Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 533
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Stereotact Funct Neurosurg ; 102(2): 93-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38368868

RESUMO

INTRODUCTION: MRI-guided focused ultrasound (FUS) is an incisionless thermo-ablative procedure that may be used to treat medication-refractory movement disorders, with a growing number of potential anatomic targets and clinical applications. As of this article's publication, the only US Food and Drug Administration (FDA)-approved uses of FUS for movement disorders are thalamotomy for essential tremor (ET) and tremor-dominant Parkinson's Disease (PD), and pallidotomy for other cardinal symptoms of PD. We present a state-of-the-art review on all non-FDA approved indications of FUS for movement disorders, beyond the most well-described indications of ET and PD. Our objective was to summarize the safety and efficacy of FUS in this setting and provide a roadmap for future directions of FUS for movement disorders. METHODS: A state-of-the-art review was conducted on use of FUS for non-FDA approved movement disorders. All movement disorders excluding FDA-approved uses for ET and PD were included. RESULTS: A total of 25 studies on 172 patients were included. In patients with tremor plus dystonia syndromes (n = 6), ventralis intermediate nucleus of the thalamus (VIM)-FUS gave >50% tremor reduction, with no improvement in dystonia and worsened dystonia in 2/6 patients. Ventral-oralis complex (VO)-FUS gave >50% improvement for focal hand dystonia (n = 6) and 100% return to musical performance in musician's dystonia (n = 6). In patients with multiple sclerosis (MS) and tremor (n = 3), improvement in tremor was seen in 2 patients with a favorable skull density ratio; no MS disease change was noted after VIM-FUS. In patients with tremor and comorbid ataxia syndromes (n = 3), none were found to have worsened ataxia after VIM-FUS; all had clinically significant tremor improvement. Subthalamic nucleus (STN)-FUS for PD (n = 49) gave approximately 50% improvement in PD motor symptoms, with dystonia and mild dyskinesias as possible adverse effects. Cerebellothalamic tract (CTT-FUS) for ET (n = 42) gave 55-90% tremor improvement, with gait dysfunction as a rare persistent adverse effect. Pallidothalamic tract (PTT-FUS) for PD (n = 50) gave approximately 50% improvement in motor symptoms, with mild speech dysfunction as a possible adverse effect. CONCLUSION: VIM-FUS appeared safe and effective for heterogenous tremor etiologies, and VO-FUS appeared most effective for isolated segmental dystonia. STN-FUS was effective for PD symptom reduction; postoperative dystonia and mild on-medication dyskinesias required medical management. Tractography-based targeting with CTT-FUS for ET and PTT-FUS for PD demonstrated promising early results. Larger prospective trials with long-term follow-up are needed to the evaluate the safety and efficacy non-FDA approved indications for FUS.


Assuntos
Discinesias , Distonia , Distúrbios Distônicos , Tremor Essencial , Doença de Parkinson , Estados Unidos , Humanos , Tremor/cirurgia , Estudos Prospectivos , United States Food and Drug Administration , Tálamo/cirurgia , Tremor Essencial/cirurgia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Ataxia , Resultado do Tratamento
2.
J Neural Eng ; 21(1)2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38335553

RESUMO

Objective: Transcranial focused low-intensity ultrasound has the potential to noninvasively modulate confined regions deep inside the human brain, which could provide a new tool for causal interrogation of circuit function in humans. However, it has been unclear whether the approach is potent enough to modulate behavior.Approach: To test this, we applied low-intensity ultrasound to a deep brain thalamic target, the ventral intermediate nucleus, in three patients with essential tremor.Main results: Brief, 15 s stimulations of the target at 10% duty cycle with low-intensity ultrasound, repeated less than 30 times over a period of 90 min, nearly abolished tremor (98% and 97% tremor amplitude reduction) in 2 out of 3 patients. The effect was observed within seconds of the stimulation onset and increased with ultrasound exposure time. The effect gradually vanished following the stimulation, suggesting that the stimulation was safe with no harmful long-term consequences detected.Significance: This result demonstrates that low-intensity focused ultrasound can robustly modulate deep brain regions in humans with notable effects on overt motor behavior.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Tremor Essencial/terapia , Tremor/terapia , Tálamo/diagnóstico por imagem , Encéfalo , Resultado do Tratamento
3.
Neurol Med Chir (Tokyo) ; 64(4): 137-146, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355128

RESUMO

Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy is an effective treatment for essential tremor (ET). However, its long-term outcomes and prognostic factors remain unclear. This study aimed to retrospectively investigate 38 patients with ET who underwent MRgFUS thalamotomy and were followed up for >2 years. The improvement in tremor was evaluated using the Clinical Rating Scale for Tremor (CRST). Adverse events were documented, and correlations with factors, such as skull density ratio (SDR), maximum mean temperature (T-max), and lesion size, were examined. Furthermore, the outcomes were compared between two groups, one that met the cutoff values, which was previously reported (preoperative CRST-B ≤ 25, T-max ≥ 52.5°C, anterior-posterior size of lesion ≥ 3.9 mm, superior-inferior [SI] size of lesion > 5.5 mm), and the other that did not. The improvement rate was 59.4% on average at the 2-year follow-up. Adverse events, such as numbness (15.8%), dysarthria (10.5%), and lower extremity weakness (2.6%), were observed even after 2 years, although these were mild. The factors correlated with tremor improvement were the T-max and SI size of the lesion (p < 0.05), whereas the SDR showed no significance. Patients who met the aforementioned cutoff values demonstrated a 69.8% improvement at the 2-year follow-up, whereas others showed a 43.6% improvement (p < 0.05). In conclusion, MRgFUS is effective even after 2 years. The higher the T-max and the larger the lesion size, the better the tremor control. Previously reported cutoff values clearly predict the 2-year prognosis, indicating the usefulness of MRgFUS.


Assuntos
Tremor Essencial , Humanos , Seguimentos , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/cirurgia , Estudos Retrospectivos , Tremor , Prognóstico , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Imageamento por Ressonância Magnética , Resultado do Tratamento , Espectroscopia de Ressonância Magnética
6.
Mov Disord ; 39(4): 684-693, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380765

RESUMO

BACKGROUND: The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation in tremor patients. Despite its therapeutic importance, its oscillatory coupling to cortical areas has rarely been investigated in humans. OBJECTIVES: The objective of this study was to identify the cortical areas coupled to the VIM in patients with essential tremor. METHODS: We combined resting-state magnetoencephalography with local field potential recordings from the VIM of 19 essential tremor patients. Whole-brain maps of VIM-cortex coherence in several frequency bands were constructed using beamforming and compared with corresponding maps of subthalamic nucleus (STN) coherence based on data from 19 patients with Parkinson's disease. In addition, we computed spectral Granger causality. RESULTS: The topographies of VIM-cortex and STN-cortex coherence were very similar overall but differed quantitatively. Both nuclei were coupled to the ipsilateral sensorimotor cortex in the high-beta band; to the sensorimotor cortex, brainstem, and cerebellum in the low-beta band; and to the temporal cortex, brainstem, and cerebellum in the alpha band. High-beta coherence to sensorimotor cortex was stronger for the STN (P = 0.014), whereas low-beta coherence to the brainstem was stronger for the VIM (P = 0.017). Although the STN was driven by cortical activity in the high-beta band, the VIM led the sensorimotor cortex in the alpha band. CONCLUSIONS: Thalamo-cortical coupling is spatially and spectrally organized. The overall similar topographies of VIM-cortex and STN-cortex coherence suggest that functional connections are not necessarily unique to one subcortical structure but might reflect larger frequency-specific networks involving VIM and STN to a different degree. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Magnetoencefalografia , Núcleo Subtalâmico , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Magnetoencefalografia/métodos , Núcleo Subtalâmico/fisiologia , Núcleo Subtalâmico/fisiopatologia , Idoso , Estimulação Encefálica Profunda/métodos , Tremor Essencial/fisiopatologia , Tremor Essencial/terapia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Tálamo/fisiologia , Tálamo/fisiopatologia , Mapeamento Encefálico , Córtex Cerebral/fisiopatologia , Núcleos Ventrais do Tálamo/fisiologia , Núcleos Ventrais do Tálamo/fisiopatologia
7.
Parkinsonism Relat Disord ; 121: 106034, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382401

RESUMO

INTRODUCTION: Connector hubs are specialized brain regions that connect multiple brain networks and therefore have the potential to affect the functions of multiple systems. This study aims to examine the involvement of connector hub regions in essential tremor. METHODS: We examined whole-brain functional connectivity alterations across multiple brain networks in 27 patients with essential tremor and 27 age- and sex-matched healthy controls to identify affected hub regions using a network metric called functional connectivity overlap ratio estimated from resting-state functional MRI. We also evaluated the relationships of affected hubs with cognitive and tremor scores in all patients and with motor function improvement scores in 15 patients who underwent postoperative follow-up evaluations after focused ultrasound thalamotomy. RESULTS: We have identified affected connector hubs in the cerebellum and thalamus. Specifically, the dentate nucleus in the cerebellum and the dorsomedial thalamus exhibited more extensive connections with the sensorimotor network in patients. Moreover, the connections of the thalamic pulvinar with the visual network were also significantly widespread in the patient group. The connections of these connector hub regions with cognitive networks were negatively associated (FDR q < 0.05) with cognitive, tremor, and motor function improvement scores. CONCLUSION: In patients with essential tremor, connector hub regions within the cerebellum and thalamus exhibited widespread functional connections with sensorimotor and visual networks, leading to alternative pathways outside the classical tremor axis. Their connections with cognitive networks also affect patients' cognitive function.


Assuntos
Tremor Essencial , Humanos , Tremor Essencial/cirurgia , Tremor , Imageamento por Ressonância Magnética , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Cerebelo/diagnóstico por imagem , Cognição
8.
Neuroimage Clin ; 41: 103576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38367597

RESUMO

BACKGROUND: Thalamic deep brain stimulation (DBS) is an efficacious treatment for drug-resistant essential tremor (ET) and the dentato-rubro-thalamic tract (DRT) constitutes an important target structure. However, up to 40% of patients habituate and lose treatment efficacy over time, frequently accompanied by a stimulation-induced cerebellar syndrome. The phenomenon termed delayed therapy escape (DTE) is insufficiently understood. Our previous work showed that DTE clinically is pronounced on the non-dominant side and suggested that differential involvement of crossed versus uncrossed DRT (DRTx/DRTu) might play a role in DTE development. METHODS: We retrospectively enrolled right-handed patients under bilateral thalamic DBS >12 months for ET from a cross-sectional study. They were characterized with the Fahn-Tolosa-Marin Tremor Rating Scale (FTMTRS) and Scale for the Assessment and Rating of Ataxia (SARA) scores at different timepoints. Normative fiber tractographic evaluations of crossed and uncrossed cerebellothalamic pathways and volume of activated tissue (VAT) studies together with [18F]Fluorodeoxyglucose positron emission tomography were applied. RESULTS: A total of 29 patients met the inclusion criteria. Favoring DRTu over DRTx in the non-dominant VAT was associated with DTE (R2 = 0.4463, p < 0.01) and ataxia (R2 = 0.2319, p < 0.01). Moreover, increasing VAT size on the right (non-dominant) side was associated at trend level with more asymmetric glucose metabolism shifting towards the right (dominant) dentate nucleus. CONCLUSION: Our results suggest that a disbalanced recruitment of DRTu in the non-dominant VAT induces detrimental stimulation effects on the dominant cerebellar outflow (together with contralateral stimulation) leading to DTE and thus hampering the overall treatment efficacy.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/terapia , Estimulação Encefálica Profunda/métodos , Estudos Transversais , Estudos Retrospectivos , Imagem de Tensor de Difusão/métodos , Tálamo/diagnóstico por imagem , Tálamo/fisiologia , Resultado do Tratamento , Ataxia
9.
Neuroimage Clin ; 41: 103587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422832

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) studies have shown that stimulation of the motor segment of the thalamus based on probabilistic tractography is predictive of improvement in essential tremor (ET). However, probabilistic methods are computationally demanding, requiring the need for alternative tractography methods for use in the clinical setting. The purpose of this study was to compare probabilistic vs deterministic tractography methods for connectivity-based targeting in patients with ET. METHODS: Probabilistic and deterministic tractography methods were retrospectively applied to diffusion-weighted data sets in 36 patients with refractory ET. The thalamus and precentral gyrus were selected as regions of interest and fiber tracking was performed between these regions to produce connectivity-based thalamic segmentations, per prior methods. The resultant deterministic target maps were compared with those of thresholded probabilistic maps. The center of gravity (CG) of each connectivity map was determined and the differences in spatial distribution between the tractography methods were characterized. Furthermore, the intersection between the connectivity maps and CGs with the therapeutic volume of tissue activated (VTA) was calculated. A mixed linear model was then used to assess clinical improvement in tremor with volume of overlap. RESULTS: Both tractography methods delineated the region of the thalamus with connectivity to the precentral gyrus to be within the posterolateral aspect of the thalamus. The average CG of deterministic maps was more medial-posterior in both the left (3.7 ± 1.3 mm3) and the right (3.5 ± 2.2 mm3) hemispheres when compared to 30 %-thresholded probabilistic maps. Mixed linear model showed that the volume of overlap between CGs of deterministic and probabilistic targeting maps and therapeutic VTAs were significant predictors of clinical improvement. CONCLUSIONS: Deterministic tractography can reconstruct DBS thalamic target maps in approximately 5 min comparable to those produced by probabilistic methods that require > 12 h to generate. Despite differences in CG between the methods, both deterministic-based and probabilistic targeting were predictive of clinical improvement in ET.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/terapia , Estimulação Encefálica Profunda/métodos , Estudos Retrospectivos , Tálamo/diagnóstico por imagem , Tremor
10.
AJNR Am J Neuroradiol ; 45(3): 302-304, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38272573

RESUMO

We report on a 75-year-old woman with a history of right MCA aneurysm clipping and medically refractive right-hand tremor. We successfully performed focused ultrasound thalamotomy of the left ventral intermediate nucleus under MR imaging-guidance at 3T. A thorough pretreatment evaluation of MR thermometry was critical to ensure that adequate precision could be achieved at the intended target. The tremor showed a 75% decrease at 24 hours postprocedure and a 50% decrease at a 3-month follow-up. There were no immediate adverse events.


Assuntos
Tremor Essencial , Tremor , Feminino , Humanos , Idoso , Resultado do Tratamento , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Imageamento por Ressonância Magnética/métodos , Instrumentos Cirúrgicos
11.
J Neural Eng ; 21(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38211344

RESUMO

Deep brain stimulation (DBS) using Medtronic's Percept™ PC implantable pulse generator is FDA-approved for treating Parkinson's disease (PD), essential tremor, dystonia, obsessive compulsive disorder, and epilepsy. Percept™ PC enables simultaneous recording of neural signals from the same lead used for stimulation. Many Percept™ PC sensing features were built with PD patients in mind, but these features are potentially useful to refine therapies for many different disease processes. When starting our ongoing epilepsy research study, we found it difficult to find detailed descriptions about these features and have compiled information from multiple sources to understand it as a tool, particularly for use in patients other than those with PD. Here we provide a tutorial for scientists and physicians interested in using Percept™ PC's features and provide examples of how neural time series data is often represented and saved. We address characteristics of the recorded signals and discuss Percept™ PC hardware and software capabilities in data pre-processing, signal filtering, and DBS lead performance. We explain the power spectrum of the data and how it is shaped by the filter response of Percept™ PC as well as the aliasing of the stimulation due to digitally sampling the data. We present Percept™ PC's ability to extract biomarkers that may be used to optimize stimulation therapy. We show how differences in lead type affects noise characteristics of the implanted leads from seven epilepsy patients enrolled in our clinical trial. Percept™ PC has sufficient signal-to-noise ratio, sampling capabilities, and stimulus artifact rejection for neural activity recording. Limitations in sampling rate, potential artifacts during stimulation, and shortening of battery life when monitoring neural activity at home were observed. Despite these limitations, Percept™ PC demonstrates potential as a useful tool for recording neural activity in order to optimize stimulation therapies to personalize treatment.


Assuntos
Estimulação Encefálica Profunda , Epilepsia , Tremor Essencial , Doença de Parkinson , Humanos , Tálamo , Epilepsia/diagnóstico , Epilepsia/terapia , Doença de Parkinson/terapia , Tremor Essencial/diagnóstico , Tremor Essencial/terapia
12.
Neurosurg Rev ; 47(1): 73, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296852

RESUMO

Stereotactic radiosurgery (SRS) is one of the surgical alternatives for drug-resistant essential tremor (ET). Here, we aimed at evaluating whether biologically effective dose (BEDGy2.47) is relevant for tremor improvement after stereotactic radiosurgical thalamotomy in a population of patients treated with one (unplugged) isocenter and a uniform dose of 130 Gy. This is a retrospective longitudinal single center study. Seventy-eight consecutive patients were clinically analyzed. Mean age was 69.1 years (median 71, range 36-88). Mean follow-up period was 14 months (median 12, 3-36). Tremor improvement was assessed at 12 months after SRS using the ET rating assessment scale (TETRAS, continuous outcome) and binary (binary outcome). BED was defined for an alpha/beta of 2.47, based upon previous studies considering such a value for the normal brain. Mean BED was 4573.1 Gy2.47 (median 4612, 4022.1-4944.7). Mean beam-on time was 64.7 min (median 61.4; 46.8-98.5). There was a statically significant correlation between delta (follow-up minus baseline) in TETRAS (total) with BED (p = 0.04; beta coefficient - 0.029) and beam-on time (p = 0.03; beta coefficient 0.57) but also between TETRAS (ADL) with BED (p = 0.02; beta coefficient 0.038) and beam-on time (p = 0.01; beta coefficient 0.71). Fractional polynomial multivariate regression suggested that a BED > 4600 Gy2.47 and a beam-on time > 70 min did not further increase clinical efficacy (binary outcome). Adverse radiation events (ARE) were defined as larger MR signature on 1-year follow-up MRI and were present in 7 out of 78 (8.9%) cases, receiving a mean BED of 4650 Gy2.47 (median 4650, range 4466-4894). They were clinically relevant with transient hemiparesis in 5 (6.4%) patients, all with BED values higher than 4500 Gy2.47. Tremor improvement was correlated with BED Gy2.47 after SRS for drug-resistant ET. An optimal BED value for tremor improvement was 4300-4500 Gy2.47. ARE appeared for a BED of more than 4500 Gy2.47. Such finding should be validated in larger cohorts.


Assuntos
Tremor Essencial , Radiocirurgia , Humanos , Idoso , Tremor/etiologia , Tremor/cirurgia , Tremor Essencial/cirurgia , Tremor Essencial/etiologia , Radiocirurgia/efeitos adversos , Estudos Retrospectivos , Tálamo/cirurgia , Resultado do Tratamento
13.
Sci Rep ; 14(1): 2605, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297028

RESUMO

Patients with drug-resistant essential tremor (ET) may undergo Gamma Knife stereotactic radiosurgical thalamotomy (SRS-T), where the ventro-intermediate nucleus of the thalamus (Vim) is lesioned by focused beams of gamma radiations to induce clinical improvement. Here, we studied SRS-T impacts on left Vim dynamic functional connectivity (dFC, n = 23 ET patients scanned before and 1 year after intervention), and on surface-based morphometric brain features (n = 34 patients, including those from dFC analysis). In matched healthy controls (HCs), three dFC states were extracted from resting-state functional MRI data. In ET patients, state 1 spatial stability increased upon SRS-T (F1,22 = 19.13, p = 0.004). More frequent expression of state 3 over state 1 before SRS-T correlated with greater clinical recovery in a way that depended on the MR signature volume (t6 = 4.6, p = 0.004). Lower pre-intervention spatial variability in state 3 expression also did (t6 = - 4.24, p = 0.005) and interacted with the presence of familial ET so that these patients improved less (t6 = 4.14, p = 0.006). ET morphometric profiles showed significantly lower similarity to HCs in 13 regions upon SRS-T (z ≤ - 3.66, p ≤ 0.022), and a joint analysis revealed that before thalamotomy, morphometric similarity and states 2/3 mean spatial similarity to HCs were anticorrelated, a relationship that disappeared upon SRS-T (z ≥ 4.39, p < 0.001). Our results show that left Vim functional dynamics directly relates to upper limb tremor lowering upon intervention, while morphometry instead has a supporting role in reshaping such dynamics.


Assuntos
Tremor Essencial , Radiocirurgia , Humanos , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/cirurgia , Radiocirurgia/métodos , Imageamento por Ressonância Magnética/métodos , Resultado do Tratamento , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Encéfalo
14.
Mov Disord Clin Pract ; 11(1): 69-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38291839

RESUMO

BACKGROUND: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy is increasingly used to treat drug-resistant essential tremor (ET). Data on MRgFUS thalamotomy in dystonic tremor (DT) are anecdotal. OBJECTIVES: To investigate efficacy, safety, and differences in target coordinates of MRgFUS thalamotomy in DT versus ET. METHODS: Ten patients with DT and 35 with ET who consecutively underwent MRgFUS thalamotomy were followed for 12 months. Although in both groups the initial surgical planning coordinates corresponded to the ventralis intermediate (Vim), the final target could be modified intraoperatively based on clinical response. RESULTS: Tremor significantly improved in both groups. The thalamic lesion was significantly more anterior in DT than ET. Considering both ET and DT groups, the more anterior the lesion, the lower the odds ratio for adverse events. CONCLUSIONS: MRgFUS thalamotomy is safe and effective in DT and ET. Compared to classical Vim coordinates used for ET, more anterior targeting should be considered for DT.


Assuntos
Tremor Essencial , Humanos , Projetos Piloto , Tremor Essencial/diagnóstico por imagem , Estudos Prospectivos , Tremor , Tálamo/diagnóstico por imagem
17.
Neurotherapeutics ; 21(1): e00295, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38237402

RESUMO

Essential tremor DBS targeting the ventral intermediate nucleus (Vim) of the thalamus and its input, the dentato-rubro-thalamic tract (DRTt), has proven to be an effective treatment strategy. We examined thalamo-cortical evoked potentials (TCEPs) and cortical dynamics during stimulation of the DRTt. We recorded TCEPs in primary motor cortex during clinical and supra-clinical stimulation of the DRTt in ten essential tremor patients. Stimulation was varied over pulse amplitude (2-10 â€‹mA) and pulse width (30-250 â€‹µs) to allow for strength-duration testing. Testing at clinical levels (3 â€‹mA, 60 â€‹µs) for stimulation frequencies of 1-160 â€‹Hz was performed and phase amplitude coupling (PAC) of beta phase and gamma power was calculated. Primary motor cortex TCEPs displayed two responses: early and all-or-none (<20 â€‹ms) or delayed and charge-dependent (>50 â€‹ms). Strength-duration curve approximation indicates that the chronaxie of the neural elements related to the TCEPs is <200 â€‹µs. At the range of clinical stimulation (amplitude 2-5 â€‹mA, pulse width 30-60 â€‹µs), TCEPs were not noted over primary motor cortex. Decreased pathophysiological phase-amplitude coupling was seen above 70 â€‹Hz stimulation without changes in power spectra and below the threshold of TCEPs. Our findings demonstrate that DRTt stimulation within normal clinical bounds does not excite fibers directly connected with primary motor cortex but that supra-clinical stimulation can excite a direct axonal tract. Both clinical efficacy and phase-amplitude coupling were frequency-dependent, favoring a synaptic filtering model as a possible mechanism of action.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Tremor Essencial/terapia , Vias Neurais , Tálamo , Potenciais Evocados
19.
J Neurol Neurosurg Psychiatry ; 95(2): 180-183, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37722831

RESUMO

BACKGROUND: Given high rates of early complications and non-reversibility, refined targeting is necessitated for magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy for essential tremor (ET). Selection of lesion location can be informed by considering optimal stimulation area from deep brain stimulation (DBS). METHODS: 118 patients with ET who received DBS (39) or MRgFUS (79) of the ventral intermediate nucleus (VIM) underwent stimulation/lesion mapping, probabilistic mapping of clinical efficacy and normative structural connectivity analysis. The efficacy maps were compared, which depict the relationship between stimulation/lesion location and clinical outcome. RESULTS: Efficacy maps overlap around the VIM ventral border and encompass the dentato-rubro-thalamic tract. While the MRgFUS map extends inferiorly into the posterior subthalamic area, the DBS map spreads inside the VIM antero-superiorly. CONCLUSION: Comparing the efficacy maps of DBS and MRgFUS suggests a potential alternative location for lesioning, more antero-superiorly. This may reduce complications, without sacrificing efficacy, and individualise targeting. TRIAL REGISTRATION NUMBER: NCT02252380.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Tremor Essencial/terapia , Imageamento por Ressonância Magnética , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Resultado do Tratamento , Tremor
20.
Neurosurgery ; 94(2): 307-316, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695053

RESUMO

BACKGROUND AND OBJECTIVES: The human thalamus is known, from stimulation studies and functional imaging, to participate in high-level language tasks. The goal of this study is to find whether and how speech features, in particular, vowel phonemes, are encoded in the neuronal activity of the thalamus, and specifically of the left ventralis intermediate nucleus (Vim), during speech production, perception, and imagery. METHODS: In this cross-sectional study, we intraoperatively recorded single neuron activity in the left Vim of eight neurosurgical patients with Parkinson's disease (PD) (n = 4) or essential tremor (n = 4) undergoing implantation of deep brain stimulation (n = 3) or radiofrequency lesioning (n = 5) while patients articulated the five monophthongal vowel sounds. RESULTS: In this article, we report that single neurons in the left Vim encode individual vowel phonemes mainly during speech production but also during perception and imagery. They mainly use one of two encoding schemes: broad or sharp tuning, with a similar percentage of units each. Sinusoidal tuning has been demonstrated in almost half of the broadly tuned units. Patients with PD had a lower percentage of speech-related units in each aspect of speech (production, perception, and imagery), a significantly lower percentage of broadly tuned units, and significantly lower median firing rates during speech production and perception, but significantly higher rates during imagery, than patients with essential tremor. CONCLUSION: The results suggest that the left Vim uses mixed encoding schemes for speech features. Our findings explain, at the single neuron level, why deep brain stimulation and radiofrequency lesioning of the left Vim are likely to cause speech side effects. Moreover, they may indicate that speech-related units in the left Vim of patients with PD may be degraded even in the subclinical phase.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Tremor Essencial/terapia , Fala , Estudos Transversais , Tálamo , Neurônios/fisiologia , Estimulação Encefálica Profunda/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA