Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 382(6671): 719-725, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943924

RESUMO

Assembly of cell wall polysaccharides into specific patterns is required for plant growth. A complex of RAPID ALKALINIZATION FACTOR 4 (RALF4) and its cell wall-anchored LEUCINE-RICH REPEAT EXTENSIN 8 (LRX8)-interacting protein is crucial for cell wall integrity during pollen tube growth, but its molecular connection with the cell wall is unknown. Here, we show that LRX8-RALF4 complexes adopt a heterotetrametric configuration in vivo, displaying a dendritic distribution. The LRX8-RALF4 complex specifically interacts with demethylesterified pectins in a charge-dependent manner through RALF4's polycationic surface. The LRX8-RALF4-pectin interaction exerts a condensing effect, patterning the cell wall's polymers into a reticulated network essential for wall integrity and expansion. Our work uncovers a dual structural and signaling role for RALF4 in pollen tube growth and in the assembly of complex extracellular polymers.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Parede Celular , Pectinas , Tubo Polínico , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Pectinas/química , Pectinas/metabolismo , Peptídeos/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
2.
Plant Physiol ; 193(1): 140-155, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36974907

RESUMO

Pollen germination is a process of polarity establishment, through which a single and unique growth axis is established. Although most of the intracellular activities associated with pollen germination are controlled by RHO OF PLANTs (ROPs) and increased ROP activation accompanies pollen germination, a critical role of ROPs in this process has not yet been demonstrated. Here, by genomic editing of all 4 Arabidopsis (Arabidopsis thaliana) ROPs that are preferentially expressed in pollen, we showed that ROPs are essential for polarity establishment during pollen germination. We further identified and characterized 2 ROP effectors in pollen germination (REGs) through genome-wide interactor screening, boundary of ROP domain (BDR) members BDR8 and BDR9, whose functional loss also resulted in no pollen germination. BDR8 and BDR9 were distributed in the cytosol and the vegetative nucleus of mature pollen grains but redistributed to the plasma membrane (PM) of the germination site and to the apical PM of growing pollen tubes. We demonstrated that the PM redistribution of BDR8 and BDR9 during pollen germination relies on ROPs but not vice versa. Furthermore, enhanced expression of BDR8 partially restored germination of rop1 pollen but had no effects on that of the quadruple rop pollen, supporting their genetic epistasis. Results presented here demonstrate an ROP signaling route essential for pollen germination, which supports evolutionarily conserved roles of Rho GTPases in polarity establishment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tubo Polínico , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Germinação , Tubo Polínico/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Infertilidade das Plantas , Epistasia Genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Pólen/citologia , Pólen/metabolismo
3.
Plant Physiol ; 187(4): 2361-2380, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34601610

RESUMO

Sexual reproduction in flowering plants takes place without an aqueous environment. Sperm are carried by pollen through air to reach the female gametophyte, though the molecular basis underlying the protective strategy of the male gametophyte is poorly understood. Here we compared the published transcriptomes of Arabidopsis thaliana pollen, and of heat-responsive genes, and uncovered insights into how mature pollen (MP) tolerates desiccation, while developing and germinating pollen are vulnerable to heat stress. Germinating pollen expresses molecular chaperones or "heat shock proteins" in the absence of heat stress. Furthermore, pollen tubes that grew through pistils at basal temperature showed induction of the endoplasmic reticulum (ER) stress response, which is a characteristic of stressed vegetative tissues. Recent studies show MP contains mRNA-protein (mRNP) aggregates that resemble "stress" granules triggered by heat or other stresses to protect cells. Based on these observations, we postulate that mRNP particles are formed in maturing pollen in response to developmentally programmed dehydration. Dry pollen can withstand harsh conditions as it is dispersed in air. We propose that, when pollen lands on a compatible pistil and hydrates, mRNAs stored in particles are released, aided by molecular chaperones, to become translationally active. Pollen responds to osmotic, mechanical, oxidative, and peptide cues that promote ER-mediated proteostasis and membrane trafficking for tube growth and sperm discharge. Unlike vegetative tissues, pollen depends on stress-protection strategies for its normal development and function. Thus, heat stress during reproduction likely triggers changes that interfere with the normal pollen responses, thereby compromising male fertility. This holistic perspective provides a framework to understand the basis of heat-tolerant strains in the reproduction of crops.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Fertilidade/genética , Resposta ao Choque Térmico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Chaperonas Moleculares/metabolismo , Transcriptoma
4.
Plant Cell ; 33(9): 3042-3056, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34125904

RESUMO

In eukaryotes, homotypic fusion and vacuolar protein sorting (HOPS) as well as class C core vacuole/endosome tethering (CORVET) are evolutionarily conserved membrane tethering complexes that play important roles in lysosomal/vacuolar trafficking. Whether HOPS and CORVET control endomembrane trafficking in pollen tubes, the fastest growing plant cells, remains largely elusive. In this study, we demonstrate that the four core components shared by the two complexes, Vacuole protein sorting 11 (VPS11), VPS16, VPS33, and VPS18, are all essential for pollen tube growth in Arabidopsis thaliana and thus for plant reproduction success. We used VPS18 as a representative core component of the complexes to show that the protein is localized to both multivesicular bodies (MVBs) and the tonoplast in a growing pollen tube. Mutant vps18 pollen tubes grew more slowly in vivo, resulting in a significant reduction in male transmission efficiency. Additional studies revealed that membrane fusion from MVBs to vacuoles is severely compromised in vps18 pollen tubes, corroborating the function of VPS18 in late endocytic trafficking. Furthermore, vps18 pollen tubes produce excessive exocytic vesicles at the apical zone and excessive amounts of pectin and pectin methylesterases in the cell wall. In conclusion, this study establishes an additional conserved role of HOPS/CORVET in homotypic membrane fusion during vacuole biogenesis in pollen tubes and reveals a feedback regulation of HOPS/CORVET in the secretion of cell wall modification enzymes of rapidly growing plant cells.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Pectinas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Proteínas de Transporte Vesicular/genética , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Corpos Multivesiculares/enzimologia , Tubo Polínico/genética , Proteínas de Transporte Vesicular/metabolismo
5.
J Plant Physiol ; 263: 153417, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34102568

RESUMO

Pollen fertility is an important factor affecting the seed setting rate and seed yield of plants. The Arabidopsis thaliana enolase gene ENO2 (AtENO2) can affect the pollen morphology, germination, and pollen tube growth. AtENO2 encodes two proteins AtENO2 and AtMBP-1. To examine the effect of AtENO2 protein on pollen development, the 2nd ATG of the AtENO2 coding sequence for AtMBP-1 was mutated by site-directed mutagenesis, and transgenic plants expressing only AtENO2 but not AtMBP-1 were obtained. Phenotypic analysis indicated that AtENO2 was essential in the pollen development. The mechanisms of AtENO2 on pollen development were analyzed. AtENO2 can affect development of the pollen intine, and the mechanism may be that AtENO2 regulated the methyl esterification of pectin in pollen intine through ARF3 and AtPMEI-pi. The -734 ∼ -573 sequence of AtENO2 promoter is the main transcriptional regulatory region of AtENO2 affecting pollen development. The functional cis-acting element may be GTGANTG10(GTGA), and the trans-acting factors may be KAN, AS2 and ARF3/ETT. Moreover, the deletion of AtENO2 can cause significant difference in the expression of multiple genes related to pollen exine development. These results are useful for further studying the function of AtENO2 and exploring the mechanism of plant pollen development.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Genes de Plantas , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/genética , Pólen/crescimento & desenvolvimento , Pólen/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Mutação , Plantas Geneticamente Modificadas
6.
Plant Signal Behav ; 16(8): 1921992, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33960266

RESUMO

Following pollen deposition on the receptive surface of the stigma, pollen germinates a tube that carries male gametes toward the ovule where fertilization occurs. As soon as it emerges from the pollen grain, the pollen tube has to be properly guided through the pistil tissues so as to reach the ovule and ensure double fertilization. Chemical attractants, nutrients as well as receptor kinase-dependent signaling pathways have been implicated in this guidance. Recently, we showed in Arabidopsis that the microtubule severing enzyme KATANIN, by acting both on cortical microtubule (CMT) dynamics and cellulose microfibril (CMF) deposition, conferred particular mechanical properties to the papilla cell wall that act as active guidance factors. Here we confirm the importance of KATANIN and CMT orientation in pollen tube directionality by examining another katanin mutant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular , Katanina/metabolismo , Microtúbulos , Tubo Polínico , Polinização , Arabidopsis/fisiologia , Celulose , Fertilização , Flores , Óvulo Vegetal , Pólen , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo
7.
Plant Physiol ; 186(2): 865-873, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33638984

RESUMO

Reproductive isolation is a prerequisite to form and maintain a new species. Multiple prezygotic and postzygotic reproductive isolation barriers have been reported in plants. In the model plant, Arabidopsis thaliana conspecific pollen tube precedence controlled by AtLURE1/PRK6-mediated signaling has been recently reported as a major prezygotic reproductive isolation barrier. By accelerating emergence of own pollen tubes from the transmitting tract, A. thaliana ovules promote self-fertilization and thus prevent fertilization by a different species. Taking advantage of a septuple atlure1null mutant, we now report on the role of AtLURE1/PRK6-mediated signaling for micropylar pollen tube guidance. Compared with wild-type (WT) ovules, atlure1null ovules displayed remarkably reduced micropylar pollen tube attraction efficiencies in modified semi-in vivo A. thaliana ovule targeting assays. However, when prk6 mutant pollen tubes were applied, atlure1null ovules showed micropylar attraction efficiencies comparable to that of WT ovules. These findings indicate that AtLURE1/PRK6-mediated signaling regulates micropylar pollen tube attraction in addition to promoting emergence of own pollen tubes from the transmitting tract. Moreover, semi-in vivo ovule targeting competition assays with the same amount of pollen grains from both A. thaliana and Arabidopsis lyrata showed that A. thaliana WT and xiuqiu mutant ovules are mainly targeted by own pollen tubes and that atlure1null mutant ovules are also entered to a large extent by A. lyrata pollen tubes. Taken together, we report that AtLURE1/PRK6-mediated signaling promotes conspecific micropylar pollen tube attraction representing an additional prezygotic isolation barrier.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/fisiologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/fisiologia , Polinização , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Isolamento Reprodutivo
8.
Plant Cell Environ ; 44(3): 665-691, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33124689

RESUMO

Research concerning the effects of ionizing radiation (IR) on plant systems is essential for numerous aspects of human society, as for instance, in terms of agriculture and plant breeding, but additionally for elucidating consequences of radioactive contamination of the ecosphere. This comprehensive survey analyses effects of x- and γ-irradiation on male gametophytes comprising primarily in vitro but also in vivo data of diverse plant species. The IR-dose range for pollen performance was compiled and 50% inhibition doses (ID50 ) for germination and tube growth were comparatively related to physiological characteristics of the microgametophyte. Factors influencing IR-susceptibility of mature pollen and polarized tube growth were evaluated, such as dose-rate, environmental conditions, or species-related variations. In addition, all available reports suggesting bio-positive IR-effects particularly on pollen performance were examined. Most importantly, for the first time influences of IR specifically on diverse phylogenetic models of polar cell growth were comparatively analysed, and thus demonstrated that the gametophytic system of pollen is extremely resistant to IR, more than plant sporophytes and especially much more than comparable animal cells. Beyond that, this study develops hypotheses regarding a molecular basis for the extreme IR-resistance of the plant microgametophyte and highlights its unique rank among organismal systems.


Assuntos
Polaridade Celular/efeitos da radiação , Pólen/efeitos da radiação , Relação Dose-Resposta à Radiação , Germinação/efeitos da radiação , Modelos Biológicos , Pólen/fisiologia , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/efeitos da radiação , Radiação Ionizante
9.
Plant Cell Environ ; 44(7): 2167-2184, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33289138

RESUMO

Plant reproduction is one key biological process that is very sensitive to heat stress and, as a result, enhanced global warming becomes a serious threat to agriculture. In this work, we have studied the effects of heat on germinated pollen of Arabidopsis thaliana both at the transcriptional and translational level. We have used a high-resolution ribosome profiling technology to provide a comprehensive study of the transcriptome and the translatome of germinated pollen at permissive and restrictive temperatures. We have found significant down-regulation of key membrane transporters required for pollen tube growth by heat, thus uncovering heat-sensitive targets. A subset of the heat-repressed transporters showed coordinated up-regulation with canonical heat-shock genes at permissive conditions. We also found specific regulations at the translational level and we have uncovered the presence of ribosomes on sequences annotated as non-coding. Our results demonstrate that heat impacts mostly on membrane transporters thus explaining the deleterious effects of heat stress on pollen growth. The specific regulations at the translational level and the presence of ribosomes on non-coding RNAs highlights novel regulatory aspects on plant fertilization.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Resposta ao Choque Térmico/fisiologia , Pólen/fisiologia , Proteínas de Arabidopsis/metabolismo , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Germinação , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Biossíntese de Proteínas
10.
J Vis Exp ; (165)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33226025

RESUMO

The Japanese plum cultivars commonly grown are interspecific hybrids derived from crosses between the original Prunus salicina with other Prunus species. Most hybrids exhibit gametophytic self-incompatibility, which is controlled by a single and highly polymorphic S-locus that contains multiple alleles. Most cultivated hybrids are self-incompatible and need pollen from a compatible donor to fertilize their flowers. Establishing pollination requirements in Japanese plum is becoming increasingly important due to the high number of new cultivars with unknown pollination requirements. In this work, a methodology for the determination of pollination requirements in Japanese plum-type hybrids is described. Self-(in)compatibility is determined by hand-pollinations in both the field and in the laboratory, followed by monitoring pollen tube elongation with fluorescence microscopy, and also monitoring fruit maturation in the field. Selection of pollinizer cultivars is assessed by combining the identification of S-genotypes by PCR analysis with the monitoring of flowering time in the field. Knowing the pollination requirements of cultivars facilitates the selection of cultivars for the design of new orchards and allows the early detection of productivity problems related with pollination deficiency in established orchards.


Assuntos
Técnicas de Genotipagem , Microscopia de Fluorescência , Polinização/fisiologia , Prunus domestica/fisiologia , Genótipo , Germinação , Tubo Polínico/crescimento & desenvolvimento
11.
Sci Rep ; 10(1): 16958, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046738

RESUMO

Pollination services from animals are critical for both crop production and reproduction in wild plant species. Accurately measuring the relative contributions of different animal taxa to pollination service delivery is essential for identifying key pollinators. However, widely used measures of pollinator effectiveness (e.g., single visit pollen deposition) may be inaccurate where plant reproduction is strongly constrained by pollen quality. Here, we test the efficacy of single and multiple pollinator visits for measuring pollinator performance in a model plant species (apple, Malus domestica Borkh) that is strongly limited by pollen quality. We determined pollination success using a suite of measures (pollen deposition, pollen tube growth, fruit and seed set) from single and multiple pollinator visits. We found that pollen deposition from a single pollinator visit seldom resulted in the growth of pollen tubes capable of eliciting ovule fertilisation and never resulted in fruit or seed production. In contrast, multiple pollinator visits frequently initiated the growth of pollen tubes capable of ovule fertilisation and often led to fruit and seed production. Our findings suggest that single visit pollen deposition may provide a poor measure of pollinator performance when linked to reproductive success of plant species that are constrain by pollen quality. Alternatively, pollen tube growth from single and multiple pollinator visits can provide a measure of pollinator performance that is more closely linked to plant reproduction.


Assuntos
Abelhas/fisiologia , Malus/fisiologia , Tubo Polínico/crescimento & desenvolvimento , Pólen/fisiologia , Polinização/fisiologia , Reprodução/fisiologia , Animais
12.
Plant Physiol ; 184(4): 1640-1657, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32989009

RESUMO

Flowering plants (angiosperms) are characterized by pollen tubes (PTs; male gametophytes) carrying two immobile sperm cells that grow over long distances through the carpel toward the ovules, where double fertilization is executed. It is not understood how these reproductive structures evolved, which genes occur de novo in male gametophytes of angiosperms, and to which extent PT functions are conserved among angiosperms. To contribute to a deeper understanding of the evolution of gametophyte functions, we generated RNA sequencing data from seven reproductive and two vegetative control tissues of the basal angiosperm Amborella trichopoda and complemented these with proteomic data of pollen grains (PGs) and PTs. The eudicot model plant Arabidopsis (Arabidopsis thaliana) served as a reference organism for data analysis, as more than 200 genes have been associated with male gametophyte functions in this species. We describe methods to collect bicellular A. trichopoda PGs, to induce their germination in vitro, and to monitor PT growth and germ cell division. Transcriptomic and proteomic analyses indicate that A. trichopoda PGs are prepared for germination requiring lipids, energy, but likely also reactive oxygen species, while PTs are especially characterized by catabolic/biosynthetic and transport processes including cell wall biosynthesis and gene regulation. Notably, a number of pollen-specific genes were lacking in Arabidopsis, and the number of genes involved in pollen signaling is significantly reduced in A. trichopoda In conclusion, we provide insight into male gametophyte functions of the most basal angiosperm and establish a valuable resource for future studies on the evolution of flowering plants.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Germinação/genética , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/genética , Pólen/crescimento & desenvolvimento , Pólen/genética , Evolução Biológica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/fisiologia , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Proteômica , Transcriptoma
13.
BMC Plant Biol ; 20(1): 380, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811442

RESUMO

BACKGROUND: Glycosylphosphatidylinositol (GPI) addition is one of the several post-translational modifications to proteins that increase their affinity for membranes. In eukaryotes, the GPI transamidase complex (GPI-T) catalyzes the attachment of pre-assembled GPI anchors to GPI-anchored proteins (GAPs) through a transamidation reaction. A mutation in AtGPI8 (gpi8-2), the putative catalytic subunit of GPI-T in Arabidopsis, is transmitted normally through the female gametophyte (FG), indicating the FG tolerates loss of GPI transamidation. In contrast, gpi8-2 almost completely abolishes male gametophyte (MG) function. Still, the unexpected finding that gpi8-2 FGs function normally requires further investigation. Additionally, specific developmental defects in the MG caused by loss of GPI transamidation remain poorly characterized. RESULTS: Here we investigated the effect of loss of AtPIG-S, another GPI-T subunit, in both gametophytes. Like gpi8-2, we showed that a mutation in AtPIG-S (pigs-1) disrupted synergid localization of LORELEI (LRE), a putative GAP critical for pollen tube reception by the FG. Still, pigs-1 is transmitted normally through the FG. Conversely, pigs-1 severely impaired male gametophyte (MG) function during pollen tube emergence and growth in the pistil. A pPIGS:GFP-PIGS transgene complemented these MG defects and enabled generation of pigs-1/pigs-1 seedlings. However, the pPIGS:GFP-PIGS transgene seemingly failed to rescue the function of AtPIG-S in the sporophyte, as pigs-1/pigs-1, pPIGS:GFP-PIGS seedlings died soon after germination. CONCLUSIONS: Characterization of pigs-1 provided further evidence that the FG tolerates loss of GPI transamidation more than the MG and that the MG compared to the FG may be a better haploid system to study the role of GPI-anchoring. Pigs-1 pollen develops normally and thus represent a tool in which GPI anchor biosynthesis and transamidation of GAPs have been uncoupled, offering a potential way to study free GPI in plant development. While previously reported male fertility defects of GPI biosynthesis mutants could have been due either to loss of GPI or GAPs lacking the GPI anchor, our results clarified that the loss of mature GAPs underlie male fertility defects of GPI-deficient pollen grains, as pigs-1 is defective only in the downstream transamidation step.


Assuntos
Aciltransferases/fisiologia , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimento , Aciltransferases/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Técnicas de Genotipagem , Glicoproteínas de Membrana/metabolismo , Mutação , Pólen/genética , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Nicotiana/genética
14.
Int J Dev Biol ; 64(1-2-3): 7-19, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32659021

RESUMO

Professor Panchanan Maheshwari served as Professor and Head of the Department of Botany, University of Delhi, from 1950 to 1966 and built an internationally reputed School of integrated plant embryology. Studies carried out during and after Maheshwari's period from this School have enormously advanced our knowledge of the structural, developmental and functional aspects of embryological processes. This review covers studies carried out at the Delhi School on the developmental biology of dispersed pollen grains which operate from pollen dispersal from the anthers until pollen tubes discharge the male gametes in the embryo sac for fertilization. These events include pollen viability and vigour, pollen germination and pollen tube growth, structural details of the pistil relevant to pollen function, pollination and pollen-pistil interaction.


Assuntos
Biologia do Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Germinação , Proteínas de Plantas/genética , Pólen/genética , Pólen/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo
15.
Theor Appl Genet ; 133(9): 2713-2728, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32514711

RESUMO

Self-compatible (SC) diploid potatoes allow innovative potato breeding. Therefore, the Sli gene, originally described in S. chacoense, has received much attention. In elite S. tuberosum diploids, spontaneous berry set is occasionally observed. We aimed to map SC from S. tuberosum origin. Two full-sib mapping populations from non-inbred diploids were used. Bulks were composed based on both pollen tube growth and berry set upon selfing. After DNA sequencing of the parents and bulks, we generated k-mer tables. Set algebra and depth filtering were used to identify bulk-specific k-mers. Coupling and repulsion phase k-mers, transmitted from the SC parent, mapped in both populations to the distal end of chromosome 12. Intersection between the k-mers from both populations, in coupling phase with SC, exposed a shared haplotype of approximately 1.5 Mb. Subsequently, we screened read archives of potatoes and wild relatives for k-mers specific to this haplotype. The well-known SC clones US-W4 and RH89-039-16, but surprisingly, also S. chacoense clone M6 were positives. Hence, the S. tuberosum source of SC seems identical to Sli. Furthermore, the candidate region drastically reduced to 333 kb. Haplotype-specific KASP markers were designed and validated on a panel of diploid clones including another renown SC dihaploid G254. Interestingly, k-mers specific to the SC haplotype were common in tetraploid varieties. Pedigree information suggests that the SC haplotype was introduced into tetraploid varieties via the founder "Rough Purple Chili". We show that Sli is surprisingly widespread and indigenous to the cultivated gene pool of potato.


Assuntos
Genética Populacional , Melhoramento Vegetal , Solanum tuberosum/genética , Mapeamento Cromossômico , Diploide , Pool Gênico , Genes de Plantas , Marcadores Genéticos , Genótipo , Haplótipos , Fenótipo , Tubo Polínico/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único
16.
Plant Cell Physiol ; 61(7): 1348-1364, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32384163

RESUMO

Pollen lipids are essential for sexual reproduction, but our current knowledge regarding lipid dynamics in growing pollen tubes is still very scarce. Here, we report unique lipid composition and associated gene expression patterns during olive pollen germination. Up to 376 genes involved in the biosynthesis of all lipid classes, except suberin, cutin and lipopolysaccharides, are expressed in olive pollen. The fatty acid profile of olive pollen is markedly different compared with other plant organs. Triacylglycerol (TAG), containing mostly C12-C16 saturated fatty acids, constitutes the bulk of olive pollen lipids. These compounds are partially mobilized, and the released fatty acids enter the ß-oxidation pathway to yield acetyl-CoA, which is converted into sugars through the glyoxylate cycle during the course of pollen germination. Our data suggest that fatty acids are synthesized de novo and incorporated into glycerolipids by the 'eukaryotic pathway' in elongating pollen tubes. Phosphatidic acid is synthesized de novo in the endomembrane system during pollen germination and seems to have a central role in pollen tube lipid metabolism. The coordinated action of fatty acid desaturases FAD2-3 and FAD3B might explain the increase in linoleic and alpha-linolenic acids observed in germinating pollen. Continuous synthesis of TAG by the action of diacylglycerol acyltransferase 1 (DGAT1) enzyme, but not phosphoplipid:diacylglycerol acyltransferase (PDAT), also seems plausible. All these data allow for a better understanding of lipid metabolism during the olive reproductive process, which can impact, in the future, on the increase in olive fruit yield and, therefore, olive oil production.


Assuntos
Germinação , Metabolismo dos Lipídeos , Olea/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Transcriptoma , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glioxilatos/metabolismo
17.
Genomics ; 112(3): 2467-2477, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32014523

RESUMO

Pectin methyl-esterases (PMEs) play crucial roles in plant growth. In this study, we identified 81 PbrPMEs in pear. Whole-genome duplication and purifying selection drove the evolution of PbrPME gene family. The expression of 47 PbrPMEs was detected in pear pollen tube, which were assigned to 13 clusters by an expression tendency analysis. One of the 13 clusters presented opposite expression trends towards the changes of methyl-esterified pectins at the apical cell wall. PbrPMEs were localized in the cytoplasm and plasma membrane. Repression of PbrPME11, PbrPME44, and PbrPME59 resulted in the inhibition of pear pollen tube growth and abnormal deposition of methyl-esterified pectins at pollen tube tip. Pharmacological analysis confirmed that reduced PbrPME activities repressed the pollen tube growth. Overall, we have explored the evolutionary characteristics of PbrPME gene family and found the key PbrPME genes that control the growth of pollen tube, which deepened the understanding of pear fertility regulation.


Assuntos
Esterases/genética , Pectinas/metabolismo , Tubo Polínico/enzimologia , Tubo Polínico/crescimento & desenvolvimento , Pyrus/enzimologia , Pyrus/crescimento & desenvolvimento , Mapeamento Cromossômico , Esterases/classificação , Esterases/metabolismo , Genes de Plantas , Genoma de Planta , Família Multigênica , Motivos de Nucleotídeos , Filogenia , Tubo Polínico/metabolismo , Pyrus/genética , Pyrus/metabolismo , Sintenia
18.
Plant Sci ; 292: 110394, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32005399

RESUMO

Plant cytoplasmic ribosomal proteins not only participate in protein synthesis, but also have specific roles in developmental regulation. However, the high heterogeneity of plant ribosome makes our understanding of these proteins very limited. Here we reported that RPL14B, a component of the ribosome large subunit, is critical for fertilization in Arabidopsis. RPL14B is existed in a majority of organs and tissues. No homozygous rpl14b mutant is available, indicating that RPL14B is irreplaceable for sexual reproduction. Smaller-sized rpl14b pollens could germinate normally, but pollen tube competitiveness is grievously weakened. Beside, cell fate specification is impaired in female gametophytes from heterozygous rpl14b/RPL14B ovules, resulting in defect of micropylar pollen tube attraction. However, this defect could be restored by restricted expression of RPL14B in synergid cells. Successful fertilization requires normal pollen tube growth and precise pollen tube guidance. Thus our results show a novel role of RPL14B in fertilization and shed new light on regulatory mechanism of pollen tube growth and precise pollen tube guidance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Fertilização , Tubo Polínico/fisiologia , Pólen/anatomia & histologia , Proteínas Ribossômicas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citoplasma , Pólen/genética , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/metabolismo
19.
Protoplasma ; 257(3): 793-805, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31916009

RESUMO

The transcriptional and posttranscriptional AGO-mediated control of gene expression may play important roles during male monocot gametophyte development. In this report, we demonstrated dynamic changes in the spatiotemporal distribution of AGO1 and AGO4, which are key proteins of the RNA-induced silencing complex (RISC) in Hyacinthus orientalis male gametophyte development. During maturation of the bicellular pollen grains and in vitro pollen tube growth, the pattern of AGO1 localization was correlated with previously observed transcriptional activity of the cells. During the period of high transcriptional activity, AGO1 is associated with chromatin while the clustered distribution of AGO1 in the interchromatin areas is accompanied by condensation of chromatin and the gradual transcriptional silencing of both cells in mature, dehydrated pollen. During pollen tube growth and the restarting of RNA synthesis in the vegetative nucleus, AGO1 is dispersed in the chromatin. Additionally, the gradual increase in the cytoplasmic pool of AGO1 in the elongating pollen tube indicates the activation of the posttranscriptional gene silencing (PTGS) pathway. During pollen tube growth in the generative cell and in the sperm cells, AGO1 is present mainly in the areas between highly condensed chromatin clusters. Changes in the distribution of AGO4 that indicated the possibility of spatiotemporal organization in the RNA-directed DNA methylation (RdDM) process (cytoplasmic and nuclear steps) were also observed during hyacinth male gametophyte development. Based on our findings, we propose that in the germinating pollen tube, the cytoplasmic assembly of AGO4/siRNA takes place and that the mature complexes could be transported to the nucleus to carry out their function during the next steps of pollen tube growth.


Assuntos
Proteínas de Arabidopsis/química , Proteínas Argonautas/química , Hyacinthus/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento
20.
Protoplasma ; 257(1): 89-101, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31342152

RESUMO

The aim of the current study was to examine the effect of different exogenous putrescine concentrations (200, 400, 600, and 800 µM) on the tea pollen performance. It was shown that putrescine has a dose-dependent effect on pollen performance. Results exhibited that pollen germination and tube elongation were induced by 200 and 400 µM putrescine treatment, especially, 400 µM putrescine-enhanced pollen performance. However, pollen performance was inhibited by higher concentrations of putrescine. Putrescine concentrations above 400 µM changed the actin filament distribution in pollen tubes by affecting the distribution of sucrose synthase enzyme. Alterations of the distribution on sucrose synthase enzyme also caused the alterations in the dispersion of cellulose and callose in the cell wall, and morphological alterations such as balloon-shaped and snake-shaped pollen tube tip accompanied them. Moreover, putrescine concentrations above 400 µM caused a decrease of ROS level in apex and led to chromatin condensation of the generative nucleus. In conclusion, exogenous putrescine application can be used as a pollen performance enhancer at low concentrations while the high concentrations cause adverse effects reducing fertilization success.


Assuntos
Actinas/metabolismo , Camellia sinensis/citologia , Camellia sinensis/crescimento & desenvolvimento , Parede Celular/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Putrescina/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Camellia sinensis/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Parede Celular/efeitos dos fármacos , Tubo Polínico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA