación estadística se tomó como 5 % en los cálculos, y se utilizó el programa de paquete estadístico SPSS (IBM SPSS para Windows, ver.21). Se obtuvieron resultados estadísticamente significativos en pruebas de comportamiento animal, EMG y grupos de patología tratados con magnetoterapia. No hubo diferencia estadísticamente significativa en los grupos con tratamiento de biorresonancia en comparación con los grupos controles. La actividad muscular y la reparación nerviosa, se produjeron en animales de experimentación con daño nervioso periférico agudo, debido a 12 semanas de magnetoterapia.Estudios adicionales deberían respaldar estos resultados.


Assuntos
Animais , Feminino , Ratos , Nervo Isquiático/lesões , Traumatismos dos Nervos Periféricos/terapia , Regeneração Nervosa , Nervo Isquiático/fisiologia , Ratos Wistar , Eletromiografia , Magnetoterapia , Traumatismos dos Nervos Periféricos/fisiopatologia , Terapia de Biorressonância
10.
Eur Rev Med Pharmacol Sci ; 27(12): 5841-5853, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37401321

RESUMO

OBJECTIVE: The aim of this study was to investigate the effects of cinnamon bark essential oil (CBO) on analgesia, motor activity, balance, and coordination in rats with sciatic nerve damage. MATERIALS AND METHODS: Rats were divided into three groups as simply randomized. The right sciatic nerve (RSN) of the Sham group was explored. Only vehicle solution was applied for 28 days. The RSN of the sciatic nerve injury (SNI) group was explored. Damage was created by unilateral clamping, and vehicle solution was applied for 28 days. The RSN of the sciatic nerve injury+cinnamon bark essential oil (SNI+CBO) group was explored. SNI was created by unilateral clamping and CBO was applied for 28 days. In the experiment study, motor activity, balance, and coordination measurements were made with rotarod and accelerod tests. A hot plate test was performed for analgesia measurements. Histopathology studies were carried out with the sciatic nerve tissues. RESULTS: In the rotarod test, there was a statistically significant difference between the SNI group and the SNI+CBO group (p<0.05). According to the accelerod test findings, there was a statistically significant difference between the SNI group with the Sham and SNI+CBO groups. In the hot plate test, there was a statistically significant difference between the SNI group with the Sham and SNI+CBO groups (p<0.05). In comparison to the Sham group and the SNI group, the SNI+CBO group was shown to have the greatest expression level of vimentin. CONCLUSIONS: We have concluded that CBO can be used as an adjuvant treatment in cases of SNI, increased pain, nociception, impaired balance, motor activity, and coordination. Our results will be supported by further studies.


Assuntos
Óleos Voláteis , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Nervo Isquiático , Cinnamomum zeylanicum , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Dor/patologia , Óleos Voláteis/farmacologia
11.
Brain Behav ; 13(9): e3174, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522806

RESUMO

INTRODUCTION: Tuina is currently one of the popular complementary and alternative methods of rehabilitation therapy. Tuina can improve patients' pain and mobility function. However, the underlying physiological mechanism remains largely unknown, which might limit its further popularization in clinical practice. The aim of this study is to explore the short-term and long-term changes in brain functional activity following Tuina intervention for peripheral nerve injury repair. METHODS: A total of 16 rats were equally divided into the intervention group and the control group. Rats in the intervention group received Tuina therapy applying on the gastrocnemius muscle of the right side for 4 months following sciatic nerve transection and immediate repair, while the control group received nerve transection and repair only. The block-design functional magnetic resonance imaging scan was applied in both groups at 1 and 4 months after the surgery. During the scan, both the injured and intact hindpaw was electrically stimulated according to a "boxcar" paradigm. RESULTS: When stimulating the intact hindpaw, the intervention group exhibited significantly lower activation in the somatosensory area, limbic/paralimbic areas, pain-regulation areas, and basal ganglia compared to the control group, with only the prefrontal area showing higher activation. After 4 months of sciatic nerve injury, the control group exhibited decreased motor cortex activity compared to the activity observed at 1 month, and the intervention group demonstrated stronger bilateral motor cortex activity compared to the control group. CONCLUSION: Tuina therapy on the gastrocnemius muscle of rats with sciatic nerve injury can effectively alleviate pain and maintain the motor function of the affected limb. In addition, Tuina therapy reduced the activation level of pain-related brain regions and inhibited the decreased activity of the motor cortex caused by nerve injury, reflecting the impact of peripheral stimulation on brain plasticity.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Traumatismos dos Nervos Periféricos/terapia , Nervo Isquiático/lesões , Plasticidade Neuronal/fisiologia , Dor
12.
Neurosci Biobehav Rev ; 152: 105332, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524138

RESUMO

The somatosensory system organizes the topographic representation of body maps, termed somatotopy, at all levels of an ascending hierarchy. Postnatal maturation of somatotopy establishes optimal somatosensation, whereas deafferentation in adults reorganizes somatotopy, which underlies pathological somatosensation, such as phantom pain and complex regional pain syndrome. Here, we focus on the mouse whisker somatosensory thalamus to study how sensory experience shapes the fine topography of afferent connectivity during the critical period and what mechanisms remodel it and drive a large-scale somatotopic reorganization after peripheral nerve injury. We will review our findings that, following peripheral nerve injury in adults, lemniscal afferent synapses onto thalamic neurons are remodeled back to immature configuration, as if the critical period reopens. The remodeling process is initiated with local activation of microglia in the brainstem somatosensory nucleus downstream to injured nerves and heterosynaptically controlled by input from GABAergic and cortical neurons to thalamic neurons. These fruits of thalamic studies complement well-studied cortical mechanisms of somatotopic organization and reorganization and unveil potential intervention points in treating pathological somatosensation.


Assuntos
Traumatismos dos Nervos Periféricos , Camundongos , Animais , Tálamo , Neurônios/fisiologia , Tronco Encefálico/fisiologia , Sinapses/fisiologia , Córtex Somatossensorial/fisiologia
13.
Medicine (Baltimore) ; 102(29): e34256, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478277

RESUMO

BACKGROUND: Peripheral nerve injuries (PNI) resulting from trauma can be severe and permanently disabling, approximately one-third of PNIs demonstrate incomplete recovery and poor functional restoration. However, despite extensive research on this aspect, complete functional recovery remains a challenge. In East Asian countries, Chinese herbal Buyang Huanwu Decoction (BHD) has been used to treat PNI for more than 200 years, and the studies of BHD to treat PNI have been increasing in recent years based on positive clinical outcomes. The purpose of this meta-analysis was to scientifically evaluate the safety and clinical efficacy of BHD in patients with PNI. METHOD: A literature search was conducted on PubMed, EMBASE, Cochrane Library, CNKI, Wanfang, VIP, and Sinomed databases for randomized controlled clinical trials that evaluated the safety and effects of BHD alone or combination treatment on PNI. RESULTS: A total of 14 studies involving 1415 participants were included in this study. Each trial did not show significant heterogeneity or publication bias. The results showed that significant improvements of the total clinical effective rate (odds ratio = 3.55; 95% confidence interval [CI] = [2.62, 4.81]; P < .0001), radial nerve function score (standardized mean difference [SMD] = 1.28; 95% CI = [1.09, 1.47]; P = .007), motor nerve conduction velocity (SMD = 1.59; 95% CI = [1.40, 1.78]; P < .0001), sensory nerve conduction velocity (SMD = 1.69; 95% CI = [1.34, 2.05]; P < .0001), and electromyography amplitude (SMD = 2.67; 95% CI = [1.27, 4.06]; P = .0002), and significantly reduce of the visual analog scale scores (SMD = -3.85; 95% CI = [-7.55, -0.15]; P = .04) in the BHD group compared with the control group. In addition, there were no serious and permanent adverse effects in the 2 groups, the difference was not significant (odds ratio = 1.00; 95% CI = [0.40, 2.50]; P = 1.00). CONCLUSION: Current evidence suggests that BHD is an effective and safe treatment for PNI and could be treated as a complementary and alternative option with few side effects compared to a single treatment with neurotrophic drugs or electrical stimulation. However, considering the low methodological quality of the included studies, further rigorous studies are required.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Medicamentos de Ervas Chinesas , Traumatismos dos Nervos Periféricos , Humanos , Medicamentos de Ervas Chinesas/uso terapêutico , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Medicina Tradicional Chinesa/métodos
14.
Phytother Res ; 37(9): 4042-4058, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37165703

RESUMO

Lentinan, a natural drug with wide-ranging pharmacological activities, can regulate autophagy-the process through which Schwann cells (SCs) eliminate myelin fragments after peripheral nerve injury (PNI). However, the effect of lentinan after PNI and the role of accelerated myelin debris removal via autophagy in this process are unclear. This study examined the effect of lentinan on rat sciatic nerve repair following crush injury and the underlying mechanisms. After the successful establishment of the sciatic nerve compression injury model, group-specific treatments were performed. The treatment group received 20 mg/kg lentinan via intraperitoneal injection, while the model group was treated with normal saline. The recovery in each group was then evaluated. Further, a rat SC line (RSC96) was cultured in medium with/without lentinan after supplementation with homogenous myelin fractions to evaluate the removal of myelin particles. Our results showed that lentinan promotes autophagic flux in vivo via the AMPK/mTOR signaling pathway, accelerates the clearance of myelin debris by SCs, and inhibits neuronal apoptosis, thereby promoting neurological recovery. Similarly, in vitro experiments showed that lentinan promotes the phagocytosis of myelin debris by SCs. In conclusion, our results suggest that lentinan primarily promotes nerve regeneration by accelerating the autophagic clearance of myelin debris in SCs, and this process is likely regulated by the AMPK/mTOR signaling pathway. Therefore, this study provides compelling evidence that lentinan may be a cost-effective and natural treatment agent for PNI.


Assuntos
Bainha de Mielina , Traumatismos dos Nervos Periféricos , Ratos , Animais , Bainha de Mielina/metabolismo , Lentinano/metabolismo , Lentinano/farmacologia , Traumatismos dos Nervos Periféricos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Nervo Isquiático , Serina-Treonina Quinases TOR/metabolismo
15.
Medicine (Baltimore) ; 102(19): e33528, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171334

RESUMO

Danggui Sini is a traditional Chinese medicine prescription for treating peripheral nerve injury (PNI). We studied the mechanisms of this decoction through network pharmacology analysis and molecular docking. Using R language and Perl software, the active components and predicted targets of Danggui Sini, as well as the related gene targets of PNI, were mined through TCMSP, GeneCards, OMIM, TTD, and DrugBank. The network diagram of active components and intersection targets was constructed using Cytoscape software and the STRING database. The CytoNCA plug-in was used to screen out the core compounds and key targets. The genes were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment. AutoDock was used to analyze the molecular docking of key targets and core compounds of diseases. The drug component disease target regulatory network showed that the key components included quercetin, kaempferol, naringenin, and licochalcone A, which play key roles in the whole network and may be the primary compounds associated with the action of Danggui Sini against PNI. PPI network topology analysis showed high degree values for RELA, JUN, MAPK1, RB1, and FOS. Enrichment analysis showed that the core targets of Danggui Sini participated in pathways associated with neurogenesis-multiple diseases. Molecular docking showed that the active ingredients in Danggui Sini had a good binding ability with key targets. We conclude that many active components of Danggui Sini play therapeutic roles in PNI treatment by regulating RELA, JUN, MAPK1, RB1, and FOS, and multiple other targets in inflammation, immunity, and lipid metabolism.


Assuntos
Medicamentos de Ervas Chinesas , Traumatismos dos Nervos Periféricos , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
16.
Zhen Ci Yan Jiu ; 48(4): 372-7, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37186202

RESUMO

OBJECTIVE: To observe the effects of electroacupuncture (EA) combined with acellular nerve allograft (ANA) on the morphological structure of spinal ganglion cells and the protein expressions of nerve growth factor (NGF) and phosphorylated protein kinase B (p-Akt) in rats with sciatic nerve injury (SNI), so as to explore the protective mechanism of EA combined with ANA on spinal ganglia. METHODS: SPF male SD rats were randomly divided into normal, model, single ANA bridging (bridging) and EA + ANA (combination) groups, with 10 rats in each group. The SNI rat model was established by right sciatic nerve transection. Rats in the bridging group were bridged with ANA to the two broken ends of injured sciatic nerves. Rats in the combination group were treated with EA at "Yanglingquan" (GB34) and "Huantiao" (GB30) 2 d after ANA bridging, with dilatational wave, frequency of 1 Hz/20 Hz, intensity of 1 mA, 15 min/d, 7 d as a course of treatment for 4 consecutive courses. Sciatic function index (SFI) was observed by footprint test. Wet weight ratio of tibialis anterior muscle was calculated after weighing. Morphology of rat spinal ganglion cells was observed after Nissl staining. The protein expressions of NGF and p-Akt were detected by immunofluorescence and Western blot. RESULTS: Compared with the normal group, the SFI and wet weight ratio of tibialis anterior muscle were significantly decreased (P<0.05), the number of Nissl bodies in spinal ganglion cells was significantly reduced (P<0.05) with dissolution and incomplete structure, the protein expressions of NGF and p-Akt in ganglion cells were significantly decreased (P<0.05) in the model group. Following the interventions and in comparison with the model group, the SFI and the wet weight ratio of tibialis anterior muscle were significantly increased (P<0.05), the damage of Nissl bodies in ganglion cells was reduced and the number was obviously increased (P<0.05), and the protein expressions of NGF and p-Akt in ganglion cells were significantly increased (P<0.05) in the bridging and combination groups. Compared with the bridging group, the SFI and the wet weight ratio of tibialis anterior muscle were increased (P<0.05), the morphology of Nissl bodies in ganglion cells was more regular and the number was increased (P<0.05), the protein expressions of NGF and p-Akt in spinal ganglion cells were significantly increased (P<0.05) in the combination group. CONCLUSION: EA combined with ANA can improve the SFI and the wet weight ratio of tibialis anterior muscle in SNI rats, improve the morphology and structure of Nissl bodies in spinal ganglion cells, and increase the protein expressions of NGF and p-Akt in spinal ganglion, so as to play a protective role on spinal ganglia.


Assuntos
Aloenxertos , Eletroacupuntura , Gânglios Espinais , Traumatismos dos Nervos Periféricos , Nervo Isquiático , Animais , Masculino , Ratos , Aloenxertos/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Traumatismos dos Nervos Periféricos/terapia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Nervo Isquiático/lesões
17.
BMJ Open ; 13(1): e059348, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627156

RESUMO

INTRODUCTION: Neuropathic pain is a complex and demanding medical condition that is often difficult to treat. Regardless of the cause, the impairment, lesion or damage to the nervous system can lead to neuropathic pain, such as phantom limb pain (PLP). No treatment has been found widely effective for PLP, but plasticity-guided therapies have shown the least severe side effects in comparison to pharmacological or surgical interventions. Phantom motor execution (PME) is a plasticity-guided intervention that has shown promising results in alleviating PLP. The potential mechanism underlying the effectiveness of PME can be explained by the Stochastic Entanglement hypothesis for neurogenesis of neuropathic pain resulting from sensorimotor impairment. We have built on this hypothesis to investigate the efficacy of enhancing PME interventions by using phantom motor imagery to facilitate execution and with the addition of sensory training. We refer to this new treatment concept as Mindful SensoriMotor Therapy (MiSMT). In this study, we further complement MiSMT with non-invasive brain modulation, specifically transcranial direct current stimulation (tDCS), for the treatment of neuropathic pain in patients with disarticulation or peripheral nerve injury. METHODS AND ANALYSIS: This single-arm clinical trial investigates the efficacy of MiSMT and tDCS as a treatment of neuropathic pain resulting from highly impaired extremity or peripheral nerve injury in eight participants. The study consists of 12 sessions of MiSMT with anodal tDCS in the motor cortex, pretreatment and post-treatment assessments, and follow-up sessions (up to 6 months). The primary outcome is the change in pain intensity as measured by the Pain Rating Index between the first and last treatment sessions. ETHICS AND DISSEMINATION: The study is performed under the approval of the governing ethical committee in Sweden (approval number 2020-07157) and in accordance with the Declaration of Helsinki. TRIAL REGISTRATION NUMBER: NCT04897425.


Assuntos
Córtex Motor , Neuralgia , Traumatismos dos Nervos Periféricos , Membro Fantasma , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Desarticulação , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/terapia , Membro Fantasma/terapia , Neuralgia/terapia
18.
Photochem Photobiol Sci ; 22(3): 567-577, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36348256

RESUMO

Peripheral nerve injury (PNI) is associated with considerable functional impairment. Photobiomodulation (PBM) has demonstrated positive effects regarding neuromuscular repair after PNI when applied locally to the nerve or injured muscle. However, the effects of systemic PBM with transcutaneous application over an important artery, which is also denominated vascular PBM (VPBM), remain unclear. The aim of the study was to compare the effects of VPBM with low-level laser (LLL) and light-emitting diode (LED) on gait, sensitivity and muscle morphology following a PNI. PNI was induced on Wistar rats using the sciatic nerve crushing technique. VPBM was performed over the rat's artery tail region with LED (850 nm, 40 mW, 3.2 J) and LLL (780 nm, 40 mW, 3.2 J). Gait functionality, mechanical (nociceptive) sensitivity, and morphology of the tibialis anterior muscle were evaluated at 7, 14, and 21 days after injury. An improvement in functional gait was shown in the VPBM-LLL group in all periods. Motor sensitivity was found after 14 days in the VPBM-LLL group. The left/right (L/R) muscle mass ratio revealed a reduction in muscle atrophy in the VPBM-LLL group at 7 days. Muscle fiber diameter increased in the VPBM-LED group at 14 days and increases in the cross-section area were found in the VPBM-LED and VPBM-LLL groups at 7 days. VPBM with both light sources (LED and LLL) positively modulated functioning and neuromuscular recovery following sciatic nerve injury in rats, with more pronounced results when using LLL.


Assuntos
Terapia com Luz de Baixa Intensidade , Traumatismos dos Nervos Periféricos , Ratos , Animais , Ratos Wistar , Traumatismos dos Nervos Periféricos/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , Nervo Isquiático , Lasers
19.
Neurorehabil Neural Repair ; 37(1): 3-15, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36575812

RESUMO

BACKGROUND: Neuralgic amyotrophy (NA) is a common peripheral nerve disorder caused by auto-immune inflammation of nerves in the brachial plexus territory, characterized by acute pain and weakness of the shoulder muscles, followed by motor impairment. Recent work has confirmed that NA patients with residual motor dysfunction have abnormal cerebral sensorimotor representations of their affected upper extremity. OBJECTIVE: To determine whether abnormal cerebral sensorimotor representations associated with NA can be altered by specialized, multidisciplinary outpatient rehabilitation focused on relearning motor control. METHODS: 27 NA patients with residual lateralized symptoms in the right upper extremity participated in a randomized controlled trial, comparing 17 weeks of multidisciplinary rehabilitation (n = 16) to usual care (n = 11). We used task-based functional MRI and a hand laterality judgment task, which involves motor imagery and is sensitive to altered cerebral sensorimotor representations of the upper extremity. RESULTS: Change in task performance and related brain activity did not differ significantly between the multidisciplinary rehabilitation and usual care groups, whereas the multidisciplinary rehabilitation group showed significantly greater clinical improvement on the Shoulder Rating Questionnaire. Both groups, however, showed a significant improvement in task performance from baseline to follow-up, and significantly increased activity in visuomotor occipito-parietal brain areas, both specific to their affected upper extremity. CONCLUSIONS: Abnormal cerebral sensorimotor representations of the upper extremity after peripheral nerve damage in NA can recover toward normality. As adaptations occurred in visuomotor brain areas, multidisciplinary rehabilitation after peripheral nerve damage may be further optimized by applying visuomotor strategies. This study is registered at ClinicalTrials.gov (NCT03441347).


Assuntos
Neurite do Plexo Braquial , Traumatismos dos Nervos Periféricos , Humanos , Neurite do Plexo Braquial/diagnóstico por imagem , Neurite do Plexo Braquial/etiologia , Nervos Periféricos , Extremidade Superior , Ombro
20.
Reg Anesth Pain Med ; 48(9): 443-453, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36418044

RESUMO

BACKGROUND/IMPORTANCE: Peripheral nerve injury is an uncommon but potentially catastrophic complication of anesthesia and surgery, for which there are limited effective treatment options. Hyperbaric oxygen therapy is a unique medical intervention which improves tissue oxygen delivery and reduces ischemia via exposure to oxygen at supra-atmospheric partial pressures. While the application of hyperbaric oxygen therapy has been evidenced for other medical conditions involving relative tissue ischemia, its role in the management of peripheral nerve injury remains unclear. OBJECTIVE: This scoping review seeks to characterize rehabilitative outcomes when hyperbaric oxygen therapy is applied as an adjunct therapy in the treatment of perioperative peripheral nerve injury. EVIDENCE REVIEW: The review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for scoping reviews, using a systematic screening and extraction process. The search included articles published from database inception until June 11, 2022, which reported clinical outcomes (in both human and non-human models) of peripheral nerve injury treated with hyperbaric oxygen therapy. FINDINGS: A total of 51 studies were included in the narrative synthesis. These consisted of animal (40) and human studies (11) treating peripheral nerve injury due to various physiological insults. Hyperbaric oxygen therapy protocols were highly heterogenous and applied at both early and late intervals relative to the time of peripheral nerve injury. Overall, hyperbaric oxygen therapy was reported as beneficial in 88% (45/51) of included studies (82% of human studies and 90% of animal studies), improving nerve regeneration and/or time to recovery with no reported major adverse events. CONCLUSIONS: Existing data suggest that hyperbaric oxygen therapy is a promising intervention in the management of perioperative peripheral nerve injury, in which tissue ischemia is the most common underlying mechanism of injury, neurological deficits are severe, and treatment options are sparse. This positive signal should be further investigated in prospective randomized clinical trials.


Assuntos
Oxigenoterapia Hiperbárica , Traumatismos dos Nervos Periféricos , Animais , Humanos , Oxigenoterapia Hiperbárica/métodos , Estudos Prospectivos , Oxigênio , Isquemia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA