Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 10156, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300738

RESUMO

Honeybees Apis mellifera are important pollinators of wild plants and commercial crops. For more than a decade, high percentages of honeybee colony losses have been reported worldwide. Nutritional stress due to habitat depletion, infection by different pests and pathogens and pesticide exposure has been proposed as the major causes. In this study we analyzed how nutritional stress affects colony strength and health. Two groups of colonies were set in a Eucalyptus grandis plantation at the beginning of the flowering period (autumn), replicating a natural scenario with a nutritionally poor food source. While both groups of colonies had access to the pollen available in this plantation, one was supplemented with a polyfloral pollen patty during the entire flowering period. In the short-term, colonies under nutritional stress (which consumed mainly E. grandis pollen) showed higher infection level with Nosema spp. and lower brood and adult bee population, compared to supplemented colonies. On the other hand, these supplemented colonies showed higher infection level with RNA viruses although infection levels were low compared to countries were viral infections have negative impacts. Nutritional stress also had long-term colony effects, because bee population did not recover in spring, as in supplemented colonies did. In conclusion, nutritional stress and Nosema spp. infection had a severe impact on colony strength with consequences in both short and long-term.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Abelhas/microbiologia , Abelhas/fisiologia , Animais , Colapso da Colônia , Eucalyptus , Nosema , Pólen , Estresse Fisiológico , Trypanosomatina/genética , Trypanosomatina/patogenicidade , Varroidae/patogenicidade
2.
BMC Res Notes ; 7: 649, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25223634

RESUMO

BACKGROUND: Here we present a holistic screening of collapsing colonies from three professional apiaries in Spain. Colonies with typical honey bee depopulation symptoms were selected for multiple possible factors to reveal the causes of collapse. RESULTS: Omnipresent were Nosema ceranae and Lake Sinai Virus. Moderate prevalences were found for Black Queen Cell Virus and trypanosomatids, whereas Deformed Wing Virus, Aphid Lethal Paralysis Virus strain Brookings and neogregarines were rarely detected. Other viruses, Nosema apis, Acarapis woodi and Varroa destructor were not detected. Palinologic study of pollen demonstrated that all colonies were foraging on wild vegetation. Consequently, the pesticide residue analysis was negative for neonicotinoids. The genetic analysis of trypanosomatids GAPDH gene, showed that there is a large genetic distance between Crithidia mellificae ATCC30254, an authenticated cell strain since 1974, and the rest of the presumed C. mellificae sequences obtained in our study or published. This means that the latter group corresponds to a highly differentiated taxon that should be renamed accordingly. CONCLUSION: The results of this study demonstrate that the drivers of colony collapse may differ between geographic regions with different environmental conditions, or with different beekeeping and agricultural practices. The role of other pathogens in colony collapse has to bee studied in future, especially trypanosomatids and neogregarines. Beside their pathological effect on honey bees, classification and taxonomy of these protozoan parasites should also be clarified.


Assuntos
Criação de Abelhas/métodos , Abelhas , Colapso da Colônia , Vírus de Insetos/patogenicidade , Nosema/patogenicidade , Trypanosomatina/patogenicidade , Animais , Abelhas/microbiologia , Abelhas/parasitologia , Abelhas/virologia , Colapso da Colônia/microbiologia , Colapso da Colônia/parasitologia , Colapso da Colônia/virologia , Ecossistema , Comportamento Alimentar , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Vírus de Insetos/genética , Vírus de Insetos/isolamento & purificação , Nosema/genética , Nosema/isolamento & purificação , Filogenia , Pólen , Dinâmica Populacional , Ribotipagem , Espanha , Trypanosomatina/genética , Trypanosomatina/isolamento & purificação
3.
PLoS Genet ; 10(2): e1004007, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516393

RESUMO

Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease.


Assuntos
Kinetoplastida/genética , Doenças das Plantas/genética , Análise de Sequência de DNA , Trypanosomatina/genética , Animais , Cocos/genética , Cocos/parasitologia , Café/genética , Café/parasitologia , França , Genoma , Humanos , Kinetoplastida/patogenicidade , Doenças das Plantas/parasitologia , Sementes/parasitologia , Trypanosomatina/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA