Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biol Interact ; 382: 110592, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270086

RESUMO

Depleted uranium (DU) can cause damage to the body, but its effects on the thyroid are unclear. The purpose of this study was to investigate the DU-induced thyroid damage and its potential mechanism in order to find new targets for detoxification after DU poisoning. A model of acute exposure to DU was constructed in rats. It was observed that DU accumulated in the thyroid, induced thyroid structure disorder and cell apoptosis, and decreased the serum T4 and FT4 levels. Gene screening showed that thrombospondin 1 (TSP-1) was a sensitive gene of DU, and the expression of TSP-1 decreased with the increase of DU exposure dose and time. TSP-1 knockout mice exposed to DU had more severe thyroid damage and lower serum FT4 and T4 levels than wild-type mice. Inhibiting the expression of TSP-1 in FRTL-5 cells aggravated DU-induced apoptosis, while exogenous TSP-1 protein alleviated the decreased viability in FRTL-5 cells caused by DU. It was suggested that DU may caused thyroid damage by down-regulating TSP-1. It was also found that DU increased the expressions of PERK, CHOP, and Caspase-3, and 4-Phenylbutyric (4-PBA) alleviated the DU-induced FRTL-5 cell viability decline and the decrease levels of rat serum FT4 and T4 caused by DU. After DU exposure, the PERK expression was further up-regulated in TSP-1 knockout mice, and the increased expression of PERK was alleviated in TSP-1 over-expressed cells, as well as the increased expression of CHOP and Caspase-3. Further verification showed that inhibition of PERK expression could reduce the DU-induced increased expression of CHOP and Caspase-3. These findings shed light on the mechanism that DU may activate ER stress via the TSP 1-PERK pathway, thereby leading to thyroid damage, and suggest that TSP-1 may be a potential therapeutic target for DU-induced thyroid damage.


Assuntos
Trombospondina 1 , Urânio , Ratos , Camundongos , Animais , Caspase 3/metabolismo , Trombospondina 1/genética , Trombospondina 1/farmacologia , Urânio/farmacologia , Glândula Tireoide/metabolismo , Apoptose , Camundongos Knockout , Estresse do Retículo Endoplasmático , eIF-2 Quinase/metabolismo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
2.
Eur J Pharmacol ; 949: 175674, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36963651

RESUMO

Inflammatory coagulopathy is resulted from endothelial dysfunction and platelet hyperactivation in inflammatory diseases. In this study, the effects of baicalin, an active component of the traditional Chinese medicine Huangqin, on inflammatory coagulopathy were observed both in vivo and in vitro. In LPS-induced rats, baicalin ameliorated coagulation indexes, inhibited platelet hyperactivation and decreased the expression of thrombospondin-1 (TSP-1) in vessels. In cultured endothelial cells, baicalin decreased the expression of TSP-1 and collagen as well as the TNF-α-induced increase in the levels of TSP-1 and ICAM-1. Baicalin could significantly decrease the platelet adhesion on endothelial cells treated with TNF-α. Baicalin also could inhibit the increase of ROS level and the activation of the NLRP3/Caspase-1/GSDMD pathway in TNF-α-induced endothelial cells. Furin was found to be the direct target of baicalin in HUVECs. Knockdown of Furin using siRNA could ameliorate the effects of baicalin on the activation of TGFß1/Smad3 pathway, TSP-1 expression and the adhesion of platelets on TNF-α-treated endothelial cells. At the same time, baicalin inhibited platelet aggregation induced by collagen or combination of collagen and TSP-1 peptide. Collagen-induced Ca2+ mobilization, ROS level increase, AKT1 phosphorylation, platelet degranulation and TSP-1 release could be all inhibited by baicalin. In all, baicalin ameliorated endothelial dysfunction by inhibiting Furin/TGFß1/Smad3/TSP-1 pathway and also ameliorated platelet activation by inhibiting AKT-related pathway. Both the inhibiting effects of baicalin on endothelial dysfunction and platelet activation might contribute to its ameliorating effects on inflammatory coagulopathy.


Assuntos
Células Endoteliais , Trombospondina 1 , Ratos , Animais , Trombospondina 1/genética , Trombospondina 1/metabolismo , Trombospondina 1/farmacologia , Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Furina/metabolismo , Furina/farmacologia
3.
Gynecol Endocrinol ; 37(11): 1020-1026, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34282706

RESUMO

OBJECTIVE: Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disease in reproductive women, and the endocrine levels are also affected by diseases. The aim of this study was to determine the effect of thrombospondin-1 (TSP-1) on PCOS rat model. METHODS: We established the PCOS rat model, the serum hormones including TSP-1 expression were determined and morphological characteristics were investigated to evaluate the model. These above endocrine and morphological features were investigated again to evaluate the effect of TSP-1 treatment. RESULTS: In the PCOS model group, the serum hormones change (higher luteinizing hormone, testosterone and estrogen) and decreased TSP-1 expression levels were found compared with the control group. Besides, the morphological characteristics of PCOS were also observed in the model group. After TSP-1 treatment, the higher TSP-1, ANGPT2, PDGFB and PDGFD expression levels, the lower LH and T levels, decreased vessel density as well as VEGFA and ANGPT1 expression levels were found compared with the control group, and the ovary morphological changes were also observed in the TSP-1 experimental group. CONCLUSIONS: TSP-1 delivery system might be an alternative therapy for PCOS treatment.


Assuntos
Síndrome do Ovário Policístico/tratamento farmacológico , Trombospondina 1/uso terapêutico , Proteínas Angiogênicas/metabolismo , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Ovário/efeitos dos fármacos , Síndrome do Ovário Policístico/metabolismo , Ratos Sprague-Dawley , Trombospondina 1/metabolismo , Trombospondina 1/farmacologia
4.
Biochemistry ; 50(36): 7787-99, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21823650

RESUMO

Nitric oxide (NO) regulates cardiovascular hemostasis by binding to soluble guanylyl cyclase (sGC), leading to cGMP production, reduced cytosolic calcium concentration ([Ca(2+)](i)), and vasorelaxation. Thrombospondin-1 (TSP-1), a secreted matricellular protein, was recently discovered to inhibit NO signaling and sGC activity. Inhibition of sGC requires binding to cell-surface receptor CD47. Here, we show that a TSP-1 C-terminal fragment (E3CaG1) readily inhibits sGC in Jurkat T cells and that inhibition requires an increase in [Ca(2+)](i). Using flow cytometry, we show that E3CaG1 binds directly to CD47 on the surface of Jurkat T cells. Using digital imaging microscopy on live cells, we further show that E3CaG1 binding results in a substantial increase in [Ca(2+)](i), up to 300 nM. Addition of angiotensin II, a potent vasoconstrictor known to increase [Ca(2+)](i), also strongly inhibits sGC activity. sGC isolated from calcium-treated cells or from cell-free lysates supplemented with Ca(2+) remains inhibited, while addition of kinase inhibitor staurosporine prevents inhibition, indicating inhibition is likely due to phosphorylation. Inhibition is through an increase in K(m) for GTP, which rises to 834 µM for the NO-stimulated protein, a 13-fold increase over the uninhibited protein. Compounds YC-1 and BAY 41-2272, allosteric stimulators of sGC that are of interest for treating hypertension, overcome E3CaG1-mediated inhibition of NO-ligated sGC. Taken together, these data suggest that sGC not only lowers [Ca(2+)](i) in response to NO, inducing vasodilation, but also is inhibited by high [Ca(2+)](i), providing a fine balance between signals for vasodilation and vasoconstriction.


Assuntos
Angiotensina II/farmacologia , Cálcio/metabolismo , Guanilato Ciclase/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Trombospondina 1/farmacologia , Vasoconstritores/farmacologia , Antígeno CD47 , Células Cultivadas , Citometria de Fluxo , Guanilato Ciclase/metabolismo , Humanos , Células Jurkat , Cinética , Óxido Nítrico/metabolismo , Fosforilação , Receptores Citoplasmáticos e Nucleares/metabolismo , Guanilil Ciclase Solúvel , Vasoconstrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA